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ON A TYPE OF EIGENVALUE PROBLEMS
FOR CERTAIN ELLIPTIC DIFFERENTIAL OPERATORS

GUNNAR EHRLING

This paper treats a problem that can be regarded as a generalization of
the eigenvalue problem for the elastic plate. The main term of the poten-
tial energy of an n-dimensional ‘“plate’’ represented by an open bounded
domain D is supposed to be given by a certain generalized Dirichlet
integral over the domain. The integrand is a form of the type

Ekyv'Dufof_’

where D"f and D'f are derivatives of the order m of a deformation
function f and k, are variable and sufficiently regular. The form is
supposed uniformly positive definite in all the derivatives of order m
(hence hermitian in the same variables). We shall suppose that the
boundary of D satisfies certain regularity conditions. Subjecting the
“plate” to boundary conditions involving derivatives of order < m—1,
an eigenvalue problem is defined in the same way as for the ordinary
plate (see F¥riedrichs [5]).

An eigenfunction g of the elastic plate satisfies the differential equation

Adg —Ag=0.

In the case treated here there is in general no differential equation
associated with the problem, but it comprises cases in which the eigen-

functions satisfy 4 0
ug — A9 =19,

where » is an elliptic differential operator of order 2m.

In the case when the integrand of the Dirichlet integral is hermitian
in all the derivatives of f (f itself included) and 2m > n we shall by a
method due to Carleman [1] deduce asymptotic formulas for the eigen-
values and eigenfunctions that generalize results in the theory of the
elastic plate obtained by R. Courant [2] and A. Pleijel [16] [17]. Similar
eigenvalue problems for more general elliptic operators (Dirichlet inte-
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268 GUNNAR EHRLING

grals) in an arbitrary open domain but with more special boundary
conditions have been treated by Garding [7] [8] [9]. The technique
used here is essentially the same as in these papers. The main results of
this paper follow from integral inequalities ((3), (4) and (5), pp. 270-271)
which are variants of certain estimates by Friedrichs [5]. The problem
of proving the inequality (4) was put to me by L. Garding. I want to
express my gratitude to him for his interest and valuable advice.

Notations and preliminaries. In this paragraph we shall introduce
a domain D supposed to represent the ‘“‘plate” and impose a number of
regularity conditions upon it. These conditions are chosen with the
purpose of being reasonably general and at the same time giving a direct
point of departure for the proof of certain integral estimates. They may
be dependent on each other, and it is probably possible to reduce them
in number and to give them a simpler form.

In n-dimensional euclidean space £ we denote the points by x =
(@, - .» %), Y, ete., distance by |e—y| = ((@,—¥1)*+ . .. + (@, —¥,)?)?
and the volume element by dx. For derivatives we use the notation
Df = olffoxyr. . 0w, ™, where |v| = v;+...+v, is the order of the
derivative.

Let D be an open bounded region in £Z. We introduce an auxiliary
concept. By a (Lipschitz) manifold S; with respect to D of dimension j
we shall mean the set-theoretical union of a finite number of pieces 7'
each of which has the following properties:

1°. In a suitably chosen system of orthogonal coordinates vy, ..., Y,,
the part T can be represented by a set of equations:

(1) Yinn = @1l - Y5)
yn = Qn(yl’ ct ?/g) ’
where y* = (Y, . . ., y;) varies over a closed domain 2 and all the functions

o Satisfy a Lipschitz condition

(2) lox(y*) — ex(z*)] = Cly*—2*,

C being independent of y* and z*.

2°. There exists in a plane y* = const. an (n—j)-dimensional spherical
sector X with a positive radius and a positive spherical angle so that each point
y of T is the vertex of a sector X, obtained from X by a translation and
contained in D except perhaps for the vertex. If j =n—1, T is represented
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by

Yn = Y1 « - s Yn—1) »
and the condition 2° means that to each point y = (Yq, - -+, Yn-1, 0n) Of T
the segment y* = (¥4, ..., Yo_q1) = const., g, >y, > 0,—h, belongs to D,
h being a positive number independent of y.

In the figure the periphery of the circle D, and of the tangent circle
inside D, form together a Lipschitz manifold of dimension 1 with respect
to D;. D, and D, are two regions where the boundary is, respectively
is not, a Lipschitz manifold with respect to the region.

The Lipschitz condition (2) implies that the Jacobians

Dkl.., ki = D(ykl,...,kj)/D(yl’ cen Yj)

exist almost everywhere on 7' with respect to dy* = dy, . .. dy; and that
S; has a surface measure defined by

3

as;=( 3 (D)) dyr
ki<...<kj

on 7' (see Kolmogoroff [12] and Nobeling [15]). With respect to the

measure d.S; the surface has a j-dimensional tangent plane almost every-

where.

For D we make the following assumptions:

1. The boundary S of D is a manifold S,_, with respect to D.
II. 8 is the boundary of S+D.

III. There exists an n-dimensional spherical sector X with a positive
radius and a positive spherical angle, so that each point x in D+S is the
vertex of a sector X, contained in D+8 and congruent with X.

IV. D is normal in the sense of Courant-Hilbert [3, p. 516], that is,
D is the union of a finite number of regions each of which is defined in a
suitable system of orthogonal coordinates by the inequalities

O§y¢§d,~, i<n,

0<y,<7,

n
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where Y is a continuous function of yy, ..., Y,_q1, INfY > 0, and d, are
constants.

The statements I-IV may be dependent on each other. Physically,
in the case of the vibrating plate the condition IT means that we restrict
ourselves to examining plates without incisures. The requirement is not
essential for the theory and could be replaced by a weaker one.

The conditions I and II imply (see Lorentz [13]) that the exterior
normal exists almost everywhere on S and that if f(x) is a continuous
function in D48 and if of/ox; exists in D and is integrable over D we
have

Saf/axi dx — S f cos (v, 2;) dS
D N

where dS is the surface element on S and cos(», ;) is the cosine of the
angle between the exterior normal on § and the positive x;-axis. It
follows that if g(x) has the same properties as f(x) we have

S g of[ox; dx = — Sfag/ax,- dx + ng cos(v, x;) dS .
b D 8

A set of integral estimates. Let H be the set of all infinitely dif-
ferentiable complex functions defined on D which, together with all
their derivatives, have continuous extensions to D--S. Put

N¥(f,g) = S) (sz Dy Dg) d

and

le(fag) = Nk(f:g) + tNo(f’g)
for f and ¢ in H.
For NO(f,g), which is the ordinary scalar product g fgdx, we shall

also use the notation (f,g). D
For large positive values of ¢ we shall prove the following estimates

(compare Friedrichs [5]),

(3) NE(f.f) = O@=@~km) N™(f.f)
when 0 <k < m,
(4) \D'f (2)|* = O(t~ 0~ di2bbimly N om(f, f)

whenever the exponent of ¢ is negative, uniformly when xe D+S.
Further, if §; is a Lipschitz manifold with respect to D, then
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@ (1D as; = ogu-somsaemmy yonz )
8i
whenever the exponent of ¢ is negative. All the estimates O are in-
dependent of f.
Proof: Let us represent one piece 7' of S in the form

yn = Q(yb ceey yn—l) s

where y* = (y;, ..., ¥,-1) belongs to a closed domain 2. According to I
we can assume that the region 7', defined by y*e€ 2, o>y, > 0—h
belongs to D for a positive number 2. We represent the value on S of a
function f in H by

e(y*®)
F*. ) = F) + \ ffey, dy,
for y e T}. Then o
e(y.*)
(% e)® = 20 )2 + 2h \ @feyl*dy,
Yn

Integrating over 7', using the Lipschitz condition (2), we get

oy inifrar = 2\ifipay + 202 jasjoy, 2dy

Th Th Th
= 2{ifpdy + 20§ ( 3 @ffeyt) dy.,
7 Q:h i=1

where we can give » any value that is small enough. Adding the esti-
mates for the various parts 7', we get

(©) \I712ds = 4 tht(1.1) + BHS D)

8
for small values of h. Here and in the sequel 4 will denote a constant,
not always the same but independent of the function f and the para-
meter A. Applying (6) to the derivatives of f and adding the resulting
estimates we get

) { (2 1ar0,2) ds = 4 s ) + wvag ).
S

’s formula

Nup) + (s AFde =1 ofyen as,
S

D

From Green
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where » is the exterior normal of S, it follows that

N0 =W DN ENE + (1708 § 3 epfeszas )
N S

)+ nh N fp) + 1 1p1mas 4w D aggeaeas
S

N

where h > 0 is arbitrary. Estimating the surface integrals by means of
(6) and (7), putting the number h¥/(44) in (6) and the number 44ht
in (7) instead of k, we get

NS ) = AR f) + ANA(S, f)]

Applying this formula to the derivatives of f of order k—1 and adding
the resulting estimates we get

N¥(f, f) = A [RINF(S, f) + RNE(S, f)]

Using this, one proves by induction the formula

NS ) = A TR f) + B N*2(f f)]

where k = 1. Putting k4+p = m and b =t-1/™ we get (3) when 0 < k < m.
When k& = 0 or k = m the relation (3) is of course trivial.

The value of f at a point is estimated by expressing it in terms of the
values ¢(t) of f on a half-ray x+t&, |§] = 1, t = 0, through z. Putting

— 1 rd\?
o0 =3 (5) o0

12
®) 1) = 9(0) = g0t + 1| -1g0(r)an
0

so that, supposing 2k—n > 0, we get
t

\Tn 1|tk .,)|sz>
0

k-1 {2k-n

9 f@P= (k—|—1)(2: lgO(t) 262 + kz
0

By virtue of the condition III we introduce an n-dimensional spherical
sector ), © D+8 with center in x and radius . We integrate (9) in
the variable y = x+t& over X,. If the volume of 2, is «h" we get

2k

kfl h
shrlf@P = (1) ( 20§ gopde + k= (lgpae),
0

Zn Zp
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which gives

k
@) =4 3 BN, f)
and for the derivatives of f
k
(10) \Df @) = 4 X BN f)
i=0

for A > hy uniformly in D+8.

In order to prove (5) let us denote by 7'; a part of S; represented by
the equations (1). We calculate the value of a function f at the point
Y= (Y1, -+ > Yj» 0j41> - - -» 0,) on T; from its values ¢(t) on a half-ray
y+t&,t=0,& = ... = & = 0, |§| = 1, through the (n—j)-dimensional
sector X, belonging to y. Supposing that &> }(n—j) we get from (8)
that

2k —n+j

k—1
A1) = E+n) (S lgoore + ke
0

12
STn J— 1|(p(k) !2dr>
+ 0
We take the volume integral of both sides of (11) with respect to the
variable & = y+-t& over the region xz € 2, ;, y € T;, denoting by X, ,
the part of 2, that lies inside the sphere with radius % and center in y.
Adding the estimates that result in this way for the various parts 7',
we get

irds, = 4 S, pyrs-ns

Sj

for all sufficiently small 4. For the derivatives of f this means

k
(12) \1Dpas; = 4 3wt p).
3 =0
Putting & = t7*™ and using (3), the result (5) follows. The formula (4)
is deduced from (10) in the same way.

The vibration problem. Green’s transformation. Corresponding to
the potential energy of the vibrating plate we assume that we have
a hermitian form in H

V(f,f) = 2D a,(x) D'f D'f da

m
m

P::z/?

H H

where the matrix (a,,(z)) is hermitian, bounded and uniformly positive
definite in D, so that there exists a positive constant d for which
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(13) a1 P 2 Y a, @ zd 3

for all  in D and all complex numbers &*. Further we shall assume that
for all ¥ in D the coefficients a,, satisfy the Lipschitz condition

(14) Ia,m:(y) —a,tw(x)! = Oyly—x|ay ’

valid for x in D, U, and «, being positive and dependent only on y.

Let us put
Vt(f’f):V(f!f)+t(f3f)’ t=0.

It follows from (13) that N,(f,f) and V,(f,f) are equivalent square
norms in H, uniformly for all ¢ = 0.

In addition to V we shall assume that we have another form R(f, g)
defined on H X H which is linear in f, antilinear in g and is small compared
to V in the sense that

(15) |B(f, 9)I* = o(1) V(f, f) Vg, 9)

where o(1) > 0 as ¢ > + oo and is independent of f and g. It follows from
the estimates proved in the preceding section that, for example,

n—1
a6 R(fg) =\ Mt 9de + 3 (K1 01a8, + { Lis 9ds@
b =g DS

has these properties provided that M(f,g) = 2b,(x)D"fD’y with
lu] =m, |v| =m, |v|+|u] < 2m and with bounded coefficients b, in D,
that S; is a Lipschitz manifold of dimension j with respect to D and
K,(f,9) = 2c,(x)D"fD’g with |u|, |v| < m —$(n—j) and bounded coef-
ficients ¢, on S;, and that «(z) is of bounded variation in DS and
L(f, g) has the properties of K(f, g). It should be observed that the
occurrence, for example, of the last term of (16) is impossible unless
2m > n.

Closing H in the norm-square N,™(f,f) we get a Hilbert space §,,.
If {f;} is a Cauchy sequence in H, then according to (3) the functions f;
and their derivatives of orders < m converge in square mean on D. If
F, and F are the limit functions of {D’f;} and {f;}, respectively, and
|v| £ m, we have

Sngdx — (—1) S DgFd
D D
for any function g € H which vanishes outside a compact set in D, so

that F, is the generalized (weak) derivative of F. Hence §,, consists of
functions F having generalized square integrable derivatives of orders
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= in D. If 2m > n it follows from (4) that the limit functions F are
continuous, the convergence being uniform on D-8.

Let D* be an open subset of D with the same measure as D and let
L = L(D*) be the set of all infinitely differentiable functions vanishing
outside compact subsets of D*. Closing L with respect to the square
norm N,™(f, f) we get a subspace &,, of 9,,. Let § be any closed subspace
of 9,, containing ¢,. The cases = ,, and H = &,, are included.
The elements of $ correspond to the set of admissible functions in the
theory of the plate. (This general type of boundary conditions was
proposed to me by L. Garding.) Imposing on the functions in H a number
of linear conditions on the set D+ S—D*, for example
(17) 2 o@Df@) =0,

|| =m—1
and closing the resulting space with respect to N,™(f,f), we obtain a
space . We do not enter upon the question of which way the con-
ditions (17) are satisfied by the functions in §. The functions in §,, be-
long to a class which has been studied by Nikodym [14] and Deny [4].
In 9,, the forms V and R are defined by continuity. Let us put

and assume that m > 0.

If R is hermitian, that is, if E(f, f) is real for all f, then we may con-
sider U(f, f) as a modified potential energy of the ‘“plate”. For given
U and $ we shall consider a vibration problem {U, $} which, loosely
speaking, consists in finding the eigenfunctions and eigenvalues of the
form U, defined in §, with respect to the unit form (f, f).

DErFINITION. An eigenfunction of the vibration problem {U, $} with
the eigenvalue A is a function ¢ €  that satisfies

(18) Ulp, h) = 4 (g, )
for all » € 9.

If, for example, in (16) L = 0 and the coefficients of M and of V
are sufficiently differentiable this means that ¢, after correction upon
a null set, is 2m times continuously differentiable and satisfies the dif-
ferential equation

up = (—1)" 3 D"(a,, D'p) + 3 (— 1) Db, D'p) = Ay

in D*—2'S; where the S; are the Lipschitz manifolds occurring in (16)
(theorem of Schwartz-John, see Garding {6]).
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Let & = &, denote the set of all square integrable functions in D,
where we introduce (f, f)! as norm. We put

(19) Ut(f’g): U(f,g)+t(f,g), t=0.

The following theorem (cf. Garding [7]) shows that the eigenfunctions
and essentially also the eigenvalues of the vibration problem can be
obtained as the eigenfunctions and eigenvalues of anyone of a set of
completely continuous operators.

TaEOREM 1. If ¢ is large enough, the equation
(20) (fs ) = UfGf, b) ,

where f belongs to & and b and G,f belong to $ defines a bounded linear
operator G, from & to H < L. Considered as an operator from L to L,
G, is completely continuous and if R is hermitian it is selfadjoint and posi-
tive. The vibration problem and G, have the same eigenfunctions. An eigen-
SJunction ¢ of the vibration problem with the eigenvalue i has the eigenvalue
(A1)~ with respect to G,.

Proor. Let us first put B = 0 so that U, = V, using in this case the
notation 4, = (. Obviously (f, 2) is an antilinear bounded function
of h e  so that introducing into § instead of N,™(f, g) the equivalent
scalar product V(f,g), ¢t > 0, it follows that A,f exists and that A4, is
a bounded linear transformation from & to $. Let us show that it is also
completely continuous considered as an operator from £ to 8. We have

IVi(Aof, )P = (A )P = (Aufs Af) L) = VI AS, AN )

so that VA, Af) = t72(f f) -

Consider a sequence {f;} which is bounded in £. Then the sequence
{A4,f;} is bounded with respect to the norm-square N/® and hence by
virtue of (3) also with respect to N,!. It follows from the condition
IV on D and a theorem by Rellich (see Courant-Hilbert [3, p. 513]) that
there exists a subsequence {4,f;,} which converges in square mean in D.
(The proofs of Courant-Hilbert [3] carry over immediately to n dimen-
sions.) Hence 4, is completely continuous.

When R = 0 we proceed as follows (compare Garding [8, p. 64]). The
equation

(21) R(.fs g) = Vt(Llf’ 9)s f’ 9, Ltfe'b s

defines a bounded linear operator L, from $ to § the norm of which,
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3
L= (sup (B OV Vg 1)
.9
by virtue of (15) tends to zero as ¢ —~ co. Now we can write

Ut(f, g) = Vt((l"{‘Ll)f: g)s

and if ¢ is so large that |L,; < 1 then (1+L,)-! exists and is bounded.
Putting G, = (14+L,)14, we get a transformation satisfying (20). It
follows immediately from this representation of G, that G, is completely
continuous. If R is symmetric then

(@GS, f) = ViG], Gif) + B(Gf, Gif)

is always real and positive, hence @, is selfadjoint and positive. (A minor
modification of the arguments shows that ¢, considered as an operator
from 9 to 9, is completely continuous and, if R is hermitian, also self-
adjoint and positive with respect to the square norm U,(f, f).)

Let us assume that ¢ € & and that

(22) Gl(p = (l—f—t)_l(P-
Then by (20 1 ) = G0, ), heD,

which implies (18). Conversely, it follows from (18) that ¢ is an eigen-
function of ¢, which completes the proof of Theorem 1.

We shall call G, Green’s transformation corresponding to the bilinear
form U, and the subspace 9 of 9,,.

Green’s function. If 2m > n, which we will assume from now on, then
Green’s function, i.e., the kernel of Green’s transformation, can be ob-
tained very simply (cf. Garding [7]).

In fact, it follows from (5) that f(y) for any y € DS is an antilinear
function of f e §. Hence it can be written as a scalar product

(23) f—@ = Vt(a’t(' ’ y)>f) .

This relation implies in particular that a weakly convergent sequence
in § converges pointwise in D+8. We approximate the integral over
D of fh, f and h € §, by a sequence of Riemann sums

kah(y) = Zif(yik)h(yik) |D*|, yte D,

where D;¥ for fixed k are non-overlapping regions with the sum D and
each with a diameter < 8, - 0. The measure of D;* is denoted by |D*|.
From (23) it follows that

D TWhy) = V( Xkal, 9) k), f),
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where 2, a,(-, y)h(y) is an analogous Riemann sum. If we let k tend to
infinity the left side tends to (%, f) so that Xya,(-, y)h(y) is weakly con-
vergent in § to 4,h. But then the sum converges pointwise and passing
to the limit we get

\auw, hw)dy = Ah(w) .

Putting (see (21)) i

(24) 9> y) = (I+Ly) e, y)

(¢ large enough), we get

(25) Ul(gt(': y):f) = Vt(at('9?/)’f) ‘—‘f—Gﬁ .

This relation defines Green’s function g,(x, ¥) uniquely and it follows as
above that
Voe, v)hiw)dy = Gtz
D

A fundamental solution. If the coefficients @, in the expression
V(f, g) are sufficiently differentiable, we get, integrating by parts in
V(f, g), supposing that f, g € H and vanish outside compact sets in D,

(26) Vif,9) = (f.9) = (f.v9),
where v is the differential operator
(27) v = (—1)’”I |Z: D¥(a,,(x)D’) .
ul=m
|v|=m

In the rest of this paragraph we shall suppose the a, constant. We
denote by v, the differential operator v+¢ and by v,(£) the polynomial

v(€) = X a, &g g
|ul=m
|v|=m

in the components &; of the n-dimensional vector &.
The inverse Fourier transform

Az) = (2n)n e o e)]1as

of [v(&)]t, where ¢ =&+ ...+ x,&,, is analytic for x= 0, and
A(x—y) is a fundamental solution belonging to v, that is,

(28) Ve—n ar) dy = r@)

E
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for any infinitely differentiable function f(x) that vanishes outside a
bounded region (Schwartz [18, pp. 149-151]). Integrating by parts in
(28), chosing functions f that vanish in a neighbourhood of x = 0, we
find that
(29) v A (x) = 0
for x &= 0.

From Garding [9] we quote the following lemma:

Lemma. Let p(&) be a polynomial of degree u whose coefficients are
majorized by a number ¢, and suppose that |p(&)| = cy(1+16]*). Then the
(generalized) inverse Fourier transform of [p(x)]! is an infinitely differen-
teable function P(x) in the region x == 0 satisfying

= ]_ h . . 0 ,
|D*P(x)| = Clepy(x) (14]al) ™, i@ when y—|x|—n >
e]al(x) = lx|#~[a|—n—s when [u,—l(xl_—fn <0.

Here N 20 and 1> &> 0 are arbitrary, and the number C depends on
€1, Coy ||, N, and &, but is otherwise independent of the polynomial p.

Putting ™ = s we have
(30) A (x) = sn2m4, (sx) .
For 4,(x) we thus have the estimate
(31) D'A,(x) < Cs"'””"melvl(sx)(1—1—|sx|)‘N.

In this formula the functions e, are defined as in the lemma but with
the number y replaced by 2m. The formula is valid for all v,(&) satis-
fying |a,,| < ¢; and [oy(£)] = cy(1+]€[2m).

For a later purpose we note that for y arbitrary but fixed, the function
A,(-—y) belongs to 9,,. In fact, writing

AN, z—y) = @) | etenepu)as
=N

the function A4,(N,x—y) is infinitely differentiable in E, and from
Plancherel’s theorem it follows that 4,(N, x—y) and its derivatives up to
at least the order m converge in square mean on £ when N tends to
infinity. Hence, as AN, x—y) itself tends to 4,(x—y), the statement
follows.
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Asymptotic formulas. In the following we are going to show that
the function

Ay, w—y) = (22) ﬂ ei-02 oy, )] dE,

where

y, 5) 2 a H1+”l . Enlln‘”n + t ,
Wi=m '
[v]=m

behaves asymptotically as g,(z, y) for large values of ¢ or more precisely,
putting in/m = o,
lim £ (A,(y, x—y) —gi(x, ¥)) = 0,

t—>+00

if at least one of the points x and y belongs to D*.
When z <4 y, we have by Riemann-Lebesgue’s lemma

lim -9 A(y, x—y) = lim 4,(y, s(x—y)) = 0,

t—>+00 8 —> 00

and from (30) it follows that

Jim B0y, 0) = Ay(y, 0) = (2m)" | [yly, £k
—> +00

The integral on the right in the last formula can be transformed in
the following way (cf. Garding [7]): we put & = pn, where p = (n,, ..., n,,)
is restricted to the domain Q = {5 |vy(y,n) = 1} and p = vy(y, &)™,
Putting d¢ = p"~'dp dw, we have

o .

S dé =V, p" = S p"tdp \ do, ,

P<po 0 2
where V, = { _,d¢. Hence we get {,dw, = nV,, which gives

=I'(14+0)I'(1—0) V

e

(o, 11 = | "

Hence we can formulate our proposition as follows (compare Garding [7]).

THEOREM 2. For the asymptotic behaviour of g,(x, y) we have the formula

(32) lim t*-°g,(x,y) = 6,,(2n)™ I'(14-0) '(1—0) V,,,

t—>+00

where 0., = 0 when x 4y, d,, = 1 and at least one of the points x and y
belongs to D*.
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Proor. Writing

(s Y) =9 y) — al-, y)
we have by (24)

(5 y) = [A+L) 7t —1]a(:,y),
so that by (4)

i@, y) = O(t—% (1—0)) Vl(yt SY)s e, Z/))%

= O(t10-9) 1|_|’|L‘| Vi(a(, 9), a(-, )t

But applying (23) and (4)
Vt(a't(' 2 Y)s y)) =a(y,y) = O(t_}' (1—6)) Vt(a't( SY)s ?/))i ,
so that

(33) Vt(al( " y), at(. ) Z/))% - O(t_é (1_6)) .
and hence
7i®, y) = e ——O(t"7).
L,

But as |L,|, = o(1), we get
(34) lim #*~[g(2, y) —ax, y)] = 0,

t—>+o00
so that it is sufficient to prove the theorem for a,(z, y).

Noting that the convergence in (34) is uniform for all  and y in D8
and that the uniform estimate a,(y, y) = O(t~*~) follows directly from (33)
we get
(35) gy, y) = O(t“")

uniformly, an estimate that will be used later.

Let ¢ be a function in L. From the fact that 4,(y, - —y) belongs to
O it follows that ¢ A4,(y, - —y) belongs to &, because if A,(y, - —y) is
approximated by a sequence {f;} in H, it is easily proved by means of
(3) that ¢ A,(y, - —y) is approximated by the sequence {¢f;} in L. Let
y be a point in D*. Then we can find two functions ¢ and ¢ in L and two
neighbourhoods @ and w* of y, w* < w < D*, such that

() =1 when zrew,

p() =1 when xecow*,

p) =0 when zd¢o,
0=<wx)=1 for x arbitrary.

If fis an arbitrary function in H, we put f = f,+f,, where f; = yf and

Math. Scand. 2. 19
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fa = (1—p)f. Obviously f; = 0 outside w and f, = 0 in w*. Let us de-
note by V¥(g, k) the form obtained from Vg, 2) by making its coeffi-
cients a,, constant and equal to their values at the point y, and let v
be the corresponding differential operator. We then have

V(e Afy, -—y). f) = V¥(edly, - —), fi) + V(ed(y, - —), f2) -

Integrating by parts in each term on the right side, noting that 4,(y,x—z)
is the fundamental solution belonging to »Y, we get

f®)

I

V(e Ay, =), f) = 9@ Ay, 2—y) vf,@) do
and ?
Vo(r Ay, -—u)fo) = | lo@) Ay, o=y i) de

D—ow*

Hence, noting that |f,(x)| = |f(z)],

Vel =) =0\ 3 DA )l @) de,
ploxl” =2m-1

denoting here and in the sequel by C a constant, not always the same.
Estimating the right side by means of (4) and (31) we get the result

(36) V(e Ay, - —y). f) = fy) + O™ V(f, )}

for N arbitrary. It should be noted that the estimate is not uniform in y.
We then estimate the difference

Vi(pddy, - =9, 1) — Ve Ay, - =), )
=\ 3 (@.0)~a.@) Do 4y, 2—y) Dia) da

e %
SOVGN 3 ([0 —eu@P DT Al 2~y o)
|v]=m

The a,, satisfying the Lipschitz condition (14) in y, we estimate the

v

derivatives of A4y, - —y) of orders < m according to (31) by
D”Al(ya m*?/) <(Cs™* %"_Elx._y]“in—ﬁ ,

where 0 < ¢ < «,, and get

10, 0) ~00@)12 1D 9@ Ay, a—y)I? de = Ot 4-=m) — o(t=1-9),
D
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so that
(37) Vty((pAt(y’ ' _y)rf) - Vl((pAt(y’ ) "_y)uf) = O(t—%(l_a)) Vt(f}f)i .

By continuity the estimates (36) and (37) are valid also for an arbitrary
fin ©,,. Hence, noting (23), we get for f arbitrary in 9

Vt(at(" — @Ay, +— f)
= [V,(a, '>y),f) - Vty(‘PAt(?/, ‘—y),f)] +
+ [Vt”(‘i’At(?/, '“?/),f) — Vt((pAt(y’ : ‘“y),f)]
= o(17400) Vif, 1)

Hence, writing
6!(“’" ?/) = a’l(x7 y) - (P(x)Az(!/, T“y) ’

V[((St( 5 Y), 0", y))é — o(t* (1—0)) )

we have

By (4) we get
8w, )| = O(H) V(. ), 8-, )t = (),

which completes the proof.

From Theorem 1 it follows that if R is hermitian there exists in &
a complete orthonormal system of eigenfunctions of the vibration prob-
lem. The set of corresponding eigenvalues is bounded from below and
has no finite limit point.

We are now in a position to prove the following theorem (cf. Gar-
ding [7]).

TaEOREM 3. If R is hermitian and if {@;} is a complete system of eigen-
Sfunctions of the problem that is orthonormalized with respect to the norm
(@, @)} and if ¢, are labelled so that the corresponding eigenvalues 1, form
a non-decreasing sequence, we have, denoting by N(t) the number of eigen-
values less than a number t, the following asymptotic relations when
t - 4 oo:

(38) N(@t) = t°(2n)“"§ V,dy (1+0(1))

and ?

(39) lim N1 3700 70) = b2, 7, [\ vy,
N-—>o0 })

where at least one of the points x and y belongs to D*, the notations being
the same as in Theorem 2.

19*
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Proor. Expanding the kernel g(z,y) in terms of the functions
@4()/(4;+-t)* which form a complete orthonormal system in the norm
square U, we get

(@, ) = X ¢il@) g 9)|(i+-1)

where the series converges pointwise. Combining this formula with (32)
we get

(40)  lim -9 3 g,(x) g;(y)/(Ag4-t) = 84y (2) ™ I'(1+0) T (1—0) V,,.

t—>+00

Putting = y in (40) and integrating over D* we get
(41) lim 110 3" 1/(A4-t) = (27)=* I'(1+0) I'(1—0) g v, dy

t—>+oo
D

by the theorem of Lebesgue using (35). From (41) we get (38) by means
of a Tauberian theorem due to Hardy and Littlewood (Pleijel [16,
pp- 3-5]). By the same theorem applied to (40) with * = y we get

(42) 2 i) = 2 (27) "V, (1-+0(1)) .

A<t

If 6 is a complex number and || = 1 we have by (40) if z ==y

lim - l‘Pz(x)—FH%(_)[_ _ (Zn)—”l’(l—i—a)F(l—a)(Vx-{- Vy) ]
t—>+o00 A+t

Hence, using the Tauberian theorem once more and then the formula
(42) we get

2 0:(@) pily) = t2(2m) "V, (8, +0(1)) .

M<t
Combining this with (38) we get (39).

REeMARK. It follows from results announced by Keldsreh [11] that (38)
is true also in the non-selfadjoint case provided that we put

N@)= 31,

Red; <t

where each eigenvalue is counted with its multiplicity.
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