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SOME INEQUALITIES FOR FUNCTIONS
OF EXPONENTIAL TYPE

LARS HORMANDER

The purpose of this paper is to derive inequalities for functions of
exponential type, similar to those for trigonometrical polynomials proved
by C. Hyltén-Cavallius in the preceding paper [2]. Our inequalities are
in fact limiting cases of his and might be proved as such by means of an
approximation method developed below. However, it is preferable not
to prove them directly but to establish a result on the zeros of functions
of exponential type (Theorem 1), which can replace the properties of
trigonometrical polynomials used in the proofs of [2]. Inequalities may
then be derived in the same way as there with a complete discussion of
the cases of equality, which would not be possible by a direct approach.
Theorem 1 may also have other applications. A special case of it has been
established by Duffin and Schaeffer [1] in proving Bernstein’s theorem
on the derivative of a function of exponential type.

An entire function f is here said to be of exponential type o if for every
£> 0 there is a constant C such that

(1) [f(2)] £ 0P,

We shall here study the set R, of functions f of exponential type o> 0 such
that f(x) is real and —1<f(x) <1 when z is real. It is easily proved by
the Phragmén-Lindelsf principle (cf. [1]) that if fe R, we even have

(2) If @ +iy)| < e

which sharpens (1).

By a method due to Lewitan [4] in the form given by Hoérmander
[3], we first prove that the functions in B, can be approximated in a
suitable fashion by periodical trigonometrical polynomials. Let ¢ be the
funetion
(3) @(z) = sinnz/(nx)? .

Then we have
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) @20, g0 =1  Spletm=1,

where the last equality follows from a well-known expansion of 1/sin?azx.
Now take any function f in R, and put for real x and real 2> 0,

Q $i@) = 3 gl n) fla by .

Since —1=f(t)=1 it follows from (3) and (4) that the series converges
absolutely and locally uniformly, so that f,(z) is continuous and

-1 = fulx) 2 1.
Furthermore, f;(x) has the period 1/2 and the Fourier coefficients
R +05
6) (k) =h S folz) e-2ohode = b S o(hz) f (@) e-2h= da .
0 —00

It follows from (6) that ¢,=0 if 2x|vh|=20+2xk. In fact, using the
estimate (2) and the explicit form (3) of ¢, we find that we may integrate
over any line Imz=constant instead of the real axis, and get

+00
c(h) = h S o[k (@ +1y)] f(x +iy) e-2mwh@+i) dy |
Now |¢fh(z +iy)]| < (nh)~2 (22 +y?)~Le> v and |f(z+iy)| Se’l™, so that
we get for any y+0,

+00
le,(k)] S h-1o—2 e2mhu+yla+2uh Sdm/(xg o)

= (whly|) e2mvhy+|yl(a+2ah) |

Letting y -~ +o or y > — oo it follows that ¢, (h)=0 if o+ 27h < |27vh|.

Thus f is a trigonometrical polynomial, and hence it is defined in the
whole complex plane. We shall prove that f,(z) - f(z) uniformly in
every bounded set when A — 0. First we note that for real x we have the
formulas

fi@)—f @) = (phz)—1)f(z) + %:) p(he +n) f(z+nk-1),
Ifalx)—f ()] = (1—g(hx)) + §0¢(M+n) = 2(1—g(h)),

from which the uniform convergence on every bounded set of the real
axis follows. Since f; is of exponential type o+ 2znh it follows from (2)
that
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fala+iy)] < s,

and the uniform convergence in every bounded set of the complex plane
is hence a consequence of Vitali’s theorem.
Summing up we have proved the following lemma.

Levma. The functions f, defined by (5) with an f € R, are trigonometrical
polynomials with period 1/h and order less than 1+ o/2xh. When x is real
we have —1Zf ()21, and fi(2) - f(2) uniformly in every bounded set
when b — 0.

Let F,(z, x) be the trigonometrical polynomial in x defined by
(7) E, (z, &) = Ty,[cos(x/2n) cos ix]

where T, is the Tchebycheff polynomial of degree 2n and 0 <« < na.
(Polynomials of this kind were the essential tool in the proofs of [2]).
Let & be the least integer =o/n; we have 0<k=<n. In the interval
(—m, =) the graph of E, has 2n — 2k branches passing between —1 and
+1, that is, there are 2n— 2k intervals without common interior points
where B, (x, x) varies between —1 and +1. Hence if P(x) is any real
trigonometrical polynomial of order =<n with period 2z such that
—1=<P(x)=<1 for real z and P+ E,, the polynomial

P(z) — B,(, «)

has at most 2k zeros in the strip —n < Rex <z besides one zero in each
of the 2n — 2k intervals just mentioned.

‘We now prove an analogous statement for functions of exponential type.

THEOREM 1. Let fe R, and let F (x, x) (x=0) be the function in R,
defined by
(8) F (x, x) = cos (02224 a2)} .

Then f—F , vanishes identically or else it has a zero tn every interval of the
real axis where F (x, «) varies between —1 and +1, and besides those at
most 2k zeros where k is the least integer = ofn.

We observe that the 2k “free’” zeros may be complex or real and that
zeros shall be counted with their multiplicities. It is evident that we may
replace F (z, «) by F (x— 8, ) with real constant # in the theorem. For
o =0 it then reduces to a theorem of Duffin and Schaeffer [1].

Proor or TureorEM 1. We form the approximating trigonometrical
polynomials f,(x) defined by (5). They are of order

N = N(b) = 1+ [o/27h]
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at most, and have the period 1/h. We now use the properties of the
function B, (z, «) stated above. It follows that the difference

fu(e[2mh) — Ey(x, «)

is either =0 or else it has at most 2k zeros in the strip —x<Rex<n
besides one in every interval where E, varies between —1 and +1.

Hence Dy@) = ful@) — Ey(2nha, )

is either =0 or has at most 2k zeros in the strip —1/2h <Rex<1/2h
besides one in every interval where E(2nhz, «) varies between —1 and
+1. Now we have proved that f,(z) - f(x) uniformly in every compact
part of the complex plane when h — 0. Using the explicit form of
E(2nhx, o) it is elementary to prove that

Ey(2nhz, &) - F (x, «)

in the same sense when 2 — 0. Hence Dy(z) - f(x) — F (x, «)=D(zx) when
kh — 0. But if D(x) does not vanish identically, it follows from a classical
theorem by Hurwitz that the zeros of D(x) are the limits of the zeros of
Dy, (x), which proves our proposition.

We now generalize Theorem 2 of [2]. The proof only uses our Theorem
1 for « =0 and hence the theorem is contained in the results of Duffin
and Schaeffer [1], though not explicitly stated there.

THEOREM 2. The values which can be assumed by functions in B at a
fized point it, where t is real and + 0, may be written in the form cos (a +1b)
with real a and b and |b] Sclt|. If |b| =o|t| this value is only attained by
f(x)=cos(btz+a). If |b|<c|t| it is taken by several f in R..

Proor. If |b|20lt|, a function f in R, is of exponential type |61
Hence according to Theorem 1, the difference

f@) = Fyy(z+ab~, 0) = f(z) — cos(bi~'z+a)

cannot vanish at a complex point unless it vanishes identically. This
proves that if f(it)=cos(a+1ib), we must have |b|<c|t| or otherwise
f(z)=cos(bt-'x+a) and |b|=0c|t|.

Finally, in order to prove the last assertion of the theorem and at the
same time to prepare Theorem 3, we shall study the functions f in R,
such that
(9) f(#¢) = cos(a+1b)

with given fixed a, b and ¢40. It will be supposed that |b| <o|¢| since
(9) is otherwise impossible or determines f uniquely.
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A function of the form F (x— B, «) with F, defined by (8) satisfies (9)
if with some integer v we have ¢2(tt — )2+ a%= (@ + 2vrc +1b)?, or
a? = (@282 —b)(1+ (a + 2vm)?/o??)

(10) y=0,+1, £2, ... .
B, = —(a+2vm)b/o? ,

We may also write F (z—f,, «,)=cos 4, (x) where

(11) A,(x)? = o*(x—B,)* + o,
= o2x%+ 2x(a+ 2vm)b/t + 0*12 — b2+ (@ + 2vm)? .

It is clear that all the functions cosA4,(x), »=0, £1, ..., are in B, and
satisfy (9). This completes the proof of Theorem 2.

TurorEM 3. For any f € R, such that f(it) = cos(a +tb), where t+ 0 and
b% < a2t%, we have in the interval I, where A (x) <,

(12) f(x) 2 cosd,(x),

with inequality at every point of I, unless f(x)=cos A, (x). The intervals
1, are disjoint. If x is not in any I, there exist several functions fe R,
such that f(it)=cos(a+1b) and f(x)= —1.

Proor. First suppose that I, contains more than one point, that is

«,<m, and that
f(x) — cosA(x) = 0.

Since this difference vanishes at the complex points # it it follows from
Theorem 1 that it cannot have any other zeros except the trivial ones.
Hence there is no zero in the interior of I,, nor any at an endpoint of
I, since this would be a double zero of which only one belongs to the
trivial ones.

Now suppose that I, contains only the point §,, that is «, ==, and that
f(B,)=—1 but f(x)=x=cosA4,(x). A graph shows that if « is less than and
close to n, the difference

f(x) - Fa(x_ﬂv’ 0‘)

has its two “free” zeros in the vicinity of 8,. Hence letting « -z it
follows from Hurwitz’ theorem, that the limit f(x)—cosA,(x) has its
two ‘“free’” zeros at f,, and therefore cannot vanish for z=1t.

We now prove the latter part of the theorem. If we replace ¢ in (11)
by o* where |bt-1|<o* <o we get a function A*. It is obvious that
f*(x)=cos 4 *(x) is in R,. and hence in R,, and that f*(it)=cos(a +ib).
When o* = |bt-1| we have A *(x)=|bat~1+a+ 2va|, so that for a given z,
there is at least one index u such that 4 *(x,)<n. If 2, is not in any I,
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it now follows by using (11) that A4 *(x,) decreases monotonically from
a value >z to a value <z when o* decreases from ¢ to |6t~!. For a
suitable ¢* in this interval we must hence have A4 *(x,)=n so that
S*(@o)=—1.

Since ¢ > |bt-1] it follows from (11) that A4 (x)> |bxt-1+a+ 2va| so we
cannot have A (x)<n for two values of » at the same point . Hence
the intervals I, are disjoint.

To prove the last assertion we note that if , is not in any I, we have
constructed a function fin E_,_, with some ¢ > 0 such that f(z,)= —1 and
f(it)=cos(a+tb). Now take any function g of exponential type ¢ such
that 0<g(x)<2 if x is real and g(it)=g(z,)=0. Then the function

fi=1-fg

is in B, and we have f,(it) = cos(a +¢b), f,(x,)= — 1, which completes the
proof.

Since a function fis in R, and satisfies f(it)=cos(a +b) if and only if
—fisin R, and —f(it) = cos(a+ x +4b), it is easy to derive upper estimates
also from Theorem 3.

The special case of Theorem 3 when b =0 corresponds to Theorem 1 of
{2] and has a simple form which merits explicit formulation.

CoroLLaRY. If fe R, and f(it)=cosa, where t+0 and 0<a<m, we
have
flx) = cos [o%(a2+12) +a]}
when o2 («®+ tz) +a2<nl,

An examination of the proof shows that Theorem 3 and hence the
corollary are also true when ¢=0 provided that not only f(0)=cosa but
also f'(0)=0. The full proof can be omitted and we end the paper by a
simple application of the corollary.

THEOREM 4. If fe R, and f(0)=cosc, 0<c<m, we have f(u+iv)$1
when
(12) o?(u+ %) < c?;
but if u+iv 18 not in this circle we have f(u +1w)=1 for some fe R, with
f(0)=sinc.

Proor. Suppose that f(u+tv)=1. If v=0 it follows that also f'(u)=0,
for we have f(x) <1 for every real . The function g(x)=f(x+u) is evi-
dently in R, and since g(iv)=1=co80, g(—u)=cosc, we can apply the
corollary. It follows that
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g(—u) = cosc = cos[o?(ut+ o)t if oP(u+0?) £ A

Hence the inequality
(13) o?(ut+9?) = c?

follows if the left hand side is <a? Since ¢2<xz? it is also true if the
left hand side is >=%. Hence (13) is valid without restriction, which
proves one part of the theorem.
On the other hand, the function
Al@—u)2+o2]\}
) = eon ()
is in B, if u +¢v is not in the circle (12) and we have evidently f(0)=cosc,
f(u+4v)=1. This completes the proof.
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