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LOGIC-FREE FORMALISATIONS OF
RECURSIVE ARITHMETIC

R. L. GOODSTEIN

This note outlines a new version of a logic-free formalisation of re-
cursive arithmetic known as the equation calculus. In this version the
only axioms are explicit and recursive function definitions, and the only
inference rules are the substitution schemata

Sh, F(z) = G(x)
F4)=G(4),

Sh, A =B
F(4) = F(B),

A4 =B,

T 4=0

B=0C,

where F(x), G(x) are recursive functions and 4, B, C are recursive terms,
and the primitive recursive uniqueness rule

U F(Sz) = H(x, F(x))
F(z) = HEF(0)

where the iterative function H*t is defined by the primitive recursion
H% = ¢, HS*t = H(x, H*t); in the schema U, F may contain additional
parameters but H is a function of not more than two variables. In Sb,,
the function G(x) may be replaced by a term ¢ independent of x, provided
that G(A) is also replaced by G.

The novelty in this version lies in the derivation of the key equation
a+ (b-—a) = b+ (a—b) by means of the primitive recursive uniqueness
rule, instead of requiring a doubly recursive uniqueness rule (or a pos-
tulated induction schema) as in earlier versions [2][3].
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In the following account we shall not assume a previous knowledge
of any formalisation of recursive arithmetic but shall construct recursive
arithmetic, ab initio, on the basis of Sb,, Sb,, T and U.

We start by proving a few auxiliary schemata. From the defining
equations x40 = z, x40 = x follows x = x by T, and thence by Sb,
we reach 4 = A. Since B = 4 follows from 4 = B, 4 = 4 by T, we
have proved

K A=2BHB,

A schema equivalent to U is

f(0) = g(0),
f(Sz) = H(w, f (x)) ,
U, 9(Sz) = H(x,g(x))
f@) = g(x) .

The passage from U, to U is obvious; for the converse we derive
f@) = H*f(0),  g(x) = H"(0)

from the stated hypotheses, by U, and H=f(0) = H%g(0) from f(0) = ¢(0)
by Sb,, whence f(x) = g(x) follows by T and K.

As an illustration of the use of Sb, we derive F(a,b) = F(A4,B) from
the pair of equations a = 4, b = B. First we derive F(a,b) = F(a, B)
from b = B by Sb,, and similarly F(a,B) = F(4,B) from a = A4; hence
by using K and T we derive F(a,b) = F(A4,B) from a = A, b = B.

Two further schemata of importance are

E, F(Sz) = F(z)
F(z) = F(0),
E, F(0)=0, F(Sz)=0
Fx)=0.

To prove E,, we define H,(x,t), C(t) explicitly by the axioms
Hl(x: ) =1t, C(t) = F(0),

whence we readily derive C(0) = F(0), C(Sz) = Hl(x, O’(x)), F(Sx) =
H,(z, F(x)) which, by U,, yields F(z) = C(z), and from this we reach
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F(x) = F(0) by Sby, T. For E, we define Z(t) = 0, so that Z(F(x)) = 0
whence from F(Sz) = 0 follows F(Sx) = Z(F(x)). This equation together
with Z(Sz) = Z(Z(x)) and F(0) = Z(0) yields F(x) = Z(x), by U,, and
E, follows.

We establish next some results for addition, subtraction and multiplica-
tion, taking the defining equations for these operations to be:

a+0=a, a+8b=8(a+tb);
0-1=0, Sa~1=ua, a=-0=a, a=Sb= (a-b)-1;
a0=0, a8Sh=abdta.

(1) (@=b)—1= (a=1)=Db.

For (a—0)=~1= (a=~1)—=0, (a=—8b)=~1= {(a—b) =1} =1, (a=—1)=5b
= {(@=—1)=b} =1, and the result follows by U,.

(2) Sa—=-8b=a—=b.

For Sa—8b = (Sa—1)=~b = a—=-b, using (1).

(3) a—a=0.

For Sa—8Sa = a—a and so a—a = 0-0 = 0.

(4) 0~a=0.
Proof by E,, using 0-~8Sa = (0=~1)~a = 0-a.

(5) (a+b)=~b=a.

For (a+8b)—=—8b = S(a+b)—8Sb = (a+b)=—b so that (a+b)=b=a,
by E,.

(5.1) (a4+n)=(b+n) =a=>b.

For (a+8n)—= (b+8n) = S(a+n) =~ 8S(b+n)= (a+n)=—(b+n), and
(a+40) = (b+40) = a—b.

(5.2) n—(b+n) = 0.

By (5.1) and (4).

(6) O0+a=a.
For 04+0 = 0, 04+8Sa = S(0+a), Sa = Sa, and the result follows by U,.

Math, Scand. 2. 17
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(7) a+8b = Sa-+b .

We use a+80 = Sa = Sa+0, a+88b = S(a+8Sb), Sa+8Sb = S(Sa+b)
and U,.

(8) a+b="b+a.

One has a+40 = 0-+a, a+8b = S(a+b), and, using (7), Sb+a = b+ Sa =
= S(b+a). Then (8) follows by U,.

(9) (a+b)~a=1>.
By (8) and (5).
(10) (a+b)+c¢c =a—+ (b+c) .

With ¢ as variable, apply Uj.

(11) Sab=ab+b.

For Sa-0 =a-0+40, Sa-Sb = Sa-b+ 8Sa, a-Sb+ 8Sb = (a-b+a)+ Sb =
= S{(a-b+a)+b} = S{(a-b+b)+a}, by (8), (10), and so a-Sb+Sb =
= (a-b+b)+ Sa, whence (11) follows by U,.

(12) 0a=0.
For 0:Sa = 0-a so that 0:a =0:-0=0.

(13) a(l-a)=0.
For 0(1=-0) = 0 and Sa(1-Sa) = Sa(0-a) = Sa-0 = 0.

(14) ab="ba.
For a0 = 0'a and ¢-Sb =a-b+a, Sb-a = b-a -+ a.

(15) a(b+c)=ab+4a-c.
This is a consequence by U, of the provable equations
a(b+0)=ab=ab+a0,
a(b+8c) = a-Sb+c) =a(b+c)+a,
a-b+a-Sc = ab+ (ac+a) = (ab+ac)+a .

(15.1) a(bc) = (adb)c .

For a(b-0) = 0 = (a-b)-0 and a(b-Sc) = a(bc+b) = a(bc)+ ab, (ab)-Sc
= (ab)c + ab.
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We prove now an extension of schema E,.

f(0) = g(0),
B, f(8x) = g(Sx)
f@) =g().

Define H,(z,t) = 0-t+g(Sz) = 0-¢+ f(Sz), then
f(Sx) = 0-f(2) +f(Sx) = Hyx, f(2)),
g(Sz) = 0-g(x) 4 g(Sx) = Hy(x, g(x)),
whence E; follows by U,.

(16) (1-a)b = b=ab .
For (1-0)b=b=06-0-b, (1-8Sa)b = (0—~a)b =0, and b—-Sa-b =
=b-—=—(b+a-b) = 0.

Next we prove the key equation
(17) a-+((b-a)=>b+(a=b).
Define f(a,b) = a4 (b—a), so that f(a,0) = a, f(0,b) = b, f(Sa,Sb) =
Sf(a,b), and define g(a,b) = b+ (a—b) so that g(a,0) = a, ¢(0,b) = b,
g(Sa,Sby = Sg(a,b). We start by proving
(17.1) f(@,b) = f(a=1,b=1) 4+ {1 = (1= (a+b))}

By E; a=(a=1)4{1=(1-a)}, whence f(a,0)=f(a—-1,0)+
{1 = (1-=a)} which establishes (17.1) with 0 for b. With 8b for b, (17.1)

becomes
f(a,8b) = Sf(a—1, b)

which is a consequence of the equations f(0,8b) = Sb = Sf(0,b),
f(Sa,8b) = Sf(a,b), completing the proof of (17.1). Next we define

@(0,a,6) = 0,  @(Sn,a,b) = pn,a,b) + {1 = [1=((@@=n)+ (b—'—n))]}
and prove
fla=n,b=n) + p(n,a,b) = f(a—8n,b~8n) + ¢(Sn,a,b);
in fact, by (17.1)
fla=n,b-=n) + p(n,a,b)
= f(a=Sn,b=-8n) + @(n,a,b) + {1 = [1=((a=n)+ (b;n))]}
= f(a=~8n,b=—8Sn) + ¢(Sn,a,b)

17*
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so that f(a—n,b—n) + ¢(n,a,b) = f(a,b) + ¢(0,a,b) = f(a,b), whence
fla,b) = f(a—=b,0) + ¢(b,a,b) = (a—b) + ¢(b,a,b) .
Similarly ¢g(a,b) = (¢—~b) + ¢(b,a,b) whence equation (17) follows.

Defining |a, b| = (a—b)+ (b—a) we derive from (17) the schema
|A,B] =0
A = B;

for from |4, B] = 0 follows |4, B| —(B—~A4) = 0 by (4), whence by (5),
A—-B = 0, and similarly, B—~4 = 0; from these we reach

A+ (B=A4)=A, B+ (A=-B) =

and thence A = B, by (17). The derivation of |4, B = 0 from 4 = B
is of course trivial.

We come now to some induction schemata. Let P(x) denote the equa-
tion f(x) = g(x) and P(z) — P(Sx) the equation

(i) {1=1f(@), g(@)|}-1f(Sx), g(Sz)| = 0
(the use of implication in this connection being justified on the grounds
that if P(x) holds then |f(z), g(x)| = 0 and this together with equation

(i) yields |f(Sx, g(Sx)] = 0 and therefore P(Sz) holds).
The familiar induction schema is

I, P(0), P(x)—~> P(Sx)
P(x)

or writing p(x) = |f(x), g

p(0) =0, (1-=p@))pSz)=0
p(x) =0.

Define ¢(0) = 1, ¢(Sn) = q(n)(1-=p(n)); then
q(88n) = q(Sn) (1= p(Sn)) = q(n)(1 = p(n))(1 = p(Sn))
() {(1=p(n)) =~ (1 =p(n))p(Sn)} = q(Sn)
where the last equality sign holds according to hypothesis since

(1 —p(n))p(Sn) = 0;
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whence ¢(8n) = ¢(S0) = 1, that is q(n)(lép(n)) = 1, and multiplying
by p(n), p(n) = 0, by (13).

I, f(a’70) =0, f(0,8b) =0, {f(a, b) = 0} — {f(Sa’a Sb) = O}
f(a’b) =

We observe first that from f(0,0) = 0, f(0,8b) = 0 follows f(0,b) = 0.
The implication hypothesis stands for the equation

{1=f(a,b)}f(Sa,8b) = 0.
Now {1—=f(0,b=~1)}f(0,b) = 0 and from

{1=f(a,0)}f(Sa,0) =0, {1=f(a,b)}/(Sa,Sb) = 0

follows

{1=f(a,b=1)} f(Sa,b) = 0,
therefore

{1=f(@a=1,b=1)} f(a,b) = 0
and so

{1 =f(@=8n,b=8n)} fla=—n,b—n) = 0.
Next we show that
0)) f(a,b){1=f(@a=n,b-n)} = 0.
To this end we prove
[1=f(a,b) {1 = f(a=—n,b=n)}] f(a,b) {1 =f(a—8Sn,b—8n)} =
with p, ¢, r standing for f(a,b), f(a—n,b-n) and f(a—Sn,b—8n), re-
spectively, the left hand side of this equation has the form
{1=p(1=q)}p(1=7) = p{(1=-r) = p(l-=g)(1-7)}
= p{(1=r)=p(1=r)},  since ¢(1=r) =0,
= p(l=r)(l=p) =0

which completes the proof of (j) by I, (the validity of (j) with 0 for »
being evident).
By writing |¢(a, b), v(a, b)| = f(a, b) it follows from I, that the schema

(p(a,O) = w(a,O), ¢(O>Sb) = ?P(O, Sb):
I, {p(a,b) = y(a,b)} —~ {g(Sa, Sb) = y(Sa,8b)}

(p(a, b) = V)(a> b)
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is valid. As particular cases of the I,, I; we note that from f(a,0) = 0,
f£(0,8b) = 0 and f(Sa,Sb) = 0 follows f(a,b) = 0; from f(a,0) =0,
f(0,8b) = 0, f(a,b) = f(Sa,8b) follows f(a,b) = 0; and from ¢(a,0) =
y(a,0), @(0,8b) = ¢(0,8b), ¢(a,b) = ¢(Sa,8b) and y(a,b) = y(Sa, Sb)
follows ¢(a,b) = y(a,b), for if we denote |p(a,b), y(a,b)| by f(a,b) then
f(@,0) =0, f(0,8b) = 0; and from ¢(a,b) = ¢(Sa,Sb), y(a,b) = w(Sa, Sb)
follows f(a,b) = f(Sa,8b); whence f(a,b) = 0 and so ¢(a,b) = y(a,b).
As instances of this last schema we mention

(18) ¢(a—b) = ca—cb, a=—(b+c) = (a=b)—c.

To complete the construction of recursive arithmetic there remains
only to prove the substitution theorem

(@ =y) > {F) = F(y)} .
This is readily derived from the equation
(I=lz, y) Flx) = (1=, y[) F(y) -
To prove this last equation we start from the equation
(1=2)F(y+z) = (1=2)F(y) ,

which is proved by applying E, with z as variable, and derive

(1= @=y)}F(y+@+y)) = {1 = @=y)}F(y)
and multiplying by 1|z, y|, we reach

. (1= |z, y) Fly+@=—y) = 1= |z,y|) F(y)
simee

1= [(e=y)+(@y=—2)]} {1 — (x=y)} ‘
= (I=|z,y]) = (@=y){[1 = (@-y)] - (=)}
=1 !x’ yl 5

similarly (1 |z,y|)F(z+(y—~=)) = (1= |2,y|)F(x) and since
e+ (y=2) = y+(+-y),

the required result follows by T.

We call the foregoing formalisation of recursive arithmetic system R.
System R admits the deduction theorem in the form:
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THE DEDUCTION THEOREM. If the equation A = B is derivable in R
from an hypothesis F = @, (i.e. an unproved equation) and if the derivation
does not involve substitution for the variables in the hypothesis, then

(F = G) > (4 = B)
is provable in R.

We multiply each equation of the derivation by 1= |F, G|. The hy-
pothesis becomes the proved equation

{1-|F,Q}F ={1-|F,G|}G
and the final equation becomes
{1-|F,q}4 = {1-|F,G|}B
from which we may derive
. (1=|F,G}|4,B| =0,
ie.
(F=@q)—~(4=B).

If P = @ is a proved equation then it follows that, for any function R,
RP = RQ

is a proved equation, and so multiplication by 1 = |F, G| turns a proved
equation into a proved equation.
We show next that multiplication by a factor does not invalidate an

application of any of the schemata Sb,, Sb,, T and U. For Sb, we have

to prove that
R-F(x) = R-G(x)

R-F(4) = R-G(4)

is valid when the factor R does not contain the variable x, and this of
course is a consequence of Sb, itself. For Sb, we have to prove the validity

of the derivation
R-4A=R-B

R-F(4) = R-F(B).

To this end we remark that, since R |4, B| = |RA, RB|, by equations
(15) and (18), therefore
(RA =RB)—~ (4 =B)v(R=0),
(F(A) = F(B)) > (R-F(4) = R-F(B)),
(R=0)—>(R-F(4) = R-F(B)),
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and by the substitution theorem
(4 = B) ~ {F(4) = F(B)}

whence, using the schemata

P, —Q, H- K,
Py Q K—~1L
P,vP,—>@Q, H-—L

which follow from the provable equations
(1=p) + (1=pg) = (L= pipo) + {1 = (p1+12)}
k+(1=k) = 14+ (k=1),
(R-A = R-B) > {R-F(4) = R-F(B)},

we prove

and so, (taking 0 = 0 for H in the second of the above schemata) we
see that R-F(A) = R-F(B) follows from R-4 = R-B. For T we have
only to prove the schema

RA = RB,
RA = RC
RB = RC

and this follows by T itself. It remains to prove that an application of
U, remains valid under multiplication by R, i.e. that the derivation

R-F(0) = R-G(0),
R-F(Sz) = R-H(x, F(x)) ,
R-G(Sx) = R-H(»,G(x))

R-F(x) = R-G(x)

is valid, when R does not contain the variable z. We start by proving

the schema
P=4q,

R=28
(P=R)—>(Q=A5).

By Sb,,
P=qQ R=248

\P, Bl = |Q, R|, 1@, B| = |Q, 8]
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whence, by T,
P=q,
R=S8
|P, B| = |@, S|

and the desired derivation follows by the schema
a=1b

(1=-a)b =0
which is also proved by Sb,.
From the formula (ka = kb) — {kJ(a) = kJ(b)}, which is proved
above, follows

{R-F(x) = R-G(x)} -~ {R-H(, F(x)) = R-H(z,G(x))}
whence, by the given hypotheses and the above schemata,
{R-F(x) = R-Q(x)} > {R-F(Sx) = R-G(Sx)}

and this, with the first hypothesis, proves R-F(z) = R-G(z), by in-
duction schema I,, and the deduction theorem is proved.

The deduction theorem holds for any number of hypotheses. For
instance given a derivation of A = B from two hypotheses F; = G,
F, = ¢, we obtain a proof of the implication

(Fy=Gy) > {(Fy = Gy) > (4 = B)}
by multiplying each equation in the derivation by the factor
(1= I3, G4]) (1 = | Fy, G -

Similarly we discharge the hypotheses F;, = ¢, F, = G,, F3 = G4 by
multiplying each equation in the derivation from these hypotheses by
(L= |Fy, Gh]) (1 = [Fg, Gof) (1 = | F'g, G) ,

and so on.

Reduction of schema U. In [4] Th. Skolem showed that the induction
schema in recursive arithmetic could be replaced by the simple schema

f(0) =0, f(n) >f(Sn)
fn) =0

and (in reply to a question raised by Skolem) Bernays showed in [1]
that the even simpler schema
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E f(0) =0, f(n) =f(Sn)
f(n) =0

suffices, subject to the introduction of the axioms

m=mn->uxm,n) =0,
m += n - x(m,n) = S0

for the function «(m,n).

Schema E by itself is insufficient for a logic-free formalisation of re-
cursive arithmetic since it furnishes no means of passing from the equation
|a, b] = 0 to the equation @ = b. We shall however consider some alter-
native logic-free formalisations of recursive arithmetic with schema E
in place of schema U, suitably strengthened in other ways.

We consider first a system R; with Sb;, Sb,, T and E, the axiom

A a+ (b—a) = b+ (a—=0b)

and, in place of the familiar introductory equations of the predecessor
function, the axiom
P Sa—8b =a—=-b.

The axiom a- (b-—a) = b (a—b) enables us to deduce a = b from
a—b = 0 and b=-a = 0. For by Sbh,,

b—a =0 a-b=20

a+(b-a) =a40=a, b+(@=-b) =b+0=10>

and from a-+(b—a)=a, b+ (e=b) =056 and a-+(b—a)= b+ (a-=-b)
follows a = b. Derivation of ¢ = b from a--b = 0, b—a = 0 we call
schema A.

To prove schema E;, namely

F(Sz) = F(z)
F(x) = F(0)
we define @(x) = F(x)--F(0), then @(0) = 0 and
& (Sx) = F(Sx)=-F(0) = F(x)~F(0) = D(x)
whence @(x) = 0 by E, that is F(x)=F(0) = 0. Similarly F(0)=~F(x) =0
and so (by schema A)
. F(x) = F(0)

which completes the proof of schema E,.
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We turn now to a reconsideration of the equations and schema we
proved in R.

Equation (1) we leave to the end. Equation (2) is now an axiom.
The proofs of (3) and (5) remain unchanged.
Proof in N, of (7).
(@a+480) — (Sa+0) = Sa—Sa = 0,
(a+S8b) — (Sa+8b) = S(a+8b) ~ S(Sa+b) = (a+8b) — (Sa-+b) ,

proving (a+8b) — (Sa—+b) = 0. Similarly (Sa-+b) = (a--Sb) = 0 whence
(7) follows by schema A.

Proof of (6).
(048a) = Sa = S(0+a) = Sa = (0+a)—a
so that (04-a) —a = (0+0) = 0 = 0. Similarly Sa — (0+8a) =« = (0+a)
whence (6) follows by schema A.

Proof of (8).
(a4+0)=(0+a)=a=~a =0,
(a+8b)=(Sb+a) = S(a+b)=8(b+a) = (a+b)=-(b+a),
so that (a+b)—(b+a) = 0, whence (b+a)—(a+b) = 0 and a+b = b+a
follows by A.

The proof of equation (9) remains unchanged.

Proof of (4).
a-+ (0~a) = 04 (a—0) = a, therefore {a-+ (0-a)}+a=a-a=0,
whence, by (9), 0-—a = 0.

The schema

f(0) = g(0),
f(Sa) = f(a),
9(Sa) = g(a)

fla) = g(a)

follows by two applications of schema E and two of schema T.

The proofs of (5.1), (5.2) remain unchanged, and from (5.1) it follows

that
la+n, b+n| = |a, n| .
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Proof of (10).
a4 (b+0), (@+b)+0] = 0,

la+(b+8n), (a+0)+8n| = |a+(b+n), (a+b) - n|,  ete.
Proof of (11).
Since Sa-Sb = Sa-b+8Sa and
a-8b+ 8b = (ab+a)+ Sb = S{(a-b+a)+b}
= 8{(ab+0b)+a} = (a-b+b)+ Sa
therefore |Sa-Sb, a-8b+-8Sb| = |Sa-b, a-b-0b|, ete.

The proof of (12) remains unchanged.
For (14), (15) and (15.1) we note that
la-Sb, (Sb)a| = |ab+a, ba-+ta| = |ab, ba|,

la(b+Se), ab-+a-Sc| = |a(b+c)-+a, (ab+ac)+ta| = |a(d+c), ab+acl,
la(b-Sc), ab-Sc| = |a(bc)+ab, (ab)c+ab] = |a(bc), (ab)c|, ete.

The schema

Fx)+Gx) =0
Fx)y=0

is proved by means of the equations (9), (4) which yield

{F (@) + G(x)} - G(x) = F(x)
and

0-=~Gx)=0.
To prove schema E,
F(0)=0, F(Sx)=0

F(x)=0

we define @(0) = 0, &(Sx) = D(x) + F(x) so that D(SSz) = ®(Sz) whence
D(8z) = D(80) = 0 and so D(x)+ F(x) = 0 whence F(x) = 0.

The proof of (13) follows by E, in R, as in R, and the proof of (16)
remains unchanged.

So too the proofs of the induction schema (i), I;, I,, I, and the sub-
stitution schema carry straight through from % to Hi,.

It remains only to prove schema U,,
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F(0) = G(0),
F(Sz) = H(x,F(x)),
G(Sx) = H(z,G(x))
F(x) = G(z) .
Define &(x) = |F(x), G(x)|, then ®(0) = 0 and by the substitution

schema,
{1 - d(x)} |H(t,f(x)), H(t,g(x))] =0

whence
{1 &(x)}|H(x, f(x)), H(z,9(x))| = 0

and so

{1-®(x)}D(Sz) =0
whence @(x) = 0 and therefore f(x) = g(x).

The proof of equation (1) in % is therefore valid also in R,;. (We may
obviously take the equation (a—b) =1 = (¢a—1)—=b as an axiom in R,
in place of Sa—8b = a—=b.)

The system $; may be further modified by taking the schema

a—-b=20
a+(b=—a)=1>
in place of axiom A, provided that we add the axiom
0=1=20.

For by S and Sb,
a=—b=0, b-a=0

a=>.

To prove 0—~a =0 we use 0-Sa = (0~a)=~1= (0-1)=-a = 0-a,
and 00 = 0 (in place of axiom A).
Finally the equation @ - (b—a) = b - (a—b) is proved exactly as in R.
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