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MODULAR LATTICES AND DESARGUES’ THEOREM

BJARNI JONSSON

Introduction. It has been proved (Frink [4]) that every complemented
modular lattice is isomorphic to a sublattice of the lattice of all sub-
spaces of a (possibly degenerate) projective space, but very little is known
about the connection between the given lattice and the corresponding
space. After summarizing in Section 1 some known results which will
be used in our investigation, we devote the next section to this problem.
The representation theorem shows that every complemented modular
lattice B can be embedded in a complete and atomistic modular lattice 4,
satisfying certain additional conditions. Our main results consist in
describing up to isomorphism the connection between B and 4, and in
showing that every identity which holds in B is also valid in 4. Since
it is known that Desargues’ Theorem is equivalent to a lattice-theoretic
identity, we are thus able to state under what conditions on B the
corresponding space is Arguesian (for the definition, see p. 297). Inas-
much as every lattice of commuting equivalence relations satisfies the
identity in question (cf. Jonsson [5]), we infer that, for a complemented
modular lattice, the existence of a representation by commuting equiva-
lence relations is equivalent to the existence of a representation by sub-
spaces of an Arguesian projective space. For arbitrary modular lattices
this is no longer true. In fact, in the third and last section we construct
a five dimensional modular lattice which is isomorphic to a lattice of
commuting equivalence relations, but not to a lattice of normal sub-
groups of a group.

1. Preliminaries. We use the symbol < to denote set-inclusion,
U and n for binary unions and intersections, U and N for unrestricted
unions and intersections, € and ¢ for the relations of membership and
non-membership, and ® for the empty set. The symbols ¢, = and

are defined in the usual way in terms of =. By {f(z)|¢(x)} we mean the
set of all elements of the form f(x), associated with elements x satisfying
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the condition ¢(x). If X is a set and » is a positive integer, then X* is
the set of all n-termed sequences whose terms belong to X. If x is an

n-termed sequence, then x,, x,, ..., x,_, are the first, second, ..., ntt
terms of x, and we write x = (xy, #;, ..., %,_;). On the other hand
{xq, %y, ..., ®,_4} is the set whose elements are xy, xy, ..., %, ;.

When referring to an arbitrary lattice, the symbols +,-, 2, I,
<, &, >, 3, <, > will have their usual meaning. When applied to
sequences (functions) whose terms (values) are elements of a given
lattice A4, these symbols should be interpreted in the sense of the cardinal
power. Thus if x, y € A%, then x <y means that x;, <y, for ¢ = 0, 1,
...,n—1. When two lattices are being considered, one of which is a
sublattice of the other, the symbols X and I] will always refer to the
larger lattice. The zero and unit elements of a lattice (when they exist)
will be denoted by 0 and 1. If A4 is a lattice, @, b€ 4 and a < b, then
we let

[a,b] = {x|x€d and a <2 < b}.

As is well known, binary relations can be regarded as sets whose
elements are ordered pairs, or two-termed sequences. Thus we can apply
to them the usual set-theoretic operations. In addition, given two binary
relations R and S, we define the relative product R;S of R and S, the
converse R-1 of R, and the domain dmnR of R by the formulas

RS = {(z,y) | (®,z) e R and (z,y) e S for some z},

Rt = {=,y) | <y, ) € R},
dmnR = {z | {z, y) € R for some y} .

A binary relation R is called an equivalence relation if B;R < R and
R-1 = R. An equivalence relation whose domain is U is called an
equivalence relation over U. If x is an element of the domain of an equiva-
lence relation R, then the set {y|{x, y) € R} is called an R class.

The family . A of all equivalence relations over a set U is a lattice.
Here lattice inclusion and multiplication coincide with set-theoretic
inclusion and intersection while, for R, S € _A, the lattice sum R4S is
the smallest equivalence relation over U which contains both B and S.
In particular, if R and S commute, i.e., if B;S = S;R, then R4-8 = R;S.
A sublattice <B of _A, such that any two members of & commute, will
be referred to as a lattice of commuting equivalence relations.

When speaking of a projective space S, we follow the lead of Frink [4]
in not requiring the dimension to be finite, and in not excluding de-
generate cases. Thus we assume only that any two distinet points of §
determine a unique line which passes through both of them, and that
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any line of § which intersects two sides of a triangle, without passing
through their point of intersection, shall intersect the third side. A
projective space S is called Arguesian if it satisfies Desargues’ Theorem,
i.e., if any two triangles of S, which are centrally perspective, are also
axially perspective.

We shall now summarize certain known results concerning the con-
nection between projective geometry and lattice theory, and introduce
some definitions related to these results. For general information on
lattices we refer the reader to Birkhoff [2].

DerFiNiTION 1.1. A4 lattice A is said to be projective if it is complete,
atomistic, complemented and modular, and satisfies the following condition:
If p is an atom of A, if I is any set, and if the elements a,€ A with i€ 1
are such that )

p<a,

tel
then there exists a finite subset J of I such that
p<la;.
ied
THEOREM 1.2. The set of all subspaces of a projective space is a projective
lattice, where lattice inclusion and multiplication coincide with set-theoretic
inclusion and intersection, while the lattice sum of two distinct, non-empty

subspaces s the set-theoretic union of all lines passing through two distinct
points, one from each subspace.

THEOREM 1.3. The set S of all atoms of a modular lattice A is a projective
space, where by the line through two distinct atoms p and q we mean the set
{r|p+q =reS}. Furthermore, if A is projective and if ®(x)={r|x=>r € S}
for x e A, then @ maps A isomorphically onto the lattice of all subspaces of S.

DEerFINITION 1.4. Given a modular lattice A, we shall refer to the projective
space constructed in Theorem 1.3 as the projective space associated with A.

THEOREM 1.5. Every projective lattice is a direct product of indecompos-
able projective lattices. If A is an indecomposable projective lattice of dimen-
ston three or more, then one and only one of the following conditions holds:

(i) The projective space associated with A is a non-Arguesian plane.

(il) A 1s tsomorphic to the lattice of all vector subspaces of a vector space

over a division ring.

TaEOREM 1.6. If B is a complemented modular lattice, then the set <)
of all dual ideals of B is a complete, atomistic modular lattice, where lattice
inclusion coincides with the relation =, lattice addition coincides with set-

Math. Scand. 2. 20
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theoretic intersection, and the lattice product of two dual ideals is the dual
ideal generated by their unton. Furthermore, if _J{ is the projective space
associated with <) (whose points are the maximal proper dual ideals of B),
and if D(x) = {M |xcMe _J} for x € B, then ® maps B isomorphically
onto a sublattice =B of the lattice A of all subspaces of (.

TrEOREM 1.7. If A is a projective lattice, then the following conditions
are equivalent:
(1) 4 is isomorphic to a lattice of commuting equivalence relations.
(i) A s tsomorphic to a lattice of normal subgroups of a group.
(iii) A s tsomorphic to a lattice of subgroups of an Abelian group.
(iv) A is isomorphic to the lattice of all subspaces of an Arguesian pro-
Jjective space.
(v) Foranya,be 43, if
Y = (@g+ay)" (bo+by) - [(@g+as)* (bo+bg) + (@y+as)- (b1+b5)],

h
them (@g+bo) - (@14b,) (@x4b,) < @y (y+a,) + by (y+by) .

A result essentially equivalent to the finite dimensional case of Theorem
1.2 is contained in Menger [7], the present formulation can be found in
Birkhoff [1] for the finite dimensional case, and in Frink [4] without
any restriction on the dimension. Theorem 1.3 is stated in Mousinho [8],
while the finite dimensional case of Theorem 1.5 was given in Birkhoff [1],
and the extension to the infinite dimensional case in Frink [4]. Theorem
1.6 is the principal result of Frink [4]. As regards Theorem 1.7, it was
first shown in Schiitzenberger [9] that Desargues’ Theorem can be given
the form of a lattice identity. The inequality (v) was first used in Jéns-
son [5], where it was shown that this condition is satisfied in every lattice
of commuting equivalence relations. Combining this result with Theorem
1.5, one easily obtains Theorem 1.7.

The equivalence of the conditions (iv) and (v) in Theorem 1.7 suggests
the following:

DrriNtTION 1.8. A lattice B is said to be Arguesian if it satisfies the
following condition: For every a,be B3, if

Y = (A1) (by+by) * [(@g+as)* (bo+-bg) + (@14as): (by+b,)] ,

th
o (ag+bo)* (@14b1) (ay+bp) < @y (y+aq) + by (y+0y) .

TaEOREM 1.9. Every Arguesian lattice is modular.

Proor. Suppose B is an Arguesian lattice. Assuming that u, v, we B
and 4 < w, we apply the above definition with
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ay = b, = v, a, = ay = by = u, and b,=w,
and find that

(@o+bg)* (@1+b1) " (ay+by) = (v4u): (utv)- (utw) = (utv)-w,
y = (v+u) (utv) - [(v+u) (utw) + (u+u) (vV4w)] = (u+v) w,
@y (Y +a1) + by (y+b1) = v [(utv) wtu] + w- [(utv) w+v]

=vw-+u
whence o,

(u+v)w<utvw.

2. Perfect extensions of complemented modular lattices. We shall
now study in some detail the connection between the two lattices _A
and 8 in Theorem 1.6.

DeriNiTION 2.1. We say that
and that A is a perfect extension of B,
B is a regular sublattice of A,

tf the following conditions are satisfied:
(i) A s a projective lattice and B is a complemented sublattice of A
with the same zero and unit elements as A.
(i) If I is any set, and if the elements x,€ B with i€l are such that
H x; =0,
tel
then there exists a finite subset J of I such that
Il x=0.
ved
(iii) If u is a finite dimensional element of A, if v is an atom of A,
and if u-v = 0, then there exist x,y € B such that w <z, v <y
and x-y = 0.

LemMma 2.2. If S is the projective space associated with a modular lattice A,
n 18 a positive integer, and p € 8*, then

{Po}+H{pi}+. . . +{Pu-1} = 0| DoF+P14 - -+ D1 =q€e S}

(It is essential here to distinguish between the point p; of S and the
corresponding one-element subspace {p;} of §. When no confusion is
likely to arise, this distinction will sometimes not be made. The plus
signs on the left of this equation refer to the addition in the lattice of all
subspaces of S, while the plus signs on the right refer to the addition in 4.)

20*
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Proor or LEmMMA 2.2. This is trivial in case n = 1 or n = 2. Assume
that it holds for n = m, and consider the case in which » = m-+1. Let

X = {po}+{p}+ . A+ {Pua} = glPo+P1+ -+ P =€ 8},
Y =X+{p,t and Z={q|pytpt...+Pn=0q€S}.
Then X, Y and Z are subspaces of S with X =< ¥ < Z. For any g€

we have
Pm <4+ P < (Pot+D1+ - - +Pn1) + P s
and it follows by the modular law that

¢+ Pp=7+0,  Where 1= (po+pi+...+Dpn1) @+Pn) -

If r =0, then ¢ = p,,€ Y. If r = q+p,, then ¢ < py+p1+ ... +Ppm-1,
whence ¢ € X < Y. Finally, if 0 < r < ¢+p,,, then r is an atom of 4,
and consequently r € X. In this case

qe{rt+{pn} S X+{pu)=7Y.

Thus we have shown that Z < Y, and the proof is complete.

Tureorem 2.3. If B, S, M, A, B and D are as in Theorem 1.6, then
B is a regular sublattice of _A.

Proor. Suppose I is a non-empty set, and let the elements x,€ B

with ¢ € I be such that
N o) + o
ted

whenever J is a finite subset of I. For every finite subset J of I we

then have
Il x+0.
red

It follows that the set {x;|7 € I} generates a proper dual ideal of B,
and is therefore contained in a maximal proper dual ideal M of B.
We infer that, for each 1 €1,

xz; €M, hence Me D).

Consequent]

onseduently MeNow,).

1el

Thus we have shown that the condition (ii) of Definition 2.1 holds with
A and B replaced by _A and B.

Next suppose that U is a finite dimensional element of . 4, and V is
an atom of A with UnV = ®. Then

U= {M)}-+{M}+...+{M,} and V ={N},
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with My, M,, ..., M,, Ne. J(. By Lemma 2.2 we have
U={P|MynMn...nM, < Pe_J}.
Hence the condition U n V = ® means that
MynM,n...0n M, £N.

Choose xe MynM;n...nM, with ¢ N. Then z-y = 0 for some
y € N. Thus

UcPx)eB, Vcdyes and O@)ndPy) = Dy =0.

We have therefore verified the condition (iii) of Definition 2.1, and the
proof is complete.

THEOREM 2.4. Every complemented modular lattice is a reqular sublattice
of a projective lattice.

Proor. This is an immediate consequence of the fact that, according .
to Theorems 1.2, 1.6 and 2.3, every complemented modular lattice is
isomorphic to a regular sublattice of a projective lattice.

Lemma 2.5. If A is a perfect extension of B, and if w is an atom of A,

then
U = ll Y.
us<yebB
Proor. Clearly
w< JI v.
usyeB

On the other hand, if v is any atom of A distinct from », then u-v = 0,
and it follows from the condition (iii) of Definition 2.1 that there exists
an element y € B such that v <y and v £ y. Consequently
v JJ y=0.
usyeB
The conclusion now follows from the fact that 4 is complemented and
atomistic.

THEOREM 2.6. If A and A’ are perfect extensions of B and B’ respectively,
and if ¢ maps B isomorphically onto B', then there exists a unique function
v which maps A isomorphically onto A' in such a way that p(x) = p(x)
for x e B.

Proor. Let At and At' be the sets whose elements are the atoms of
A and A’ respectively. Using Lemma 2.5 we see that if ¢ is a function
which satisfies the required conditions, then



302 BJARNI JONSSON

vx)y= 23 JI oly) for zeAd.

rz=uedt u<yeB

Hence there exists at most one such function.
Consider therefore the function y defined by this formula. Also let
p')= 2 Il ¢o7(y') for 2'e€d’.
Tzuwedt wW<yeB

Then
pu) = JJ oly) for ue At Y'w)= JI ¢ \Ny') for u eAt,
w=yeB

u<yeB
p) = ' yu) for xeAd, p'(x') S y) for ’ed.
>u'edt’

z=ue At x’

We begin by showing that y establishes a one-to-one correspondence
between At and At', and that y'(y(u)) = u for u € At.
If we At and if L is any finite subset of the set

K = {y|lu <ye B},

then
0+ []yeB,
yelL
so that
H¢(y)=¢(ﬂy)4:0.
yeL yeL

It follows by the condition (ii) of Definition 2.1 that
pu) = J[ ¢y) + 0.

ye K

Next consider two distinct elements » and v of 4¢. Then u-v = 0, and
it follows from the condition (iii) of Definition 2.1 that there exist y, z€ B

such that
u <y, v<z and yz=0.

Consequently
P(u) p(v) <@(y) ¢(z) = @ly-2) = ¢(0) = 0, p(u)-p(v) = 0.

We infer that ¢ maps At univalently onto a family of pairwise disjoint
non-zero elements of 4’. Similarly 3’ maps At univalently onto a
family of pairwise disjoint non-zero elements of A.

Now consider again an element « of 4¢, and suppose p(u) = u' € At'.
If L and L’ are finite subsets of the sets

K={x|u<zeB} and K ={|u <2 eB}
respectively, then

w = yp(u)u’ < ]{qﬂ(y) Iy
ye

yelL
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whence ,
e - Iy +0,
yelL yeL
[1 v JTo70) =9 ([T o) - [T )+ 0.
yelL yelL yelL yelL

It follows by the condition (ii) of Definition 2.1 that

Iy Ilv'w)+0.

ye K yeK

Observing that, by Lemma 2.5 and the definition of y’,
Ily=uw and  [J]o7'(y)=y'(w),
ye K yeK

we infer that
u < p(u').

Similarly, if y(u) > v € At then u < y'(v"). Hence '(u’)-y'(v') # 0, but
we have already shown that this implies that «' = »". Consequently
p(u) = u' € At'.

Thus v maps A¢ univalently into At’ and, similarly, " maps At
univalently into A¢. The above argument also shows that, for any

u e At,
u < y)'(tp(u)) € At, hence w’(g;(u)) = .

Analogously we have y(y'(u’)) = u’ for u’ € At', which shows that ¢
actually maps At onto A4t
Next suppose x € 4, u € At and

p(u) < p) .
pu) < 3 ),

x=ve At

Then

and it follows from Definitions 1.1 and 2.1 that there exist a positive
integer n and a sequence w € (4¢)" such that w; <xfort=0,1, ..., n—1,
and

p) < X p(w;) .

=0

S
I

We wish to show that

If this were not the case, then there would exist, by the condition (iii)
of Definition 2.1, elements y, z € B such that
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n—1
<y, Jw;<z and yz=0.
i=0

But this would imply that

n—1

pu) <o), 2 yw)<ek), and @F) e =0,

=1
so that

n—1
y(u) - %’w(wi) =0,
which is a contradiction. We infer that, for any x € 4 and u € 4¢,
plu) < p(x) if and only if u<w.
It follows that, for any x € 4,
{pu)|r =ue At} = {u'|p@) >u € Al'},

and hence
Y(p@)= 2 @)= X @)= Y u==.
p@)=u' e At x=uc At x=ue At
Similarly

p(y'@)=a for a'ed,

and we infer that v maps 4 univalently onto A’, and that ¢’ = p-1.
Since p and ' are clearly monotonic, it follows that v maps A iso-
morphically onto A’.

Finally suppose « € B. Then clearly yp(x) < ¢(x). On the other hand,
if p(x) > u’ € At', then

y(w)edt, y'@)<¢p@) ==z  hence u =yp(y'(u)) <p@).
Consequently y(z) = ¢(x) for x € B, and the proof is complete.

CoroLLARY 2.7. If A and A’ are perfect extensions of B, then there
exists a wnique function p which maps A isomorphically onto A’ in such
a way that y(x) = x for x € B.

Lrmma 2.8. Suppose A is a perfect extension of B. If u,ve A are
[finite dimensional with w-v = 0, then there exist x,y € B such that u < x,
v<yand x-y =0.

Proor. This is trivial in case the dimension of v is 0. Suppose n is
a positive integer, and assume the theorem to hold whenever the dimen-
sion of v is less than n. Consider the case when the dimension of v is n.
Then there exist p, w e 4 such that p is an atom,

v=w+p and w-p=0.
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Then u-w = 0 and (u+w)-p = 0. Since the dimension of w is n—1 and
the dimension of u+w is finite, it follows from the inductive hypothesis
and from the condition (iii) of Definition 2.1 that there exist x;, ¥,
%y, Yo € B such that

=%, WY, Y =0, wutw<wy, p<y, and  xyy,=0.

Letti
etting x=uxc, and Yy =2,y + ¥,

we infer that x,ye B,u <x,v <y and
Ty =X Ty (Ta Y1+ Ys) = Ty (X Y1 T X" Yp) = X1 X0y = 0.

The conclusion follows by induction.

LemmA 2.9. Suppose A is a perfect extension of B and n is a positive
integer. If the sequence we A™ is independent, and if wy, wy, ..., U,y
are finite dimensional, then there exists an independent sequence x € B"
with v < «.

D

Proor. Forj = 1,2, ..., n—1 the element wy4-u,4-. .. 4u;_, is finite
dimensional and

(wo+uy+. .. Fuj_g) u; = 0.

Hence it follows from Lemma 2.8 that there exist elements y;,z; € B
such that

UgtUy+ . o Uy < Y, w; < 24 and Yirzp=0.
For j=0,1,...,n—1 we let
Ty =25 Yjr1" Yj+e' - "Yn-1>
and verify that u; < ;€ B and
(@o+a+ .. . Fxjy) 2, < Yoz = 0.

DeriniTION 2.10. Suppose B is a lattice and n is a positive integer.
A function f on B™ to B s called a polynomial function of rank n over B
if f belongs to every class K with the following properties:

(i) If j < n, and if ¢ is the function on B™ to B such that

@) =x; for xeB",

then ¢ € K.
(i) If f,ge K, then f+g,fge K.
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THEOREM 2.11. Suppose A is a perfect extension of B, and let U be
the set of all finite dimensional elements of A. If n is a positive integer and
f is a polynomial function of rank n over A, then

foy= X JI fly) for wedr.

r=zue U u<yeBn

Let K be the class of all polynomial functions of rank n over 4,
and for j = 0,1, ..., n—1 let ¢; be the function on A" to A4 such that

@) ==2; for xed™.
We divide the proof into four parts.
Parr 1. If fe K and ve U", then f(v)e U.

Proor. For any fe X we clearly have
fl@) <zgta,+. .. 42,4 whenever xzeAr.

Hence if v € U, then the dimension of f(v) does not exceed the sum of
the dimensions of v, v, v,, ..., and v,_;. Consequently the dimension
of f(v) is finite.

PartIl. If fe A, ve U and f(v) < z€ B, then there exists y € B" such
that v <y and f(y) < z.

Proor. Let X, be the class of all functions fe X for which this
statement holds. Clearly ¢;e K, for j=0,1,...,n—1. Suppose

f,9e€K,, and let h—fig and  E—fq.
If ve U and h(v) < z€ B, then

flv) <2 and g¢g(v) <z.
Hence there exist %', " € B® such that

v<y, wv<y', fl)<ez and gF")<z.
Letting y = y' -y’ we infer that v <y and
Wy) =f)+9@) <fy')+9@") <=.
Now suppose v e U* and k(v) <zeB. Let
uy = k(v) = f(v)-9(v),

and choose u,, 4, € A so that

f) = uptu;, gw) = ugt+u, and Uy u; = Uy-uy = 0.
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Then the sequence (ug, u, %,y is independent. Since, by Part I, u,, u,
and u, are finite dimensional, it follows by Lemma 2.9 that there exists
an independent sequence x € B® such that « < x. We may assume that

x, < 2. Since
fv) <o+, and gv) < 2o+,

there exist y’, ¥’ € B® such that
o<y, v<y’', [f)<x+wz, and gFy') <z +a,.
Letting y = y’-y"”’ we infer that v <y e B" and
k(y) = fy)-9(y) <f (') 9(y") < @+21) (o+23) = 2o < 2.

We have shown that if f, g € K, then f-+¢g € K, and f-g € ;. Conse-
quently “K; = K, and the proof of Part II is complete.

Parr III. If fe"K, then
fw)y= [I fly) for velU".

v<yeBn

Proor. Suppose v e U™ If w is an atom of 4 such that u-f(v) = 0,
then there exists z € B such that f(v) <z and u-z = 0. It follows that
we can find y € B" such that v <y and f(y) < 2, and hence u-f(y) = 0.

Thus
w- JJ fly)y =0.
v<yeBn
We infer that
] fy) <flw) for welUr.

v<yeBn

The inclusion in the opposite direction is obvious.

Parr IV. If fe K, then
fley= 2 flw) for wxeA".

r=zvelUn
Proor. Let K, be the class of all functions f e -k for which the above
formula holds. It is clear that ¢; € K, for j = 0,1, ..., n—1, and that
f+g €K, whenever f, g € N, It is therefore sufficient to show that if
frgeH, and k = f-g, then ke H,.
For any sequence x € A™ we have

Ha) = f@)g@) = 3 J0)( 3 o).

x=ve Un x=ve UN

If % is an atom of 4 such that » < k(x), then
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w< Y flv)y and  w< Y g().

x=veUn x=zve Un

Hence the set {v|z > v e U™} contains a finite subset C such that

u< Y flv) and w< Y gW).

veC veC
Letting

veC
we infer that

x>v elUn u < f(v') and u < g).

Consequently wsk)= 3 ko).
- ~z21ze un
Th
o k)< 3 k(v) for =xzed".
r=veUn

The inclusion in the opposite direction is obvious, and we have k € J,.

The conclusion of the theorem is an immediate consequence of Parts
IIT and IV.

THEOREM 2.12. If A is a perfect extension of B, then every identity
which holds in B s also satisfied in A.

(It is possible to give a precise mathematical definition of what is
meant by an identity and what it means that a given identity holds,
or is satisfied, in a certain algebra. See in this connection McKinsey-
Tarski [6]. For our present purpose, the intuitive notions will be suf-
ficient.)

Proor or THEOREM 2.12. Suppose = is a positive integer and f and ¢
are polynomial functions on 4" to 4, and assume that f(x) = g(z) for
every x € B®, Then it follows from Theorem 2.11 that f(x) = g(x) for
every x € A™.

THEOREM 2.13. Suppose A is a perfect extension of B. Then A is
Arguesian if and only if B is Arguesian.

ProoF. Since every inequality in a lattice is equivalent to an identity,
we see that Arguesian lattices can be characterized by means of an
identity. Hence it follows from Theorem 2.12, that if B is Arguesian,
then so is 4. The converse is obvious.

THEOREM 2.14. If B is a complemented modular lattice, then the following
conditions are equivalent:
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(i) B ts Arguesian.
(ii) B is isomorphic to a lattice of commuting equivalence relations.
(iii) B is tsomorphic to a lattice of normal subgroups of a group.
(iv) B is isomorphic to a lattice of subgroups of an Abelian group.
(v) B s isomorphic to a lattice of subspaces of an Arguesian projective
space.

Proor. It is obvious that (iv) implies (iii), which in turn implies (ii).
It is also known (Jénsson [5]) that (ii) implies (i). If (i) holds, then it
follows from Theorem 2.4 that B is a regular sublattice of a projective
lattice 4. We then use Theorem 2.13 to infer that 4 is Arguesian, whence
it follows by Theorem 1.7 that (v) holds.

Finally assume (v). Then it follows from Theorems 1.2 and 1.7 that
B is a sublattice of an Arguesian projective lattice 4. By Theorem 1.5,
4 is a direct product of indecomposable projective lattices A, with 7 in
some set I. Clearly the factors 4; of 4 are Arguesian; in order to prove
that (iv) holds, it is sufficient to show that each A4, is isomorphic to a -
lattice of subgroups of an Abelian group. If the dimension of 4, does
not exceed two, then this is trivial; if the dimension of 4, is three or
more, then this follows from Theorems 1.5 and 1.7.

3. A counterexample. In the proof of Theorem 2.14 the assumption
that B be complemented was used only in order to show that (i) implies
(v). Thus we see that, for an arbitrary lattice B, each of the conditions
(ii)—(v) implies all the conditions which precede it. We shall now show
that the word ‘complemented’ cannot be dropped from the hypothesis
of this theorem. In fact, we are going to construct a five dimensional
modular lattice which is isomorphic to a lattice of commuting equivalence
relations, but not to a lattice of normal subgroups of a group.

We shall make use of the following result, which is a special case of
Lemma 4.1 in Hall-Dilworth [3]:

Lemma 3.1. If C, and C, are three dimensional modular lattices, then
there exist a five dimensional modular lattice B and elements a, b € B with
the following properties:

(i) a<band B=1[0,b]U [a,1].

(ii) [0, b] ts wsomorphic to C,.

(iii) [a, 1] s isomorphic to C,.

In our application of this lemma, Cy and C; will be taken to be the
lattices of all vector subspaces of three dimensional vector spaces over
division rings D, and D, with distinct positive characteristics. The proof
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of the fact that in this case B cannot be represented by normal sub-
groups of a group will be based on the following:

Lemma 3.2. Suppose C is the lattice of all vector subspaces of a three
dimensional vector space over a division ring D with characteristic p > 0,
and suppose F maps C isomorphically onto a lattice of normal subgroups
of a group G. If x is an atom of C, and if x € F(x), then «? € F(0).

Proor. The set S of all atoms of C is a non-degenerate Arguesian
projective plane. Choose points z and ¢ of S such that z, ¢ and x are
distinct but collinear. Let D’ be the set of all points on the line I = z+-q,
except ¢. With the usual definition of addition and multiplication (cf.
e.g., Veblen and Young [10, pp. 141 ff.]), D' is a division ring isomorphic
to D; we may let z be the zero element of D’. It follows that in the
additive group of D’ every element except z is of order p, so that p-y = 2
for ye D'.

Since x < z-+¢, we have « € F(2+q), and there exists § € G such that
p e F(z) and fx—1e F(q). We shall show that

(1) a7t (fa) 1 € F(n-x)

for every positive integer n. This is clearly true for » = 1. Assume
that it holds for » = k. Since (k+1)-x is the sum (in the division ring D’)
of k-x and «, there exist points y,, ¥4, ¥s, ¥3, D0t on I, such that no three
of them are collinear, and such that

z=1oty): q=1 oty =1 (y1+¥s),
x =1 (y,+¥s), k-x =1 (yo+ys), (k412 =1 (y,+ys) .

Now feF(y,+y,), and there exists y € G such that ye F(y,) and
yp~te F(y,). Consequently,

a7t py~t = a7t (yp) 1 € F(a+y,),

atfyt = (a7 (B o)yt € Flg+Y,) »

a1py~te F((x+y1) (q+v,) = Flys)
yoal(Ba e Fyy+k-x),  yoat(Ba Yot = (1) (B )k € F(y,+q) ,

yoa(Bat)el € F((yo+k o) (y,+9) = Flys)
a7 Bty = (a7 By ) (yat (Ba1)e2) € Fyy+ys)
ot (Ba1Ye € (L (yy+ys) = F((k+1)-2).

Thus (1) holds by induction.



MODULAR LATTICES AND DESARGUES’ THEOREM 311

Applying (1) with » = p, we see that a—1(fax—1)?-1 e F(z). But since
f € F(z) and F(z) is a normal subgroup of G, this implies that a? € F(2).
Inasmuch as «? € F(x) and z-z = 0, we therefore have a? € F(0).

LeMmma 3.3. Suppose p, and p, are distinct positive primes, and for
1 =0, 1 suppose C, is the lattice of all vector subspaces of a three dimensional
vector space over a division ring with characteristic p;. If B, a and b satisfy
the conditions of Lemma 3.1, then B is not tsomorphic to a lattice of normal
subgroups of a group.

Proor. Assume that there exists a function F which maps B isomor-
phically onto a lattice of normal subgroups of a group .. Note that the
dimension of b is 3 and the dimension of a is 2. Hence there exists an
atom u of [0, b] such that a-u = 0 and a+u = b. Since u £ a, there
exists « € ¢ such that « € F(u) and « ¢ F(a). By Lemma 3.2 and the
condition (ii) of Lemma 3.1 we have «P° € F(0) and hence «"° € F(a).
On the other hand we have w < b, whence « € F(b). Noting that b is an
atom of the lattice [a, 1], we infer from Lemma 3.2 and the condition
(iii) of Lemma 3.1 that «P' € F(a). Inasmuch as p, and p, are distinct
primes, it follows that « € F(a), contrary to our choice of . Thus no
such isomorphism F exists.

LemMMA 3.4. Suppose B is a lattice, I is an ideal of B, J is a dual ideal
of B,B=I1UJ and InJ = ®. If I is a function on B to a lattice C,
and if F maps both I and J homomorphically (isomorphically) into C, then
F maps B homomorphically (isomorphically) into C.

Proor. Choose an element celIndJ. If xel and ye.J, then
(x4c):yelInJ. Hence

F@+y:zF@+-whwy+y%=F@+%m+dw¥+FW)
F(x) + F((@+c)y) + Fy) = F(x) + F(@+c) y+y)
F(x) + F(y) .

Dually, F(z-y) = F(x)-F(y). Consequently F' maps B homomorphically
into C. Finally, if F is univalent on each of the sets I and J, and if the
elements x € I and y € J are such that F(x) = F(y), then

F(z) = F(x+c)  F(x) = F(x+c)- F(y) = F((x+c)-y),
and hence also F(y) = F((z+c)-y). This 1mphes that
x=(x+tc)y=y.
Thus F maps B isomorphically into C.
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LemmA 3.5. For i = 0, 1 suppose C; is the laitice of all vector subspaces
of a three dimensional vector space over a countably infinite division ring D;.
If B,a and b are as in Lemma 3.1, then B is isomorphic to a lattice of
commuting equivalence relations.

Proor. It follows from our assumptions that there exists a function
® which maps the lattice [0, b] isomorphically onto the lattice of all
vector subspaces of a three dimensional vector space U, over D,. For

z € [0, b] let
Fyx) = {({«,p) | &, Uy and x—p e D(x)}.

Then Fy maps [0, b] isomorphically onto a lattice of commuting equiva-
lence relations over U,

Clearly U, is countably infinite. We shall show that if z <y < b,
then each Fy(y) class contains infinitely many F(x) classes. In fact,
letting ¥ be an F(y) class, choose « € ¥, and choose y € @(y) such that
y ¢ @(x). For each de D, we have dy e D(y), and hence x+dye Y.
Furthermore, if d,d' € D, and d % d’, then dy—d'y ¢ ®(x), so that
a+dy and x+4d'y must belong to different Fy(x) classes. Hence Y
contains infinitely many F(z) classes.

We now consider countably many replicas (F,, U,),t = 1,2, ..., of
the ordered pair (F,, U,). More specifically, we assume that the sets
U, are countably infinite and pairwise disjoint, and that F, maps [0, b]
isomorphically onto a lattice of commuting equivalence relations over
U; in such a way that if < y < b, then each F,(y) class contains in-
finitely many F(x) classes. Letting

v=U U, and F(x)= U F,(x) for =x€[0,b],
1 <00 P <oo
we infer that U is countably infinite and that F maps [0, b] isomor-
phically onto a lattice of commuting equivalence relations over U in
such a way that:

(1) There are infinitely many F(b) classes.
(2) Each F(b) class contains infinitely many F(a) classes.
(3) Each F(a) class is infinite.

By exactly the same method as was used to obtain U, and F,, we can
find a countably infinite set V, and a function G, which maps [a, 1]
isomorphically onto a lattice of commuting equivalence relations over
V, in such a way that there are infinitely many G (b) classes, and each
Go(b) class contains infinitely many Gy(a) classes. With the elements
«' of ¥V, we now associate pairwise disjoint, countably infinite sets
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P(x'), let 7 - U ww),
a’eVy

and for each « € [a, 1] define the relation G(z) by the condition that
{x,p) € Qz) if and only if x, feV and (&', ') € Gy(x) where &' and p’
are the unique elements of ¥V such that « € ¥(«') and 8 € ¥W(B'). Then
V is a countably infinite set, and ¢ maps [e, 1] isomorphically onto a
lattice of commuting equivalence relations over V in such a way that:

(4) There are infinitely many G(b) classes.

(6) Each G(b) class contains infinitely many G(a) classes.

(6) Each G(a) class is infinite.

From (1)-(6) we see that there exists a univalent function on U onto
V which maps each F'(b) class onto a G(b) class and each F(a) class onto
a G(a) class. We may therefore assume that

U=V, F(a) = G(a) and F(b) = G(@®).

Since a and b are the only elements common to [0, b] and [a, 1], it follows
that there exists a function H on B such that

F(z) for «x€]0,5],

H(x) = { a
(x) for xe€ja,1].

Since H maps the ideal [0, b] and the dual ideal [a, 1] isomorphically
into the lattice of all equivalence relations over U, it follows by Lemma
3.4 that H maps B isomorphically into the lattice of all equivalence
relations over U. Furthermore, if either x, y € [0, b] or z, y € [a, 1], then
H(z) and H(y) commute. Finally, if € [0, 6] and y € [a, 1], then

H(z);H(y) = H(@); H(a-+y) = H();H(a); H(y) = H(z-+a); H(y)
= H(w+aty) = Hizty)

and, similarly, H(y);Hx) = Hz+y).

Thus H(z) and H(y) commute in this case also, and we conclude that
H maps B isomorphically onto a lattice of commuting equivalence
relations over U.

THEOREM 3.6. There exists a five dimensional modular lattice B which
s isomorphic to a lattice of commuting equivalence relations, but not to a
lattice of normal subgroups of a group.

Proor: by Lemmas 3.1, 3.3 and 3.5.

Math. Scand. 2. 21
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Since the division rings D, and D; in Lemma 3.5 were assumed to

be countably infinite, we see that the lattice B in Theorem 3.6 will also
be countably infinite. However, the prime fields of D, and D, are finite,
and applying Lemma 3.1 to them we obtain a finite lattice B’ which is
isomorphic to a sublattice of B, and therefore isomorphic to a lattice of
commuting equivalence relations. On the other hand it follows from
Lemma 3.3 that B’ is not isomorphic to a lattice of normal subgroups
of a group. Thus we see that even for finite modular lattices the con-
ditions (ii) and (iii) of Theorem 2.14 are not equivalent.

10.
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