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ON THE FOURIER SERIES OF STEPANOV ALMOST
PERIODIC FUNCTIONS

HANS TORNEHAVE

The class of S2-almost periodic functions was introduced independently
by N. Wiener [6] and V. Stepanov [3]. Among the results from Wiener’s
paper we are particularly interested in Theorem 22, p. 583, which can
be formulated in the following way.

WieNER'S THEOREM. Hvery series X5 a,ei™!, where
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m=-o00 \ m< Ap<m+l

converges, s the Fourier series of an S2-almost periodic function.

The special case of this theorem, where the number of Fourier ex-
ponents in an interval of length one remains below a fixed level, was
proved by V. Stepanov [4][5] by a different method. In 1950 the author
of the present paper told a group of mathematicians about Stepanov’s
proof and pointed out that a converse theorem could be proved by the
same method. During the ensuing discussion E. Fglner, B. Jessen and
A. Zygmund suggested that it might be possible to prove Wiener’s theo-
rem and an inverse theorem by Stepanov’s method. The author’s
attempt to do this was successfull, and the proof was discussed at another
meeting. In the present paper, we shall give a detailed account of the
proof, which has not been published before.

Let f(¢) denote an S2-almost periodic function with the Fourier series

(1) 0 ~ Yaen.

The norm of the function f(¢) is the positive quantity

L
Dz )= swp L (7@t

The index L is omitted if L=1. We have
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(2) p1(L) (Dol f (O] = (Ds2[f 0])* = pa(L) (Dol f()I)7

where ¢,(L) and ¢,(L) are positive functions independent of f.
The series (1) is summable in the following sense: there exists a double

sequence of numbers ky ,, N=1,2,..., n=1,2, ..., satisfying the
conditions
0<ky,=1; ky =0, when n>DN; lim ky , =1,
N =c0

such that the sequence of finite exponential sums

3) ) = ke
converges to f(t) in the S2-sense, that is
Jim Dl ()51 =0.
The W2-norm is defined as
D[ f(1)] =L1i=IgDsg f@1.

For a W2-almost periodic function the numbers ky , introduced above
can be chosen such that the following condition is satisfied: To ¢>0
correspond L and N, such that

(4) Dsf[f(t)_slv(f')] < e when N=N,.

Proofs of these results are given in [1].
In the following proofs K,, ..., K, denote positive absolute constants
and we shall use the notation
pt)=et"; e, =pn), n=0,1,2,...; e=1

and the well-known relation

oo

(5) \'p(t)emdt — (27t p(h) .

D
—00

Further, we need a new norm defined by

o

(6) (Dulf O = sup  \pw)1f@+uar,

—00 < U < 00 _%
which obviously satisfies the condition

(7) K, (Dg:lf )]} = (Delf®)]) = Ky(Dg:f (D)%
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Let
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be an absolutely convergent exponential sum. According to (5)

\ 20 1Petwizdt = 3 o, zei i { piyei ity
AN m,n=1 —.oo

= @) 3 plly—Ay) ey O
m,n=1
Hence, by (6) and (7),
(8) (DS2[P(t)])2 = K3 2‘ p(lm—}'nﬂcml |Cni

m,n =1

and, on the other hand, if every ¢, =0,

(9) (DSZ[P(t)])zg K4 2/7 p(lm_zn)cmcn .
m,n=1

We introduce the notations

C"’/ = 2 |c,u|
m= Ay <m+l
and
Smn = 2 p(l/t_lv) Ic;l| |C‘,| .

m = Ay, <m+l

n=i<ntl
Obviously
(10) Spn = €lm—n| 2 ICH‘ le,| = €im-n| C,0,

ms A, <mtl
nsi<ntl
and similarly

(11) Spnzp(lm—n|+1)C,C, .
By (8) and (10) we have

(D;S‘2[P(t)])2 = K3 %7~ e]m—~n|0m On = K, iq .Hyooe[q[m;jooomonnq

and Cauchy’s inequality yields
v % b et o
(Dsz[P ) K 2 ew'{ E sz 2} 07n+q2} = K3 z e[ql 2 Om'z.
q = —00 = —00 m = —00 q=-00 m == —0o

Since the sum 2 «Clql is an absolute constant, it follows that

(12) (DS2[P )2 = K )1 Om2 .

m——oo



240 HANS TORNEHAVE

On the other hand, if ¢, =0 for every n, we have according to (9)
and (11)

(DulPO) = Ky 3 plim—n| +1)0,,C,,

m,n = —o0

hence, omitting the terms with n = m,

(13) (D[P} = Ky X p(1)C,2 = K¢ 3] C2.
m = —0o m = —00

Let us now assume that the series X" a, ¢'*! satisfies the condition
of Wiener’s theorem. We introduce the notation
(14) dp= 3 la,|.

msip<mt+l
This sum is finite, and 2'°_A4,,2 is convergent according to the condition.
For the exponential sums
Pm(t) = 2 a’ne“"t’
—-m=Ap<m
which are convergent according to the condition, we have for ¢>0
according to (12)
(Ds2[PM+q )2 < K 1.): Au2-
lulzm

It follows that the sequence P,,(t) of ordinary almost periodic functions
is fundamental with respect to the S%-metric. According to a well-known
theorem ([2, p. 51-53]) this implies that the sequence P, (t) converges
in the S2-sense to an S%-almost periodic function f(¢). The Fourier series
of f(¢) is the formal limit of the Fourier series of f,,(t), i.e. the given
series. This completes the proof of Wiener’s theorem. We observe that
the Fourier series is not only summable but even convergent in the
S2-sense.

We shall now prove the following converse of Wiener’s theorem.

If the Fourier series (1) satisfies the condition a,> 0 for every n, then
the condition of Wiener’s theorem is satisfied.

Applying the inequality (13) to the finite exponential sums (3) we have
00 2
I(G 2«1 { 2 kN,nan} = (DS2[8N(t)])27
m=-o00 | m=< i <m+l
hence, for every positive integer P,
[} 2
(15) ) l 2 k!\’,nan } = K7(DS2[8N(t)])2 .

m=—-00 | mEAp<m+tl
nsP
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For N - oo we get

0 2
21 3 al's @sso).
_n7;<13m+

For P - o we get for every positive integer M

M 2

) < & (Dl f 1),

{ an
m=—-M \ m= i, <m+l I

which proves the theorem.

As E. Falner has pointed out, the last theorem holds also, if the func-
tion f(¢) is not S%-almost periodic but W2-almost periodic. In fact, it
follows from the definition of Dy;.[f(t)] that Dy 2 [f(t)] is finite for some
values of L, hence, according to (2) for all values of L. If we choose
L and N, such that (4) holds for e=1 and N =N, we have by Min-
kowski’s inequality

Dgzlsy(0)] = Dgz[f)] + 1,

and, according to (2)

(Dsalsy®])f = (p2(L) (D2 [f (O] + 1)

This, in connection with (15), yields for N — o

[e] 2 .
31 3 als KEeorosuor+or,
m=-00 | m=ip<m+l
n< P
and the proof is completed in the same way as in the preceding case.

We may consider the general problem of finding sufficient conditions
that a given series X7, e’ * be the Fourier series of an §2- or W2-almost
periodic function. We have proved that Wiener’s condition is the
weakest possible sufficient condition involving only 4, and |a,|, n=1,
2, .... Any weaker sufficient condition must involve the arguments of
the coefficients.

It also follows that the Fourier series of an S2- or W2-almost periodic
function is §2%- or W2-convergent if every Fourier coefficient is positive.
To a W2-almost periodic function with positive Fourier coefficients
corresponds an S2-almost periodic function with the same Fourier series.
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