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AN APPLICATION OF LOGIC TO ALGEBRA

K. JAAKKO HINTIKKA

1. Dilworth [6] has announced a result to the effect that every finite
lattice is isomorphic with a sublattice of a semi-modular lattice. His
result can be generalized to arbitrary lattices. In this paper we shall
prove that every lattice is isomorphic with a sublattice of a semi-modular
lattice, under a wide variety of definitions of the latter. We shall rely
on the following facts:

(A) Dilworth’s result quoted above;

(B) every finite subset S of a lattice L can be imbedded in a finite
lattice L' with the preservation of all g.l.b. and lL.u.b. existing in §;

(C) the notions of a lattice and of a semi-modular lattice can be defined
by means of the so-called first-order functional calculus (restricted
predicate calculus);

(D) in this calculus, the simultaneous satisfiability of a set of formulae
is a property of finite character.

We shall use small Latin letters to denote lattice elements, small
Greek letters to denote sets of formulae, and capital Greek letters to
denote properties of sets of elements. The signs <, +, and {} have
their usual set-theoretic meaning. Our logical formalism is that of
A. Robinson [8], except for denoting identity by = and shortening
[[X = Y]Aa[Y > X]] toread [X = Y].

Since in (B) we do not require that L’ is a sublattice of L, the result
is rather obvious. § is partly ordered by defining * >y (in S) to mean
x—~y = y (in L), and L' may be taken to be the completion of S by cuts.
(See [1, p. 58]).

(D) has been proved by Henkin [7] in a form applying also to the
first-order functional calculus with identity (of individuals). A similar
result has been proved by A. Robinson [8, pp. 24-36].

2. The concept of a lattice is easily defined by means of the first-order
functional calculus by introducing two relative symbols U(..., ..., ...)
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and 2(..., ..., ...)of order 3. U(z, y, 2) is taken to mean that x—y=z
and (z, y, 2) to mean that —~y = z. The axioms of the lattice theory
are perfectly obvious:

(1) @)@ @E2)U(x, y, 2);

(2) @@E@[UE®y,2)A Uy u) >2z=u];

3) @U(x, =, x);

(4) (x)(y)(z)[U(x ¥, 2) 2 Uy, =, 2)];

(6) (@) (y)(2)(w) () (W) [U(x, y, w) A Uy, z, w) > U, 2, v) = Uz, w, v)];
(6) (@) (¥ @R)[AR y,2) > U,z 2)];

(7)-(12) like (1)-(6) except for the interchange of U and 1.

(1)-(2) provide for the existence and uniqueness of L.u.b. The formulae
(3)-(6) are reformulations of the second halves of Birkhoff’s identities
L1—L4 [1, p. 18]. (7)-(12) are the dual postulates. (Duality in the
sense of lattice theory, not of logic.)

As to the notion of semi-modularity, we have a choice of several
definitions which all agree in the case of a lattice of finite length. Most
of them can be formulated by means of the first-order functional calculus.
A case in point is the general condition of semi-modularity adopted by
R. Croisot in [5]. The condition is as follows: if x~2 <y <2 < z—z2,
then there is ¢ such that —~z < t <z and ((—y)—~x = y. The reformula-
tion in terms of U and 1 is a perfectly straightforward matter, for
everything else in this condition is already in terms of the lattice opera-
tions and logic except the relations > and > which are easily defined
by means of U, 2, and quantifiers.

Also the three strongest conditions (R), (I), and (¥) of semi-modularity
discussed by Croisot in [4, pp. 204-208] (excepting those which are in
terms of ideals) are amenable to the first-order functional calculus.
(Cf. also [2] and [3].) In order to show this, it suffices to show that the
corresponding conditions (r), (¢), and (f) can be formulated by means
of this calculus. (R), (I), and (F), respectively, are obtained from them
by two universal quantifications.

Regarding (r), we note that it may be paraphrased in the following
way: if 2, = ¥, ~y, covers z, = x,~y, where z, and z, are between x—~y
and z—y, x; and z, between x and z—y, as well as y; and y, between
y and x—y, then x; at most covers z, and y; = y,, or vice versa with
x; y; (1 =1, 2) interchanged. For otherwise we could insert pairs be-
tween (z,, ¥,) and (2y, ¥;) in [z, v—y] X[y, x—y]. Here the notions of
covering and at-most-covering are easily defined in the vocabulary of the
basic lattice relations U, /1 plus that of the first-order functional calculus;
whereafter a required formulation of the whole condition is forthcoming.
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Similarly, the condition (i) may be paraphrased as follows: suppose
that z, = 2;—~x covers z, = 2z,~x and ¥, = 2;~y = Y, = 2,—¥, Or vice
versa with x;, y, (¢ = 1, 2) interchanged, where x; and x, are between
x—~y and x, ¥, and y, between x—~y and y, as well as 2, and z, between
x—~y and x—y. Then 2, at most covers z,. The details of the formulation
are straightforward.

(f) gives rise to the condition (#) which is identical with Birkhoff’s
condition (y) [1, p. 101]. It may be dealt with in an analogous fashion.

We may note that if we can prove our main result under some strong
definition of a semi-modular lattice, then it automatically holds under
all the weaker definitions.

Let X be the formalization of a suitable definition of semi-modularity
by means of the first-order functional calculus. We shall denote the
(finite) set of formulae {(1)-(12), X} by u.

3. Granting all the preliminary results (A)-(D), we may argue as
follows:

Let L be an arbitrary lattice, finite or infinite, and let the elements
of L be denoted by z,y, 2, ... . We construct a set A(L) of formulae in
the following way: for every triple z, y, z of elements of L, A(L) contains
Uz, y,2) or ~U(z,y,2) according to whether x—y =2z or z—y =+ 2.
In the same way, Q(x, y, 2) or ~ [1(x, y, z) belongs to (L) according to
whether x—~y = z or x—~y =+ 2. The formulae obtained in this way are
the only formulae of A(L).

The question whether L can be represented as a sublattice of a semi-
modular lattice now amounts to the question whether the set u-A(L)
of formulae is satisfiable.

Since satisfiability is a property of finite character, it suffices to
consider an arbitrary finite subset of u-+A(L). Furthermore, it suffices
to consider finite subsets of the form u+» where v is a finite subset of
A(L), for all the other finite subsets of u+ (L) may be obtained from them
by omitting one or more axioms of lattice theory (1)-(12) or the formula X.

Let 8 = {a, b, ¢, ...} be the subset of all those elements of L whose
names occur in the formulae of y+». According to (B), S can be imbedded
in a finite lattice L’ with the preservation of all g.L.b. and l.u.b. existing
in S. This means that v = A(L’), where A(L’) is obtained from L’ exactly
in the same way in which A(L) was obtained from L. The set u-» is
satisfiable if u+A(L’) is satisfiable. But the satisfiability of the latter
is tantamount to the feasibility of an imbedding of L’ in a semi-modular
lattice with the preservation of all g.l.b. and Lu.b., and hence follows
from Dilworth’s result.
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Consequently, u-+v is satisfiable, entailing the satisfiability of all finite
subsets of u+4(L) and hence the satisfiability of u+A(L) itself. But the
latter is tantamount to the possibility of imbedding L in a semi-modular
lattice with the preservation of all g.l.b. and Lu.b.

4. By reviewing the above argument, we see that it depends only
upon the lemmata (A)-(D). We may consider two properties @, £ of
sets, and ask whether every set « with the property @ can be imbedded
in a set with the properties @ and . (By an imbedding, we mean in
this section an imbedding in which all the properties and relations of
the members of « which were used to define @ are preserved.) Mutatis
mutandis, the above proof serves to establish this, provided that the
following conditions are fulfilled:

(a) every finite set with the property @ can be imbedded in a set
having the properties @ and Q;

(b) every finite subset of a set with the property @ can be imbedded
in a finite set with the property @;

(c) the properties @ and 2 are formalizable by means of the first-order
functional calculus (in the same sense as the notions of a lattice and a
semi-modular lattice above).
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