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CHEBYSHEV POLYNOMIALS
AND THE MODULARY GROUP OF LEVEL p

R. A. RANKIN

1. The inhomogeneous modulary group G(n) is the quotient group
I(1)[T'(n), where I'(1) is the full inhomogeneous modular group, and T'(n)
is the inhomogeneous principal congruence group of level n, where n is
a positive integer. Each element of G(n) can be represented by an infinity
of matrices

, _ [ab _
(1) S = <c d> , ad—bc =1 (modn),
where a, b, ¢ and d are integers, and matrix multiplication is the group
operation. If § and
, _[(a b
8= (c' d')

represent two elements of the group G(n), these elements are not regarded
as distinet if and only if

a—a' =b—b'=c—c' =d—d =0 (modn),
or

at+a =b+b =c+c =d+d =0 (modn),
which we write symbolically as
S= 8" (mod n) or = —8 (modn),

respectively. The unit element @ of G(n) is represented by all matrices

S f hich
or whic S = 41 (modn),

1=(o1):

In this paper I only consider the groups G(p), where p is an odd prime,
and write

(2) q=13p—-1), r=3p+tl).

where
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It is known that G(p) is of order }p(p?—1) and that the order of an
element of G(p) other than @ is either p, or a divisor of q or . Further,
the elements whose orders divide p, ¢ and » can be divided into p-1,
ip(p+1) and $p(p—1) conjugate cyclic subgroups of orders p, ¢ and r,
respectively, no two of these subgroups having any common elements
other than @. The p+1 subgroups of order p are conjugates of the sub-

group generated by -
(o)

and the }p(p+1) subgroups of order ¢ are conjugates of the subgroup
generated by

g 0

(0 g"l>’

where g is a primitive root modulo p. However the subgroups of order r
are not represented so easily, and the only treatments known to me
make use of representations in terms of matrices with elements belonging
to the Galois field of order p? ([1], [2, pp. 419-491], [3], [4, pp. 363-383
($§ 464-473)], [5], [6, §§ 101-120]).

It is the purpose of this paper to show how this can be avoided. At
the same time the method reveals interesting congruence properties of
the Chebyshev polynomials and of the numbers x for which x2—1 is
either a quadratic residue or non-residue modulo p.

2. For any positive integer n, and any 0 real or complex, the functions
coshnf and sinhn0/sinh0 can be expanded as polynomials of degree n
and n—1, respectively, in « = cosh0; these polynomials we denote by
T,.(x) and F,(x), respectively. Further, we write T'y(x) = 1, Fy(x) = 0,
and define T'_, () = T, (x), F_,(x) = —F,(x). The functions 7', and F,
are recurring sequences in the sense of Lucas and Lehmer. It is easily
verified that the following relations hold for all » and'x. We omit the
argument & when no confusion can arise.

(3) Fpyy=2aF, + 1T, Fo,=2aF,—-T,,

(4) Fopw—22F, +F, =T,y — 22T, +7T,,=0,
(5) F,.2—2zF, F, +F2=1,

(6) Fon(@) = Fp{To(@)} Fo(x), Tpu(@) = Tp{Ty(@)},
(7) Topy —x=2@—1)F, , F, Tops +o=2T,,T,,
8) T, —T,=@=1)F, ,Fpp

(9) Tn2 =1+ (xz'_l)Fnz’ Tn('—l) = (—1)», Tn(l) =1.
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Further, T',(x) and F,,(x) are even functions or odd functions of x
according as n is even or odd. For odd n the following expansions hold:

(10) T, (x) =
bn- o Dy B
ontgn g 37 (—1p BTN, a2t

v=1 v!

—2—1 o —2v
27L v axn 1’

B oD (n2—12) (n2—32) ... {n® — (2vr—1)2}
(11) Fu(x) =mny1+ %1 @i 1)!

In the second expansion the last term is 2! (2®—1)¥®D

(x2—1)”}.

Suppose now that § is defined by (1) where a, b, ¢ and d are integers
such that ad—bc =1 (mod p), and p is an odd prime. Then it is easily
verified by induction, and with the help of (4), that for every positive
integer n

, all,—F,_ bF,
(12) s (g ) (mody),
n n n-1
where
(13) tr8 = a+d = 2«

and x is the argument of the polynomials F, and F, _,.

3. In the rest of the paper all congruences are modulo an odd prime p.
We shall make use of rational numbers in congruences, as is legitimate
when the denominators are prime to p.

Inthissection  denotes any integer or residue (not necessarily quadratic)
modulo p. We use the letter ¢ to stand for either ¢ or r, and s to stand
for either p, ¢ or ». We deduce at once from (10) and (11) that

(14) T,w)=2r"aP =2, Fy(x)=2r"2°—1)") = (22—1)}¢-D
so that we have, by (7) with p = 2n—1, for all

(@*—1) Fy(x) F (x) = 0,
the left-hand member being a polynomial of degree p. It follows that the
congruences

F,(x) =0 and F (x)=0

have exactly ¢g—1 and r—1 solutions, respectively, and have no common
solutions. Also, from (3) and (14),

(16) F,  (x) =a {@*—1}®D — 1},  F, (@) = {@—1)eD 41},
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Now since, by (6), (7) and (14), F,,_, = 2F, T, F,,, = 2F T, and
T,T,=2x it follows that the solutions of F(x)==0 are, with the
possible omission of x = 0, the same as those of Fy,(x) = 0. Further,

since Fy(0)=0 and 7,(0)= —1, we have, by (6),
F2m(0) = Fm(_l) Fz(o) =0,

and therefore x = 0 is a solution of F,(z) = 0 if and only if ¢ is even.
For t =g this occurs if and only if (—1)2 =1 and, for t=r if and only
if (—1)?2 = —1 so that we have, by (14) and (15), the

THEOREM 1. For each integer x one and only one of the three congruences

hold : Fp(x) =0, Fq(x) =0, F,.(.’l?) ==0.

In fact the first congruence holds if and only if x = +1, the second if and
only if x*—1 is a quadratic residue modulo p, and the third if and only if
22—1 s a quadratic non-residue modulo p. In particular, F (x) = 0 for
q—1 incongruent values of x and F (x) = 0 for r—1 tncongruent values

of x.

Denote by G, ‘G, and G, the classes of residues # modulo p for which

F,(x)=0, F (x)=0 and F(z)=0, respectively. Note that G, is empty
if and only if ¢=¢=1, which occurs for p=3. Also, if xe%s then
—x €6,

We define the Chebyshev order n, of a residue x modulo p to be the
least positive integer » such that F,(z) = 0. We deduce that
(16) T, (x) = +1: and T, (x)= —1 for even n,.

The first result follows at once from (9), while if for even n,=2m,
Ty () == 1, we should have

2T 2=14T,, =2,
and since F,, = 2F, T, , this implies that Fm(x) == 0, which is false.

m-— m

Now, from (8) with » =1, T,,(+1) = 41, and, by (6), we therefore
have, when F,(x) = 0 that

Fonit = Fppy Ty + T By = F{T,(@)} F () To() + T {T ()} Fy()
=T (£ 1) Fyr) = £+ Fy) .
We deduce that, if ze“G,, then n, divides s, and also that
(17) F,x)=0 if and only if =, |m.
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Note that n,=2, and that n,>1 for all 2, so that
n,=p for xeC,.

Let «(n) denote the number of incongruent values of  of Chebyshev
order » modulo p. If for any ¢>1 there exists a residue x modulo p
such that the ¢{—1 residues x = T'(x), Ty(x), ..., T,_;(x) run through
all the ¢{—1 residues of ‘G,, then we call x a generator of ‘G,.

We prove the following theorem in which ¢(n) denotes Euler’s function.

THEOREM 2. (i) We have x(1)=0, x(p)=2, and if n is greater than
unity and a divisor of q or r, then a(n)=g(n). Otherwise x(n)=0.

(i) Bach class ‘G, (¢> 1) possesses generators x. The number of genera-
tors of ‘G, (t>1) 1is Le(2t).

(iii) A residue x modulo p s a generator of G, (t > 1) if and only if
it is of Chebyshev order t and T\ (x)= —1.

(iv) If z is a generator of ‘G, (t > 1) then the Chebyshev order of T,(x)
15 t/(k, t), and the full set of generators of C, consists of those residues T',(x)
for which (k,t) =1 and k is odd.

Proor. To prove (i) it is enough to show that if n> 1 and if n divides
q or r then «(n) = ¢(n). In the first place, we note that (¢,7) =1, so
that the residues x of Chebyshev order n belong either to ‘G, or ‘G,
and not to both. Consider therefore the residues xz of ‘G, (¢ >1) and
let n>1 be a divisor of . In the first place, the polynomial congruence
F,(x) = 0, which is of degree n—1, has exactly n—1 solutions modulo p.
For let its number of solutions be %k, where therefore ¥ < n—1. Then
we have, by (6), putting ¢ = mn, that

Now F,{T,(x)} is a polynomial of degree (m—1)n = t—n in x, and so
has at most t—n solutions modulo p, while F,(x) = 0 has exactly ¢t—1
solutions. Thus ¢—1 < ¢—n-k, showing that L = n—1. Hence k=n—1.
Secondly, if « is of Chebyshev order d where d divides %, then F,(x)
is a factor of F,(x), so that F,(x) = 0. These results show that for every
divisor » of ¢ we have ,
n—1= 3 «d).
d|n
From this, since a(1) = 0, we deduce, for example by the Mdbius con-
version formula, that «(n) == @(n) (n > 1).
Since ¢(t) = 1, it follows that in each class ‘¢, (¢ > 1) there are residues
z of order ¢, and that there are, in fact, ¢(¢) of them. Further, if x is
of order ¢, so clearly is —a. If  is even, then by (16), 7'(x) = —1 for
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each of these ¢(t) residues. If, however, ¢ is odd, then 0 ¢ ‘G, and, since
T\(x) is an odd function of z it follows that, for half of the ¢(¢) residues,
Tyx) = —1, and for the other half 7'(x) = 1. Since }¢(2t) is ¢(t) or
$¢(t) according as ¢ is even or odd, part (ii) will follow if we can prove
(iii).

We show first that n, = ¢ when z is a generator of ‘G,. Forif n,=n<1
then, since n divides ¢, 2n—1<¢, and we have, by (7), T,,_,(x) = «,
which cannot occur for a generator x. Secondly, if x is a generator of
‘G, then T'(x) = —1. For

(18) Tl——n:i: Tn: T'n(Tt:!:l)— (xz”_l)FtFnETn(Ttil),

so that, if, for odd ¢ >1, T(x) =1 then T,_,(x) = T, (), and hence,
for 1 <n<t, the residues 7T',(z) run through at most }({—1) members
of ‘G;; thus such a value of x cannot be a generator.

We now suppose that n, = ¢, and that T,(x) = —1, and show that
x is a generator of ¢, For if 1 <n< t we have, by (6),

so that F,{T,(x)} = 0, that is 7,(x) € ‘¢, Hence it remains to show
that if 1 <m <n <t and T, (x) = T, (x) then m = n. By (8), we have

(xg_l) Fm—n(x) Fm+n(x) =0 )

so that, by (17), either ¢ divides m—n, that is m=mn, or else ¢ divides
m--n, that is m=t¢t—n. In the latter case we have, by (18),

0=T,,—7T,=T,T,—1)=—-2T, .
Hence 7',(x) = 0, and therefore
Fyp(x) = Fo{T,(2)} F\(x) = Fy(0) Fp(2) =0,

which implies that ¢{= 2n, that is m=mn. This completes the proof of
(iid). .
To prove (iv) suppose that 1 <k <t and that & = (£, ¢), ¢ = hu,
k = hv. Then
0 = F(x) = Fy(x) = F {T\(x)} Fi(x),

and therefore F, {7, (x)} = 0. Thus 7, (x) is of order =, say, where n
divides u.

Conversely, since F,;(x) = F {T,(x)} F,(x), n is the smallest positive
integer such that ¢ divides nk, i.e. such that u divides nv, i.e. such that
u divides n, since (u,v) = 1. Thus » = u = t/(k, t). To complete the
proof of (iv) we observe that the residues of order ¢ are 7' (x) for (k,t)=1,
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and that 7', (x) is a generator if and only if, in addition, % is odd. For
T{Ty()} = Ty@) = T\ {Tyx)} = Ti(—1) = (—1)F,
by (9).
The following theorem shows, in particular, that if « is a generator

of ‘G, (¢t > 1), then 7T,(x) and F,(z) are periodic functions of » modulo p
with period 2¢.

TaEOREM 3. If x is a generator of ‘G, (t > 1), then
thin(x) = Tn(x)’ F2ttn(x) = iFn(x) ’
Ttin(x) = _Tn(x) ’ Ftin(x) = :i:Fn(x) .
We omit the proof, which is straightforward.
We note also that, if ¢ is odd and « is of Chebyshev order ¢, but not
a generator of ‘G, then
:{:Tl(x)a :':Tz(x)r cet :}:T%(t_l)(x)

run through all the members of ‘G, and so provide an alternative method
of generating the set.

As an example, consider p = 29 so that ¢ = 14, r = 15. We find that
5 is a generator of ‘C;, and —2 is a generator of ‘¢;;. The members of
the two classes are given in the following table:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14
T,(5) 5—-9—-8 —13 —6 11 0 —11 6 13 8 9 —5
rT.(-2) -2 7 3 10 —14 —12 4 —412 14 —10 —3 —7 2
The class ‘G, has 6 generators, namely +5, +6, 4+8 (mod 29), while
‘G5 has 4 generators, namely —2, 4, —10 and —7 (mod 29).

In conclusion, we prove

THEOREM 4. If 2 is a generator of ‘G, and y is chosen so that x?—1 == y?2,
then x4y is a primitive root modulo p. Conversely, if g ts a primitive root
modulo p and gg' = 1, then x = }(g+9’) is a generator of ‘G,.

Proor. If z is a generator of ‘¢, and a?—1 = g2, it is easily shown,
by using (3), that
(19) @4y = Ty(x) + yF ().

Now z-+y == 0, so that it possesses an order, £ say, modulo p. Since
(x+y)?2 = —1, k cannot be odd, as otherwise it would divide ¢ and we
should obtain a contradiction. Hence k£ = 2n, say, and therefore, by (19),
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from which we deduce that n = ¢, that is, x+y is a primitive root.
Conversely, if ¢ is a primitive root modulo p and z = }(g-}¢’) we can
take y = 1(9—¢’) as a solution of 22— 1 = 2. Then the preceding argu-
ment may be reversed to show that n = ¢ is the least positive integer
for which ¥, (z) = 0 and that 7, (x) == —1. Thus x is a generator of G,.

4. THEOREM 5. If & is an element of the modulary group G(p) (p > 2)
other than the unit element O, and if S is any matriz representing &, then
the order of & is the same as the Chebyshev order of x modulo p where x
is any integer such that 2x == trS.

Proor. Let the representing matrix S be defined by (1), where
ad—bc = 1. Then the order N(&) of £ is the least positive integer N
such that S¥ = 4-1, and is the same for every matrix representing &.
Thus, by (12), N is the least positive integer for which

aFy—Fy =dFy—Fy_,=-+1, bFy=cFy=0.

Thus either N = n,, since then Fy_; = 41, by (5), or else 0 < N < n,,
and b = ¢ = 0. In the second case we deduce that ¢ = d and ad =1,
that is @ = d == 41, which is false since & == 6. This proves Theorem 5.

With the help of Theorem 5 and the results of § 3 we can show that
the order of an element of G(p) other than @ is either p or a divisior of
q or r, and that the elements whose orders divide p, ¢ or » can be divided
into p+1, $p(p+1) and 1p(p— 1) conjugate cyclic subgroups of orders
», q and 7 respectively. Further the p--1 subgroups of order p are con-
jugates of the subgroup generated by

o) r=(1),

while the p(p—t) subgroups of order ¢ (¢ :j or r) are conjugates of
the subgroup generated by
(21) X:( x x—]—l)’

x—1

where z is a generator of G,. In proving these results we could at various
points refer the reader to [1], [2, pp. 419-491] or [4, pp. 363-383 (§§ 464—
473)], but prefer to give the argument in full. Also we shall adopt a
wholly arithmetic approach and shall not derive the results by con-
sidering permutable matrices.
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From Theorem 5 it follows that the elements of G(p) can be divided
into four classes, (i) the unit element 0, (i) &,, (iii) &, and (iv) &,
where £ € S, if and only if & 4= ©®, N(£)|s. We denote by N the number
of elements in &,.

The class ©,. For every element of &, we must have z € ‘C,,, where
2z = trS, that is # = 4 1. Then 2N, is the number of solutions «,b,¢,d

of the congruences
a+d = +2, bc =ad—1,

the solutions a =d = 41, b=c=0 being excluded. Thus N,+1 is the
number of solutions of

at+d=2, bc =ad—1.
By considering the cases ad == 1, ad = 1 separately we easily see that

N,+1=(p—1)(p—1) +2p —1=)?%,
so that
(22) N,=p*—1.

Since two cyclic subgroups of order p are either identical or have only
® in common, and since p*—1 = (p—1)(p+1), it follows that the
elements of &, belong to p+1 different cyclic subgroups of G(p) of
order p.

One of these subgroups is that generated by P (see (20)). Let S be
any other matrix belonging to &,, and suppose, as we may, that ad=2.
Also, write
(23) 7= (;‘ g) . wo—fy =1,
so that

Lt dps A8
-1 pPi —
T PT_( s 1—/1ya)‘

Suppose first that ¢ == 0. Then T-1P*T = § if we take
=—¢, =0 f=-—1, yp=1 0= —(a—d)/(2).

If c = 0, then ad = 1, that is, a = d = 1 and S8 = P?. Hence, in either
case, S is the transform of a power of P and it follows that the p4-1
subgroups of order p are conjugate.

The classes S, &,. We can to a large extent treat these together.
For every element of &, we must have z € ‘¢,. Let M (x) be the number
of solutions of the congruence

a-+d = 2z, be =ad—1.
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We can have bc = 0 only when ad = 1, i.e. when x = a+a~!. We then

have
22 — 1= {}(a—a™V)}?,

which, since @ == -+1, implies that z € G,
Thus, if € ‘G, of the p possible pairs a, d two give ad == 1 and so
M () = (p—2)(p—1) + 2(2p—1) = p* + p = 2p(p—1) .

On the other hand, if # € C,, we cannot have ad = 1, and so

M, (x) = p(p—1) = 2p(p—1).
Hence
(24) Ny = §(t—1) M) = p(p—t)(t—1).
As a check we note that, by (22) and (24),
1+N,+N,+ N,
=1+ (p°—1) + 2(p—3)p(p+1) + t(p—)p(p—1) = sp(p*-1),

which is the order of G(p).

Now suppose that x is a generator of ‘G, and consider the 2p(p—t)
members of &, whose representing matrices S have a+4d = 2x. Since

trS = tr8-1, we may group these matrices into p(p—t) pairs S, S-1.
Each pair generates a cyclic group of order ¢ represented by

I,8,82 ..., 8-1.

No two of these cyclic groups have a common element other than &.
For if this were not so then we should have

(25) 8y = 485",
for some matrices S;, S, each of trace 2z, with
S;=ES,, S;=871
and 1 <m < ¢, 1 <n < ¢ Taking the trace of each side we have
Toplw) = £T,(x) ,

from which it follows, since x is a generator, and by (8) and (18), that
either m = n (for 4 sign), or m = t—n (for — sign). By taking S,~!
in place of §,, if necessary, we may therefore assume that m = n and
that 8," = S,". Hence we have, with an obvious notation,

aan_Fn—IEa’2Fn_Fn~1! banEszn7
e,F, =c,F,, dF,—F,  =d,F,—F, .
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Since F, == 0 we deduce that S; = S,, which shows that (25) cannot
hold.

Further, since it is easily seen that each member of &, with trace
2T,.(x) (1 =n <t) is the nth power of some element with trace 2z,
we conclude that the elements of &, can be divided into N,/(t—1) =
p(p—t) cyclic subgroups of order #, no two of which possess common
elements other than 6.

Now suppose that S is any matrix (1) with ad—bc = 1 and trace 2.
We wish to choose a matrix 7' (see (23), (21)) to make

(26) T1XT=S.

This implies that

(27) po@+1) — af@—1) = a—o = a—d,
(28) 8 (x41) — fx—1) =b,

(29) —y¥x+1) + a2(@—1) =c.

Suppose first that ¢ == 0. For different values of » and «, each of
a?(x—1) and p%(x+1)+c take 4 (p+1) different values modulo p, and
hence for at least one pair «,7y, the two expressions are congruent
modulo p, so that (29) is satisfied. With these values of «,y we can
solve (27) together with «d —fy = 1 for § and 4, since the determinant
of the two congruences is ¢ == 0. These values must automatically
satisfy (28) since ad —bc =1 and ¢ == 0.

If ¢ = 0 and b == 0 we can similarly find a matrix 7' by solving first
for 6 and g and then choosing « and y.

Finally, if b = ¢ = 0, then ad = 1, and so if we take y = }(a—d) == 0,
we have 22—1 == ¢?; that is, x € (E’p’q. We now choose

a=y, f=ly, y=z—1, 6= —A@x—1), 2lykx—1)=—1

and the congruences (27), (28) and (29) are then all satisfied.

Thus in all cases we can find a 7' to satisfy (26) for each matrix S
of €, and this shows that the p(p—¢) subgroups of order ¢ are self-
conjugate.

5. Unsolved problem. For large primes p, how small can |z| be, where
 is a generator of ‘G, or G,*
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