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CONGRUENCE PROPERTIES OF
TCHEBYCHEFF POLYNOMIALS

THOGER BANG

The Tchebycheff polynomials appear in the theory of numbers only as
a special case of the recurring sequences which have been treated exten-
sively by Lucas [4], Lehmer [3] and many others. However, it may be
justified to consider them separately, since this can be done in a simple
way, and they have important applications, as is also shown by Rankin
in the preceding article [5]. The following is based on notes, made by
the author in connection with a popular lecture [1] in which, among
other things, the Lucas test for the Mersenne primes was discussed.
It is usual in the study of recurring sequences to consider two interacting
sequences; we shall here give a self-contained treatment of only the
primary sequence 7', (x) (for the definition of 7', (x) see (1) below). From
the properties of this sequence, it would be easy to deduce the properties
of the other sequence F,(x) by means of a few of the formulas which con-
nect ¥, (x) and T, (x). (See formulas (3)—(9) of Rankin [5]; the polyno-
mials F,(x) are naturally dominating in the article of Rankin, since
they occur in the powers of a second order matrix, formula (12).) In
the present paper, we shall use rather few formulas, and this will make
it easier to emphasize certain points, in particular the formula (3) below.
The rank » which we use (the notation is in accordance with Lehmer [3])
differs from the order » used by Rankin. Indeed, » is uniquely determined
by r, but the converse is not true since n = r/(r, 2) (where (a,0) denotes
the greatest common divisor of a and b).

We put = cosv, where « and v are complex numbers. Then e*‘¥ =
x4+ (22—1), and by inserting this in cosnv = § ('™ ¢7I"*) where
n is an integer, we get

(1) cosny = 3/ (

J even

I;‘[) (@2 — 1) o~ = T ()

(the non-vanishing terms in the sum result from 0 <j < |n|). The
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polynomial 7', (x) defined by (1) is the n’th Tchebycheff polynomial;

obviously, it is of degree |n|, and the coefficients are integers. We have

T_(x)=T,(x) and Ty(x)=1. Furthermore, T',(x) = and T'y(x) = 222—1.
The formula

{cos(m~+n)v — 1} {cos(m—n)v — 1} = {cosmv — cosnv}?

yields
(2) {Tm+n(x) - 1}{Tm—n(x) - 1} = {Tm(x) - Tn(x)}z s
and the formula cosm(nt) = cos(mn)t yields

In the sequel p is a fixed odd prime. The symbol of congruence =
means congruence modulo p, and by “residue class” (or short “‘residue’)
we mean residue class modulo p.

For an integer x, or rather a residue x, we define the rank r = r,
to be the least positive integer » for which 7' (x) = 1 (when there exists
such a finite r; later we shall prove, that this is the case for all ). We
have r; = 1 and r_; = 2 for all p.

In the following lemma x is a fixed residue, and we write T', for T', ().
As usual, [«] denotes the largest integer not exceeding o.

Lemma 1. If x is of rank r, then the residues Ty=1,T,,T,, ..., Tya
are all different. They determine the sequence of residues T, where n runs
through all integers, since T, , =T, ond T,,,=T,. In particular,
T, =1 if and only if r divides n.

For, if m > n are two arbitrary of the numbers 0,1,..., [r/2], then
it follows from the definition of + that the left side of (2) is == 0, which
proves the first part of the lemma. If we put m = r—n in (2), the left
side will be = 0, which proves that 7'._, =T, and, since T, =T _,,
the rest of the lemma follows.

LemmaA 2. There exist at most 14 [n/2] residues x whose ranks divide
the positive number n, that is, for which T ,(x) = 1.

In fact, from (2) it follows that
{To(@) — 1} {Ty(®) — 1} = {Tr422(®) — Tin-9p()}?  for n even,
{To(@) — 1}{T1(®) — 1} = {Tspa@) — Tipope(@)f®  for n odd,

and in each of these formulas the right side is the square of a polynomial
of degree 1 [n/2], which proves the lemma.
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Lemma 3. If x is of rank r, then the residues mentioned in the beginm'ng
of Lemma 1 are all the residues whose ranks divide r. The rank of T(x
s r/(r,5). For r > 2, there exist exactly yqo(r) different residues of mnk 7',
while for r = 1 or 2 there exists only one residue of rank r.

From (3) and Lemma 1 we have T,(T(x x)) = = 1. Hence the
rank of 7T';(x) divides . However, Lemma 2 states that there cannot be
more than those 1+ [r/2] different residues, whose ranks divide . The
rank of 7';(x) is (Lemma 1) the least positive integer m for which r divides
mj, and this is m = r/(r,j). Hence, the residues of rank r are the residues
Ti(x), where r and j are relatively prime; and, for r > 2, there exist
exactly 3¢(r) such residues among T, T,,..., T As Tyx) =
202 —1 =1 gives v = 41, these two residues are the only ones for
which » divides 2, and here », = 1 and r_; = 2. Thus the lemma is
completely proved.

LemmA 4. If there exist 1+ [n[2] residues x that are solutions of the
congruence T, (x) = 1, where n is a positive integer, then at least one of those
residues ts of rank n.

To prove the lemma, let us consider the positive function y(d) defined
by y(d) = ip(d) when d > 2,9(1) =1 and y(2) = 1. If there exists
an z of rank r, then the total number of residues of rank r equals y(r)
(Lemma 3). Hence, the total number of solutions of the congruence
T,(x) =1 is 2y(r), where r runs through the possible ranks. These
are divisors of n. Since an elementary calculation shows that Xy(d) =
1+ [n/2], when the sum is taken over all divisors d of =, all those divisors,
in particular » itself, must occur as rank for some z. This proves the
lemma.

Lemma 5. If z is of rank r and y is of rank s, where r and s are relatively
prime, and if there exists a z such that 2* = (x2—1) (y2—1), then there exists
a residue of rank rs.

This lemma is not needed in the sequel, but it gives certain information
that will be of interest in a later connection.

To prove the lemma, we remark that the formula which expresses
cos(u-+v) in terms of cosu and cosv, together with the trigonometric
formula which was used to obtain (2), gives the following identity (valid
for all complex z and y):

(T (2y + (@2 —1) 2= D)) — B{T;(2y — ((@*—1) (2= 1)) — 1}
= {Tjx) — Ti()}*.

M
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The right side is a polynomial, and hence, after multiplication in the left
side, all the square-roots will occur in even powers. These powers are,
for the given z, y, and 2, congruent to the same powers of z, such that

{Tj(xy_’_z) - 1}{Tj(-'”?/_z) - 1} = {Tj(x) — Tj(y)}2 .

This quantity can only be =0 if T;(x) and 7T';(y) are congruent, which
implies that they are of the same rank. Their common rank divides
r and s and is therefore 1, from which it follows that rs divides j. On
the other hand, if rs divides j, then T;(x) = T';(y) = 1. The least positive
integer, for which the left side is =0, will thus be j = rs, which proves
that at least one of the residues xy-+=z is of rank rs.

Up to now the lemmas and their proofs are valid if, instead of residue
classes, we consider elements of an arbitrary integral domain. From
now on, it will be essential that we consider residues modulo the odd
prime p.

LEvmMmA 6. For all x,
T () =T,(x) .

»

This may be called “The theorem of Fermat for Tchebycheff polynomials™.
The proof is immediate taking » = p in (1). All the occurring binomial
coefficients

(7)
J

are divisible by p, except for j = 0, and we have T',(x) =2? =2 =T ().

LemMaA 7. Any x has a rank dividing p+1 or p—1. The two cases occur
simultaneously for x = +1, but for no other residue. The first case occurs
for (p+3)/2 residues, and there exists a residue of rank p+1. The second
case occurs for (p+1)/2 residues, and there exists a residue of rank p—1.

From (2) and Lemma 6 we get

{Tpa(@) — BT,y (@) — 1} = {Ty(x) — Ty(x)}* = 0,

which proves the first part of the lemma. The rank divides p+1 and
p—1 simultaneously if it divides (p+1, p—1) = 2, and this occurs only
for x = 41, which proves the second part. Lemma 2 states that the
first case occurs for at most (p-+3)/2 residues, and the second case occurs
for at most (p+1)/2 residues; the total number of residues is p, and
hence the numbers are exactly (p+3)/2 and (p-1)/2. The existence of
residues of rank p+41 follows then from Lemma 4.

The main content of Lemma 7 and the preceding lemmas can be
expressed more lucidly in the following theorem:



CONGRUENCE PROPERTIES OF TCHEBYCHEFF POLYNOMIALS 331

THEOREM. There exists a one-to-one correspondence between the residue
classes modulo p and the p different real values of cos (an/(p—l—l)) and
cos (2nk/(p—1)) (where h and k are arbitrary integers), such that when x
corresponds to « = cosé&, then T'(x) corresponds to T;(x) = cosjé for every
integer j. The rank of the residue x is equal to the least positive denominator

d, when & is written tn the form & = 2nn/d, where n and d are integers.

Indeed, choose a residue y of rank p-+1, and let it correspond to cosy
with 5 = 2a/(p+1), and choose a residue z of rank p—1, and let it
correspond to cos{ with { = 2x/(p—1). Then the remainder of the
proof is straightforward, and we omit it.

The residues « = 4-1 (whether they are determined from y or from z)
correspond to cosé = 4-1. The residue 0 corresponds to cos(w/2) = 0.
It is easy to see that, for p >3, (p+1)/2 corresponds to } = cos(2x/6),
and (p—1)/2 corresponds to — % = cos(27/3); while, for all residues
other than those mentioned, the liberty in the choice of y and z gives
rise to more than one value of the corresponding real number cosé.

The p real numbers « = cosé are the p roots of the equation 7',(x) =
T,(x), or, expressed in another way, & is a root of cosp&é = cosé&. The
group of permutations of the numbers « corresponding to different
choices of y and z is the same as the group of permutations of the roots
of T, (x) = T4(x), considered as an equation over the rational field.

The following remark is important for the applications of the theory:
The rank of x divides p+1 if and only if x*—1 is a quadratic non-residue
modulo p, or if x = 4 1. This is immediate by taking » = p+1 in (1);
then p will divide all the occurring binomial coefficients except for j = 0
and j = p+1, such that

T,pﬂ(x) — 1= (xz—l)(”“)/z 4Pl 1 = (x2——l)((x2—1)(”"1)/2 + 1) ,

which gives the desired result.

From this remark, it follows that r, divides p—1 if and only if
x2—1 is a quadratic residue, or if x = 4-1. We observe, that this clas-
sification of the residues shows that the condition of Lemma 5 (about
the existence of a z, such that 22 = (xz—l)(yz—l)) is satisfied, if and
only if the ranks of  and y both divide p+-1 or both divide p—1. By
using this, it would be possible to prove the existence of residues of rank
p+1 (mentioned in Lemma 7) without the use of Lemma 4.

Lemma 7 together with the supplementary remark states how often
x?—1 is a quadratic residue, and how often it is not. Thus, as a corollary,
we get the number of times a quadratic residue succeeds a quadratic

22%
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residue, and the number of times a quadratic residue succeeds a quadratic
non-residue, etc. (for these numbers see for instance Hasse [2, p. 150]).

The Lucas test for the Mersenne primes may in a natural way be stated
by means of 7',(x). From the properties mentioned above follows:

A necessary and sufficient condition in order that M = 2»—1 (with
n > 2) be a prime, is that M divides Ty o(x), where x is 2, or, more
generally, where x is an arbitrary Ty(2), with j odd, for example x =
T4(2) = 26.

Since the proof can be performed by the same method as in Lehmer
[3] (the sequences considered there are equal to 27',), we shall omit
the proof.

Our study of the polynomials 7',(x) has been based on the formulas
(1), (2), and (3), where, of course, (2) and (3) can be derived from (1). But
formula (3) has in itself interesting properties. Besides its obvious
significance for the multiplicative properties of the rank, it also implies
that the polynomials 7', (x) and 7,(xr) commute in the sense

(4) P(Pp(@)) = Py(Pp(@)) .

Here we have written P, () instead of 7', (x), and P,(x) shall now denote
a polynomial of degree n, not necessarily a Tchebycheff polynomial.
It is obvious that (3), and hence (4), is satisfied by

(5) - P,) = LT, (L@),

where L(x) is a polynomial of first degree and L-1(z) is its inverse func-
tion. But (3) is also satisfied by the monomials P, (x) = 2, and more
generally by

(6) Pp(e) = L ({L()}") -

Now it is interesting to remark that if a sequence of polynomials
Py(x), Py(), . . ., Py(x) (¢ > 2) satisfies (4), then it must be of the type
(5) or of the type (6). This follows from two statements, both of which
can be proved by elementary calculations on the coefficients of the
polynomials involved: 1° If P,(Py(x)) = Py(P,(x)), then Pyx) is of
type (5) or (6); 2° to a given P,(x) there exists at most one P, (x) of
degree n, such that the two polynomials satisfy (4). Both P,(x) = z®
and P,(x) = T,(x) satisfy the Fermat congruence P,(r) = P,(z) (mod p),
and this congruence is not spoiled by the transformation in (5) or (6) by
means of a rational function L(x) = ax+b, if p does not divide a. Hence
we have:

If a sequence of polynomials with rational coefficients P,(x), Py(x), . . .,
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P,(x),..., where P,(x) is of degree n, satisfies (4), then the polynomials
are of type (5) or (6). In particular, the Fermat congruence P,(x) =

P(x) (mod p) is satisfied for all p, except those which divide the numerator
in a, where L(x) = ax+b.
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