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SOME EXTREMAL PROBLEMS FOR
TRIGONOMETRICAL AND COMPLEX POLYNOMIALS

CARL HYLTEN-CAVALLIUS

1. Introduction

In his paper “On rational polynomials’ ([7]), P. Turan! raised the fol-
lowing problem: Let P, (z) be a polynomial of a complex variable z with
complex coefficients and of degree =<m=. Suppose that on the circle
|z| =1, the absolute value of P, (z) attains its maximum at the point z=1.
How near to this point can there be a zero z, of P,(z) if either

A: z, is prescribed to lie on the circle |z|=1,

B: no restriction is made about the position of z,?

Turan pointed out that necessarily |zo—1|=1/n and proved that in
case A, the nearest positions of a zero are z,=¢*'™" and that if P,(z) has
a zero at one of these points it follows that P,(z)=c(1+2"). Turin
and Erdos [2] found applications of this theorem, namely to derive from
a common source certain theorems by Jentzsch-Szegé and E. Schmidt.

As for case B, Turdn showed that to every z, on the lines argz= + z/n
corresponds a polynomial P, (z) with the maximum-property mentioned
and with P,(z)=0, but the rest of the problem was left as an open ques-
tion.

While investigating this problem, I was led to study some extremal
properties of a class of trigonometrical polynomials (see Theorem I), from
which the answer to Turidn’s problem follows (see Theorem V). Theorem
I is, however, interesting in itself. At the suggestion of L. Hérmander,
I made a generalization of Theorem I (see Theorem III). Using a method
for approximating bounded functions by periodic ones developed in [4],
Hormander proved (see the following paper [5]) certain inequalities,
corresponding to those of Theorem III, for functions of exponential

type.
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1 I should like to take the opportunity to express my very deep gratitude to Prof.
P. Turén, who brought my attention to this and to many other problems during the
last few years. I also wish to thank Mr. L. Hérmander and Prof. A. Pleijel for valuable
suggestions and criticism of my paper.



6 CARL HYLTEN-CAVALLIUS

2. Inequalities for trigonometrical polynomials
with prescribed value at one complex point

2.1. We start by making the following

DerintTioN. By I1, =1I,(it, cosx), where n =2 is an integer, {0 is
real and 0La<n, we denote the class of trigonometrical polynomials
@, with real coefficients and of order =<n, such that

(2.1.1) |D,.(x)] £ 1 for all real x
and
(2.1.2) D, (it) = coscx .

Observe that x is real throughout the whole paper.

We first note that @, =cosx belongs to I7,, so that II, is not empty.
Further, since the coefficients of @, are real, the classes I7,(¢¢, cosx)
and I7,(—it, cose) coincide.

We are going to solve the problem of determining the functions

m(x) = inf @, (x) and M(x) = sup D,(x)
Dnell, Dy eIy
for every value of z. It will turn out that for instance m(x) has the value
—1 except in the interior of a certain interval |x|<d <= around the
origin and its translations by 2vz, where » is an arbitrary integer.
In these intervals m(z) is equal to

(2.1.3) Ty.(acosix) where a = cos(x/2n)cosh—14¢.
Here 7', denotes the r™ Tchebycheff polynomial defined by
T,(cosu) = cosru

and cosh-! means 1/cosh. Note that 0<a<1.
We shall use the notation

Y, (x) = Y, (a,z) = Ty,(a cosix) .

From the identity T,,(q)=T,(2¢9%—1) it follows that ¥,(x) is a polyno-
mial with real coefficients and of degree n in cos?4x and hence also in
cosz. Since |a cosizr|=a <1, it follows from the definition of 7', that
|¥,(x)] <1 for all real x. Finally,

W, (it) = Ty,(a cosh §t) = T,,(cos(x/2n)) = cosn,

so that ¥, belongs to the class I7,. Hence, in a certain interval
|#] £ <z and its translations by 2z, the function m(x) equals a polyno-
mial in the class I, and a corresponding fact is true for M(x).
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Fig. 1. (@) y=%,@); B y=P,@). (n=4.)

The curve y =Y, (x) is drawn in fig. 1. For a detailed discussion of its
shape see below.
After these preliminary remarks we state

TeEOREM I. Let I1,=11,(it, coswx) be the class and a the number defined
above.
a) For ®,ell, and all x for which a|cosix| = cos(n/2n) 4 follows that

@n(x) Z Tzn(a’ €os %CL') = an(x) .

Equality for one such x implies equality for all x.
b) To every x for which a|cos }x| < cos(n/2n), there exist infinitely many
polynomials P, ell, such that D, (x)= —1.

Note that, when it is not empty, the set of points x satisfying the
condition of a) consists of an interval |z| £ < and its translations by 2vx.

According to a), m(z) coincides with the polynomial (2.1.3) when a
belongs to the interval |x| <4 or its translations by 2vz; according to b),
m(x)= —1 when  is not in this set. Thus Theorem I implies that m(z)
is known for all values of .

We observe that @,e1l,(it, cosx) is equivalent to

— @, € I, (it, cos(m —«)),

and hence a theorem analogous to Theorem I is valid for the function

M(x).

2.2. Proof of Theorem I. Since all functions involved are periodic in
the variable  with the period 27, we can assume that —nm Sz <.

Proor oF Ia): If there is an « satisfying the condition of Ia), we must
have a 2 cos(n/2n). In order to study ¥,(x) in the interval —z<z <z
(see fig. 1), we introduce the number § defined by
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acos}d = cos(w/2n), O0=d<m.

It is easily seen that the function ¥, (x) is monotonically decreasing
to —1in the interval 0 <z <dJ. When « increases from § to =, then a cos &
decreases from cos(/2n) to 0. From this it follows that in the interval
0=z = the curve y=¥,(x) has n—1 branches passing between y= —1
and y=1. Since ¥, is even, we know the curve in the whole interval
(—=n, 7).

Case 1, 6>0: Suppose that @, (z') < ¥,(z') for a number 2’ such that
—n<a'<n and acosix’'2cos(w/2n). The assumptions imply that
|#’) <d. Let us compare the two trigonometrical polynomials ¥,, and @,,
of order <n and count the zeros of the polynomial

An = yjn“Qn

by considering the intersections of the corresponding curves (see fig. 1).
If A,=0 it follows that 4, has 2n zeros in the interval —m =<z <.
(More precisely: at least 2n zeros, counted with their multiplicities.
In the following we use the shorter expression.) Further,

whence 4,(z) has 2n + 2 zeros in the strip —n < Rez <, which is impos-
sible. Thus 4, =0 and Ia) is proved if § > 0.

Case 2, 6=0: In this case the only value of  we have to consider is 0.
Further, a =cos(7/2n) so that

Y. (x) = T,,[cos(x/2n) cos }x],

and hence ¥, (0)=—1. Since @,(0)= —1, we only have to investi-
gate the case @,(0)=—-1. If @,(0)= —1, it follows from (2.1.1) that
?D,'(0)=0 and ?,”(0)=0. A calculation shows that ¥, (0)=0 and
¥, (0)=0 so that 4,'(0)=0 and 4,"(0)<0.

Suppose now 4, = 0. If 4,"/(0)<0, then 4,(+¢) <0 for a sufficiently
smalle > 0and 4,,(x) has altogether 2n — 2 zeros in theintervals ~n <2 < —¢
and esz<m and 2 zeros at x=0. If 4,”(0)=0 holds, then 4,(x) has
altogether 2n —4 zeros in the intervals —7Sx <0 and O<z<x and 3
zeros at x=0. In both cases we have, in addition, 2 zeros at x= + ¢t
which is impossible. Hence 4,, =0 and Ia) is proved.

Proor orF Ib): Suppose that a cos $z’ <cos(n/2rn). In order to con-
struct one polynomial satisfying the conditions of Ib), we write ¥, in

the form
Y, (x) = T,(2a%cos?}x—1) .
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Here we perform a linear transformation on the argument and define
with 05%x<1
D, (@) = Tyl ()],

where
@ () = % (2a2cos2jx—1) + (1 —x) cos(xfn) .

Then @,€11,(¢t, cosx), and it is possible to choose x so that @, (2')= — 1.

In fact, we first observe that @,(x) is a real trigonometrical polyno-
mial of order <n. Further, g (x) is a mean value of two terms of modulus
less than or equal to 1 and hence [p (z)| =1 so that |@,(z)] <1 for all
real z. Since a=cos(«/2n) cosh—1}t, it follows that ¢,(it)=cos(x/n) so
that @,(it)=T,[cos(x/n)]=cosx. This means that ®,elT (it, cosx).

Further,
Po(2") = cos(a/n) = cos(z/n)

and @ (x') = 2a%cos®3xr’'—1 < 2cos?(n/2n)—1 = cos(n/n)
by the assumption of Ib). Thus, there exists a number » such that
0<x%<1 and ¢,(2')=cos(x/n). This implies that @,(z')= —1. The only
case in which »¥=0is x=uo.

For x>0 it follows from a <1 that ¢,(0)<1 and this inequality also
holds for »=0, « =n. Further, we have

@ () = (L—x)cos(afn) — % > —1.

Thus, in the interval 0 £z <=, the curve y=®,(x) has at most n—2
branches passing between y= —1 and y=1. Using this fact it is possible
to show that we can submit @, to infinitely many variations so that
@, still belongs to I7,(¢t, cosx) and D, (x')= —1. However, we do not
write out the details of this part of the proof.

By Theorem I we know the functions m(x) and M(x) for all z. Now take
x fixed ==, and suppose that g is a number such that m(x,) <g < M(z,).
From the theorem it follows that there exist polynomials @, and @,
in I, so that @,™(x,)=m(z,) and D,M(xy)=M(x,). A suitable linear
combination of these polynomials evidently gives a polynomial @, in
I7, for which @,(x,)=¢. As a matter of fact, one can show that there
are infinitely many such polynomials.

2.3. The case when t=0. Let I7,(0, cosx), where =2 is an integer
and 0 S« <z, be the class of trigonometrical polynomials @, with real
coefficients and of order <u, such that |@,(z)| <1 for all real x and
D, (x)—cosx has a double zero at x=0. Then Theorem I is still valid
with the following modification in the last line of a): Equality for one
such 2y, where » is an arbitrary integer, implies equality for all .
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On the other hand, if we only suppose that @, (r)—cosa has a zero
(simple or not) at =0, we obtain results of a different type. A calcula-
tion of the number of intersections of the curves then shows that for
|| £ (r — o) /n the inequality @,(z) = cos(n|x| + «) holds. Equality for one
z such that 0< +z £ (7— «)/n implies that @, (x) =cos ( + nx + «) for all x
(cf. M. Riesz [6]). Using polynomials of the type

T,.[%cos(+x+x/n)+(1—=x) cos(x/n)], 0sx<g1,

one can show that if (x —«)/n < |2’| £n, there are infinitely many poly-
nomials @,€7,(0, cosx) for which @, (z')=—1.

2.4. Now we generalize Theorem I by replacing cosx in condition
(2.1.2) by a complex number.

DerintTioN. Let I7,(i¢, £+1n), where n =2 is an integer, ¢, &, 5 are
real and ¢4 0, be the class of trigonometrical polynomials @, with real
coefficients and of order <, such that

(2.4.1) D, (x)] =1 forallreal x
and
(2.4.2) D, (i) = E447) .

TaeoreM II. The class I1,(it, £ +1in) is not empty if and only if
(2.4.3) E2cosh—2nt +%sinh—2nt < 1.

This means that the possible values of @,(x) for x=¢¢ are situated
inside or on an ellipse with the semiaxes coshnt and sinhnf. Though the
theorem follows from the reasoning used by Duffin and Shaeffer in [1]
we write down a short proof.

Proor oF THEOREM II: If (2.4.3) is satisfied, we can write

& = b cosnz, coshnt ,
(2.4.4) . .
7 = b sinnx, sinhnt ,

where 0<b <1 and «, is suitably chosen. Then, since
E+in = bceosn(it—ax,),

the polynomial b cosn(x — ;) belongs to I1,(¢t, £ +¢n) and the first part of
the theorem is proved. Suppose on the other hand that @,el7,(it, & +1in),
but that (2.4.3) is not fulfilled. Then & and # can be written in the form
(2.4.4) with b>1. The function cosn(z—x,)—D,(x)/bis 21—1/6>0 for
z=xz, and hence %= 0. But it has 2n real zeros in —z<x <z and two
complex zeros x= +1¢, which is impossible. This proves the theorem.
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Observe in particular that if (2.4.2) is written in the form
D, (¢t) = E+ip = cos(x+1if), «,fBreal,

the condition (2.4.3) is equivalent to || <nlt|. If f= +wnt, that is, if
cos (x +1p) is situated on the ellipse, it follows by considering

cos (nr £ x) — D, (x)

that in this case the only polynomial belonging to IT,(i¢, cos(x +int)) is
cos (nx + x).

2.5. We shall now solve the problem analogous to that in Theorem I
for the class IT,(it, cos(x+¢p)). Also in this case the functions m(x)
and M(x) are —1 and 1, respectively, except in the interior of certain
intervals where they are equal to polynomials belonging to the class.
These polynomials have the form + ¥, (a, z—2"), where

W, (a, 2 —2') = Th,la cos bz —2')],
i.e. they are obtained from the polynomials ¥,(x) by a translation. Note
that, if a polynomial ¥, (a, z—’) belongs to IT,(it, cos(x+if)), we must
have 7T',,[a cos}(it—x')]=cos(x+1f) .
It is now convenient to make the following

DerintrioN. Let {(ay, x;)} be the set of all different pairs of real
numbers satisfying the equation

(2.5.1) Toulay, cos§(it—a,)] = cos(x+1f),

for which a, = cos(r/2n) and —n Lz, <m.

By solving the equation 7',,(z)=cos(x+¢f) with respect to z, the
numbers (a;, %) may be obtained explicitly. This will be done later.

TuroreM III. Take |B|<nlt| and let IT,=II,(it, cos(x+1iB)) be the
class and {(ay, ,)} the set of pairs defined above.

a) For @,ell, and all x belonging to the point-set 1, defined by the ine-
quality a,|cos H(x—x;)| = cos (n/2n) it follows that

D,(x) 2 Toylay, cosd(z—x,)] = Wy (ay, v —) .

EBquality for one xcl; implies equality for all x.

b) To every x which is outside all sets I,, there exist infinitely many
polynomials @,ell, such that D, (x)= —1.

The set I, consists of the points in the interval |x —x,| £J <n and its
translations by 2»ax. It will be shown below that intervals belonging
to different sets I, do not overlap.
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Using the fact that @, eIl (it, cos (x+if)) is equivalent to
—®, € IT,(it, cos (x + 7 +1if)) ,

we get an analogous theorem giving the function M (x).

Ay
0.,1)

(0-1) (1)

Fig. 2. (¢) y=Wylap, v —x); (d) y= ¥, ap, z—z;). (n=4.)

Part a) of Theorem III states that, if @, ell,, the curve y=9,(x)
cannot pass through certain domains D of the strip —1 <y <1 (see fig. 2).
If ¢ is outside all sets I, defined in a), it will be shown that there are
at most n such domains D in the interval ¢ <z <q+27. In the same way
the theorem concerning M(x) gives at most % excluded domains D’ in
a suitably chosen period.

2.6. Proof of Theorem III. The equation (2.5.1) can be written
ay cos }(it — ;) = cos[(«+ 2kn +if)/2n] ,

where to begin with k=1, 2, ..., 2n. Thus, we get
2.6.1) a;, cosh ¢ cos 4x; = cos[(x+ 2kx)/2n] cosh(B/2n) ,
(2.6. ay sinh }¢ sin 3x,, = — sin[(x + 2kn)/2n] sinh (8/2n)
and hence
(2.62) o = [cos[((x + 2ksm)/2n] cosh (/3/2n)r+ [sin[(oc+ 21m')/2n] sinh (8/2n) 2.
cosh ¢ sinh ¢

Since || =nl¢, it follows from (2.6.2) that a; <1 for all k. This and
(2.5.1) imply that ¥,(a,, x—x,)ell, for all k.

According to the definition of a, given in Section 2.5 we shall, how-
ever, only consider such a, for which a; = cos(z/2n). On account of this
fact we can now accomplish the proof of IITa) as that of Ia) by
considering the curve y =¥, (a,, x —x;).
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If %0, it follows from the formulas (2.6.1) that at most one of the
two integers k and k+n gives a pair (a,, x,) which satisfies a; 2 cos (7/2n)
and —7z <x, <z, This shows that in the period (g, ¢+ 2xn) the number of
domains D is =n. If =0 (cf. Theorem I), this number is 1 or 0.

Since m(x) is unique and = —1 in all sets 1;, being —1 only at the
endpoints of the intervals, it follows that intervals belonging to different
sets [, cannot overlap.

The midpoints of the intervals constituting the set 1, are x;, + 2vn. If
we denote the common length of these intervals by /., we have

ay, cos (1,,/4) = cos(w/2n), 021, £ 2z/n.

It might be worth noting what happens with the excluded domains
D if ¢ varies and «, § and n are fixed. First let [{{ > co. From (2.6.2) it
then follows that a; — 0 for all . Hence the condition a; = cos (x/2n) will
not be satisfied if |¢| =%, where ¢, is suitably chosen. Thus for |t| 2¢,
IIT a) gives no excluded domains D at all. The same holds for the
domains D', introduced at the end of Section 2.5.

On the other hand, by means of Theorem IT we conclude that || = |g]/».
If t=8/n+0 it follows from (2.6.2) and (2.6.1) that all ¢,=1 and
that x;= —x/n mod 27/n. Since the common length of the intervals
is now 2n/n, we conclude that the sets I, together fill up the whole
z-axis. The corresponding polynomials ¥, (1, x—x,)=cos(nz+«) are
independent of k. Hence m(x)=cos(nx+ «) for all z.

By studying M(x) we find that M(x)= — cos(nx + & +7) = cos (nx + x)
for all « so that M(x)=m(z). Thus in the case when ¢=g/n the domains
D and D’ fill up the whole strip ~ 1<y <1 and as mentioned in Section
2.4, there is only one polynomial in /7, namely cos(nxz+«). The cor-
responding fact is true for t= — g§/n.

To prove IIIb), it is convenient to use a reasoning different from
that employed in the proof of Ib). Suppose that z=2z' is outside all
the sets I,. From the discussion just concluded, it is clear that
necessarily |f| <n|t[. Thus, if cos(x+18) =&+ 47 it follows that the point
&+14n is inside the ellipse introduced in (2.4.3). Now let &, +1i7, be a
point on this ellipse. Then to &;+in, there correspond certain sets I,
which together cover the z-axis. Thus z’ belongs to one of them, and
hence to one interval, say to J(&,+197,). Let L be the straight line through
§y+imy and £+14n. If 2’ is not an endpoint of J (&, +i7,), we let the point
2z move on L from &;+in, towards £+4¢5. For z near to &,+in,, there
correspond to I7,(it, z) certain intervals, one of which, J(z), contains x’
as an interior point. The interval J(z) varies continuously with z and
coincides with J(&,+n,) for z=~&,+in,.
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Now we observe that when z moves on L from &;+ iy, towards &+,
the interval J(z) cannot cease to exist if we have not first reached a
point z for which J(z) has the length 0 (note that a; = cos (w/2n) implies
l,=0). When we arrive at £+iny we know that z’ is outside all sets
I, and from this it follows that there is a point z; + £+ 47 on L, between
&y +ime and £+, so that 2’ is an endpoint of J(z;). But this means that
there is a polynomial @, Vell, (¢, z,) for which @, D(x’)= —1.

The same argument, applied to the other point of intersection of L
and the ellipse, shows that there exists a polynomial @, (it, 2,) for
which @,3(z') = — 1. Now, if {,,t, are chosenso that ¢, 20,8, 20, +£,=1,
L2y + a2y =E+17, it follows that

@, = 4, 0,0 +t,0,® T, (it E+iy) and D)) = —1

so that @, is one polynomial satisfying the conditions of III b). Using
different lines L it is possible to show that there are infinitely many
polynomials satisfying these conditions.

2.7. In the applications we shall consider a class of polynomials defined
as follows.

DeriniTiON. Let 2, (¢¢, 0), where n =2 is an integer and ¢ is real, be
the class of trigonometrical polynomials @, with real coefficients and
order <u, such that 0=<®,(x) <1 for all real x and @, (it) =0.

In this class the extremal polynomials corresponding to ¥, are
0,x) = {1 -T,,[cosh-1}¢ cos }x]} .

TreEOREM IV. a) For @,€2, and all = for which

cosh—1}¢ |cos §2| = cos(w/2n)

it follows that
D, (x) £ ${1—-T,,[cosh~1}t cosdz]} = O,(z) .

In the case t+0 equality for one such x vmplies equality for all x. In the
case t =0 equality for one such x = 2vn, v an arbitrary integer, tmplies equal-
ity for all x.

b) T'o every x for which cosh— 3} |cos §x| < cos (/2n) there are infinttely
many polynomials D, €2, such that D,(x)=1.

Proor: We observe that @,e0,(¢¢, 0) is equivalent to 1-29,e
I1,(it, 1). Thus, for t+0 the theorem follows from Theorem I. If ¢=0,
the conditions imply that @,(x) has a double zero at x=0 and hence
the theorem follows from the remark in Section 2.3.
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Let us now consider trigonometrical polynomials @, == 0 with real co-
efficients and of order <n, where n =2 is an integer, such that @,(x)=0
for all real x and such that @, (¢t)=0.

For which numbers x=x, does there exist such a polynomial @, at-
taining its maximum on the real axis at z==,? Of course it is no re-
striction to assume that @,(x,)=1, and then it follows from Theorem IV
that a necessary and sufficient condition is

|cos dxy| < cosh ¥t cos(m/2n) .

This result will be used in Section 3.

3. The positions of maxima and complex zeros
of trigonometrical polynomials

Let us define I, as the class of trigonometrical polynomials @, = 0 of
order <n, where n =2 is an integer, with complex coefficients and with
the property that |®,(»)| attains its maximum on the real axis at the
point x=0. For various subclasses of [, we ask for necessary and
sufficient conditions for a point w+dv, v and v real, to be a zero of at
least one polynomial in the subclass.

a) In the subclass of polynomials having real coefficients and which
are non-negative on the real axis the condition is

|cos ju| = cosh4v cos(w/2n) .

b) In the subclass of polynomials obtained by the sole restriction that
their coefficients are real, the condition is

|cos du| cos(n[4n) < cosh}v cos(w/2n)

if v40. If v=0 and the zero x=wu is double, the same is true. If % is not
restricted to be a double-zero, the condition is cosu < cos (n/2n).

¢) In the whole class of polynomials with complex coefficients the con-
dition is |cosju| = cosh v cos(n/4n) .

The boundaries of the corresponding domains in the (u, v)-plane are
called y,, v, and y, and are drawn in the strip —az<u <= in fig. 3.

The assertion a) is simply proved from the remark at the end of Sec-
tion 2.7 by a translation.

For v+0 the assertion b) is proved by putting «==/2 in Theorem I
and performing a translation. The same proof holds, if v=0 and the
zero is supposed to be double. If v=0 and the zero is not supposed to
be double, the assertion follows from Section 2.3.
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To prove ¢), we suppose that @, belongs to I, and @, (v +1») =0. For
complex ¢ we write @,(¢) = K, (¢*), where K ,(z) = 2™ _, 2. With this K,
we define A,,(2) as — )
A2n(z) = K'n(ew)Kn(er) ’
where the coefficients of K, are conjugate to those of K,. Then A,,
has the following properties: it is a trigonometrical polynomial with real

- —
- -

-
B R

Fig. 3.

coefficients and of order < 2n;forrealz=ritis =0 and takesits maximum
at =0. Hence, ,, is in the subclass defined in a) if we replace » by
2n. Finally, A,,(»+tv)=0.

On the other hand, let A,, be a trigonometrical polynomial with these
properties. By the theorem of Fejér-F. Riesz [3] about the represen-
tation of a non-negative trigonometrical polynomial there exists a func-
tion K,(z)=2" _,u,2 such that A, (r)=|K,(€)? for real z and
K,(¢¢®+)= 0, Then the trigonometrical polynomial ®,, defined by
D,(0)= K, (¢*), belongs to I', and D, (u +tv) =0. Thus c) follows from a).

The theorems used here also give the corresponding extremal polyno-

mials explicitly.

4. The positions of maxima and zeros of complex polynomials

4.1. We now turn to the problem mentioned in the introduction of
the paper.

DerFINTTION. Let C,(2,), 2+ 1, be the class of polynomials P, (z) =0
of a complex variable z with complex coefficients and of degree ==,
where 7% = 2 is an integer, which have the following properties: The point
z2=27, is a zero of P,(z) and on the circle |z| =1 the absolute value of
P,(z) takes its maximum at z=1. Further, let ¢, be the curve (see fig. 4)
which in polar coordinates (z=e?*?) has the equation
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(4.1.1)  cosip = (ot +07F) cos(n/2n), —nfn £ ¢ < an.

The curve ¢, is closed and contains the point z=1 in its interior.

Fig. 4. (n=4.)

THEOREM V.
a) If z, is a point inside c,, then O, (z4) is empty.
b) If zy=pe®® is a poini on c,, then C,(z,) consists of the polynomials

(4.1.2) ¢ (2 " ) (ze~% + 1)=2-1 (2~ — g)+1 (ze~%0 — -1y |
1sSrisa\2v+1
where ¢+0 1s an arbitrary complex constant. The polynomials evidently
depend on z,.

c) If z, is a point outside c,, there are infinitely many polynomials
P, e C,(2,) which are essentially different (not only by a constant factor).

The cases a), b), and c¢) correspond to cosip % 3 (o + o7F) cos (n/2n),
—n < p <7, respectively.

REMARK. Theorems I-V are still valid for n=1. However, we have
dropped this simple case since it gives exceptions in the proofs. As for
Theorem V we note, that for n=1 the formula (4.1.1) determines ¢, as
the negative real axis.

4.2. Proof of Theorem V. First we consider the case z,=0; this point
is always situated outside ¢,. Now there are of course infinitely many
polynomials P,_,(z) of degree n—1 whose absolute values attain their
maximum at z=1. Then all the polynomials zP,_,(z) belong to C,(0)
and the theorem is proved.

Next assume 2,40. Let P,(2) be a polynomial in C,(z,) and put
zg=pe®. We define a trigonometrical polynomial @, of order <n by

¢n(c) = Pn(eic) ?n(e~i€)’

where  is a complex variable and the coefficents of P, are conjugate to

Math. Scand. 3. 2



18 CARL HYLTEN-CAVALLIUS

those of P,. For real {=0 we get D,(0)=|P,(e*)|2. The polynomial @,
has real coefficients and @,(6) = 0 for all real 0. Since P,(z,) = P,(0e'*) =0,
we conclude that @, (¢ —ilogp)=0.

The polynomial @,(0) attains its maximum on the real axis at 6=0.
Hence, according to the result of a) in Section 3,

cos }p < cosh (4 logp) cos(z/2n),
and Va) is proved.
To prove Vb), it is convenient to make a rotation through the angle
—g@. After this rotation, P,(¢)=0 and |P,(z)| attains its maximum on
|2| =1 at z=e-%. Further we assume |P,(e~%)|=1. With this P, we

define = )
an@) = Pn(elé") Pn(e_w)

and conclude that
D, (-ilogp) =0 and 0 2 P, (0) £ D, (—9¢) =1

for all real 6 so that &,e0,(—¢logp, 0) where 2, was defined in Sec-
tion 2.7.
Theorem IV is now applied with ¢=1logg and z=40. Since

cos}p = }(et+07F) cos(/2n),

the point 0= —¢ belongs to the set considered in IVa). The relation
also shows that
@n( "‘P) = %(1 _T2n[cos(ﬂl2n)]) =1.

Since @,(—¢)=1 and the case g =1, p =0 is obviously excluded, it follows
from IVa) that

(4.2.1) §,(6) = |Pp(e")|* = 3{1-Ty,[2(gt +7#)7" cos$0]} = 0,(0)

for all real 6.
When 0 increases from 0 to z, the argument 2(o* + o) cos}6 of
T,, decreases from

2(ot + 07t)™ = cos™ g cos(n/2n) > cos(n/n)

to 0. Hence 6,(0) has n—1 double zeros in the interval —z<6<n.
Hence it follows that on the unit circle there are n—1 different zeros,
not equal to 1, of the polynomial P,(z). By definition z= g is the n** zero
and thus the polynomial P,(z) is determined up to a constant, non-
vanishing, factor. In order to get an explicite expression for P,(z) we
use the identity

(4.2.2) 3 (1—T2n (.C_J:EC;‘)) _ (51»;;;—7;)2.
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Now, if we solve the equation
HE+E) = 2(et +07H)7 cos o
for { and substitute one of its roots in (4.2.2), we get
(4.2.3) 0,(0) =

= —e ™m0 (Q% + Q—Q)—Zn( n ) (eie+ 1)n—2v—1 (eie_g)vﬁ (6i6__ g-l)v+§»)

1§2v2+:§n(2”+1

Let us now consider the polynomial

Ro(2) = ot (ot +07H) ("
W(2) = 7% (0 e)léwzl’m %+ 1

First we observe that R, (o) =0. Further, (4.2.3) shows that we can write

) (z+ 1)n-—2v—-l (z_g)ﬁl (z__ Q_l)”-

IR'n(ew)lz = Qh—l = 911(0)

"o
i 0..(6)

for all real 8. These two facts together show that R, (z) is the polynomial
P, (z) we want to determine. A rotation gives Vb).

To prove Ve), we observe that if cos jp <} (o* + o) cos(n/2n), then it
follows from IVb) that there exist infinitely many essentially different
trigonometrical polynomials @,€2, (—1 logp, 0) such that @,(—¢)= +1.
But from the theorem of Fejér-F. Riesz, quoted in Section 3, it then
follows that to each @, there exists at least one polynomial P,(z) such
that |P,(e®)|2=®,(0) for all real § and for which it is true that P,(p)=0.
This proves Ve).

4.3. The curve c,. The curve ¢, passes through the points e***" on
the unit cirele and through the points
_ 1 ¥ sin(n/2n) _

1 + sin(n/2n)
on the real axis. If we take the point z=1 as centre for a new system

of polar coordinates (r, ) with the direction of the positive real axis as
principal direction, we get the equation in the form

(4.3.1) r = 2tg%(n/2n) cosT + 2sin(n/2n) cos—2(nf2n),

which shows that the curve is a “limagon of Pascal’’.
From (4.3.1) it follows that

r = a/n+0(1/n?)

uniformly on ¢, so that for large values of » the curve ¢, is approximately
a circle of radius 7/n.

a5 1 ¥ @fn + O(1/n?)

2%

2
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There exists an even better approximation by a circle. Let us consider
the circle which passes through z=e**/® and cuts |z|=1 orthogonally.
Its centre is cos~!(n/n)=z,. If z lies onc,, we have |z —2z,| =n[n+O(1/n3)
uniformly on c,,.

Of course the curve ¢, is invariant with respect to an inversion in the
circle |z|=1 (cf. the equation (4.1.1)). If we write re®=x+1y, we find
that ¢, is of the fourth degree in z, y.

Finally, using (4.3.1) one can prove that c, is convex for all n >3 (but
not for n=2).

4.4. The polynomial P,(z) when z, lies on ¢,. For z,=¢*""" we get
from (4.1.2)
P,(z) = ¢'(2"+1),
which is Turdn’s result mentioned in the introduction.
Generally, if z, belongs to c,, it follows from (4.2.1) that the polynomial
P,(z) has on the unit circle the n—1 zeros z = €“***)  where

cos}d, = 3 (ot +07?) cos(va/n), 0<d,<27, »=12,...,n-1.

Besides, we have the zero z=ge. The zeros of P,(z) are situated
symmetrically with respect to the line argz=¢. Between two zeros of
P,(z) on the unit circle there is always one point in which |P,(e®)]|
takes the value |P,(1)| and except for the case ¢ =0 there are two such
points between e“**°2 and ¢" @+ namely z=1 and z=e2?.
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