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THE EXCEPTIONAL POINTS OF A CUBIC CURVE
WHICH IS SYMMETRIC IN
THE HOMOGENEOUS VARIABLES

ERNST S. SELMER

1. Introduction. In his well-known paper on cubic curves, Hurwitz
[56] studied the exceptional points in the case

(1.1) ax® + by® + ¢c2® + dayz = 0,

with rational integral coefficients. He showed that there are no such
points if all the numbers |ab|, |ac| and |bc| are squarefree and > 1. Special
results were given when two or all three of the numbers «, b and ¢ are
equal to 1. The method of the proof is simple: Let (2, y, z) be a rational
point of (1.1), with no common factor for all the three integral co-
ordinates. We define the weight of the point as |xyz|, and show that the
tangential of (x,y, z) — with a possible common factor removed — has
a greater weight than (x, y, z), which consequently cannot be an ex-
ceptional point.

In the last 25 years, the theory of exceptional points has been de-
veloped mainly by Nagell and his pupils; for references, see Nagell
[8][9] and Bergman [1]. The work has mostly been concentrated on the
Weierstrass normal form

(1.2) y:=2a®— Ax — B,

for which Nagell [7] has proved that the exceptional points must have
integral coordinates (x,y), and that 2 I 443 —27B% if y < 0 (assum-
ing that the field of reference is the rational field K(1)).

The exceptional points of a cubic curve of genus one, in an algebraic
field Q, form a finite group. Examples of many different groups have
been given, including parametric representations of the invariants 4 and
B in (1.2), and other group-structures have been proved impossible.
In particular, the rank r of the exceptional group is < 2 if £ is real.
When r =2, the number of exceptional points is divisible by 4, and one
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generator is of order 2. — The known cases of possible and impossible
groups in K (1) are summarized by Bergman [1, p. 490].

The forming of tangentials is of course equally important for the
equation (1.2), but now usually in inhomogeneous coordinates. In the
present paper, I will show how the original method of Hurwitz, based
on the weight of a point in homogeneous coordinates (z, y, z), can be
applied to a cubic curve which is symmetric in x, y and z. This is not such
a heavy restriction as it may seem, since we shall see that the symmetric
case will represent all cubic curves with three rational inflections.

2. The symmetric curve. When the equation is symmetric in z, y
and z, it can be written as

(2.1) a(x+y+z)® + b(xy+rztyz)(@+y+2z) + cayz = 0.

In what follows, we shall assume that the coefficients and variables are
rational integers. Several of the results will clearly be valid also in an
arbitrary algebraic field Q.

The following conditions are easily established: Let d=27a -+ 9b+c¢
and e = b3+ b%c—ac®. Then the curve (2.1) is unicursal, with the
singular point (1,1,1), if d=0, e40. The curve contains the line
x+y—+2=0 if ¢=0, and degenerates into three (real) lines if e=0.
These lines have the common point (1, 1, 1) if also d=0.

We will therefore assume that

(2.2) cde = c(27a+9b+c¢) (b3 +b%*c—ac?) == 0,

in which case (2.1) represents a non-degenerate curve of genus one.
THEOREM 1. If c+=—3b, the curve (2.1) can be given the form

(2.3) AX+Y+ZB+CXYZ =0

by the linear symmetric substitution '

X=cx+bxty+z), Y =cy+blaty+tz), Z=cz+ blxt+y+z).
The determinant ¢%(3b+c) == 0, and we find

A = b®+b2c —ac?, C=—(3b+c)3.
Here A0 by the condition (2.2), which now takes the form
(2.4) ACRTA+C)+0.

The equation (2.3) is really a Weierstrass normal form; this is imme-
diately seen if we put Z=1 and rotate the X Y-system 45° (assuming
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(artesian coordinates). For later use, we shall consider the special
transformation

8AX =CX,—CY,—44, SAY =CX,+CY,—44,

taking (2.3) into
(2.5) Y2= X3+ (X, —44/0)2.

All symmetric curves (2.1) have the rational inflections
(2.6) (0, —1,1), (—1,0,1), (1,—1,0),

and the inflectional tangents are just the new axes X =0, Y =0 and
Z =0 in the transformation of Theorem 1. In the excluded case ¢ = — 3b,
these tangents will pass through one point (1, 1, 1), showing that we
must have an equianharmonic case. This is also directly verified by the
substitution

3z =y —y+fz, 3y =x+y+Hfr, 3z=a,—2fz;

_9a—i—2b

0.
f 55 T

With ¢= —3b, (2.1) is then transformed into

(2.7) yE = 28 4 2,
where we have put z, =1.

The equianharmonic case is, of course, well known. The curve (2.7)
will usually have just 3 exceptional points, and 6 such points only if f is
a rational cube. In what follows, we can therefore concentrate on the
reduced symmetric form (2.3), for which we have the important

THEOREM 2. Any rational cubic curve of genus one, with three rational
inflections, is equivalent to a curve (2.3) if the inflectional tangents do not
pass through one point.

This is a well-known result from algebraic geometry, cf. Hilton [4,
Ch. X1V, § 5]. The linear substitution in question uses the inflectional
tangents as the new triangle of reference, and the line through the in-
flections as the new unit line.

Theorem 2 also follows from a result of Nagell [8, p. 5], that any cubic
curve with three rational inflections is equivalent to one of the forms

=2t @ta) or Y=ot

(¢« and B rational), which coincide with (2.5) and (2.7) above.
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The importance of Theorem 2 was already pointed out by Hurwitz
[5, p. 222], who also gives

A, 78 + By XY (X+Y)=0

as a normal form for the equianharmonic case ¢= — 3b.

We shall give below parametric expressions for cubic curves with an
exceptional sub-group of 6, 9 or 12 points. It follows from Theorem 2
that these expressions will be general.

3. The tangential. For the general symmetric curve (2.1), the
tangential of any point (z, y, 2) has the coordinates

l ' = (y—2)[b F(x,y,2) + cx(y—2)?]
(3.1) Yy = (=) [b F(z,y,2) -+ cy(z—2)?]
l 2= (x—y)[b F(x,y,2) + cz(z—y)?]
Where ey, 2) = (ebyteP — 3(ey-baetye) @ty
The formulae are rather complicated, but take a much simpler form for
the reduced curve (2.3):

(3.2) X' =X(Y—2p, Y =Y(Z-Xp 7 =ZX-Tp

The tangential is one of the inflections (2.6) i¢f and only if two coordinates
of the original point are equal. This is immediately clear for the form (3.2),
but is also easy to show in the general case (3.1). We shall call a tan-
gential “proper”’, if it is not an inflection.

To examine the weight of a proper tangential (3.2), compared to the
weight | X YZ| of the original point, we must determine possible common
factors in the expressions for X’, Y’ and Z’. We assume that (X,Y,Z)=1,
and put

(Y’Z):dl? (Z’X)=d2’ (X, Y) == 3

(3.3) X =dydyu, Y =dydy, Z=dydyw
(Y—2,2—X,X—Y)=d, (ddpdy d)==1.

Then (X', Y', Z') = d,d,d;d3, and the weight of the reduced tangential
is given by

Y- ZZ-XX—Y
(3.4) IXYZ|

did  dyd  dyd

The weight of a proper tangential (3.2) is never smaller than the weight of
the original point. If the two weights are to be equal, we must have
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(3.5) Y—Z=dd, Z—X=dyd, X-—Y=dd.

We may assume d > 0, let these relations determine the signs of d,, d,
and dj, and finally get the signs of «, v and w by (3.3).
From (3.3) and (3.5) we get the necessary and sufficient conditions

di+dy+d; =0, utvt+w=0.

One and only one term in each equation must be even. Since XYZ =
d?d;2d2uvw, and d,d,d; is prime to § = X+ Y +Z, it follows from the
given equation (2.3) that d12d22d32|A, i.e. in particular 4|A. We cannot
conclude that wow is prime to S, but since S is odd, the factor 2 from
wow must also divide 4, i.e. 8|4.

It follows from the above that d, X +d, Y 4 d;Z = 0. Then (d,,X)=1
together with d12|X YZ implies d1| Y, d1|Z, and similarly for d, and d,.
We can therefore formulate the results in the following

THEOREM 3. A point (X, Y, Z) of the curve (2.3) will have a proper
tangential of the same weight | X Y Z| if and only if there are three coprime .
vniegers d,, dy and d such that

d,+dy+d; =0, d12d22d32|A ,
& X +d, Y 4 ds Z = 0, dy, X)=(dy, Y) = (d3,Z) = 1.
In particular, this is impossible if 8 + A.

There will be a limited number of possibilities for d,, d, and d,, de-
pending on the squared factors of 4. For each possibility, one must
examine if a homogenous binary cubic equation has integral solutions.

It is clear that the above considerations, especially the weight-
formula (3.4), will make it easy to examine whether a given point is the
tangential of another point.

4. Sub-group of order nine. In the following sections, we shall
study exceptional sub-groups of varying structures. The study is based
on the “tangential properties”, that is how the points are connected
by means of the formation of tangentials. These properties are easy to
establish, for instance by a theorem of Billing [2, pp. 33-34] on the
basis of the exceptional group.

Because of the symmetry, the points (X, Y, Z) determined by Theorem 3
will oceur in sets of six points, with permutation of the coordinates within
each set. (The same property will of course hold in general for the points
of the curve (2.1) for which w==y==2==2.) An exceptional subgroup of
order nine (cyclic in a real field) must contain the inflections (2.6) and
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one such set of exceptional points. This set must have the additional
property that the tangential of any point is obtained by a cyclic permutation
of the coordinates of the given point. With the notation of Section 3, it is
easy to see that this will be the case if and only if u, v and w represent
a cyclic permutation of d,, d, and d;, for instance

u=d, v=d; w=d,.
Hence from (3.3):

(4.1) X=d,2dy=—d,*(d,+d,), Y=dgd,=d, (d,+d,)?, Z=d*d, .

The other cyclic permutation of %, v and w can be represented by an
interchange of d; and d,.
From the given equation (2.3), we conclude that

A= —XYZ = [d.d 22
(4.2) { YZ = [d,dy(dy +dy)]

C= (X + Y+ Z)3 = [d13+ 3d12d2 —d23]37

since these expressions have no common factor when (d;, d,) = 1. The
condition (2.4) is clearly satisfied, and we have consequently found the

THEOREM 4. Any rational cubic curve with a cyclic exceptional sub-group
of order mine is equivalent to the form (2.3), where A and C are given by
(4.2), with coprime positive integers d, and dy. The exceptional points are
the three inflections (2.6) and the six points obtained by permutation of the
coordinates (4.1).

The corresponding parametric representation for the Weierstrass form
(1.2) has been given by Nagell [8, pp. 16-17]. His formulae are much
more complicated.

The simplest numerical illustration of Theorem 4 corresponds to
d,=dy,=1, i.e. the curve

8 X+ Y+ ZP+271XYZ =0.

The exceptional points are the inflections (2.6) and the six points
(4,1, —2) ete., and it is easily verified that there are no others. It is
interesting to note that the corresponding Weierstrass curve is

y? = 2% — 2192 + 1654 .

In this form, Billing [3] has proved that the nine exceptional points are
all the rational points of the curve.



EXCEPTIONAL POINTS OF A CUBIC CURVE 233

5. Sub-group of order six. It seems extremely difficult to conclude
from Theorem 3 whether or not more than one set of 6 exceptional points
can exist. On the other hand, we can prove the

THEOREM 5. If there is no point satisfying the conditions of Theorem 3,
then the number of exceptional points is 3, 6 or 12. In particular, this is
the case if 8 + 4.

Under the condition of the theorem, all exceptional points must lead
to an inflection by repeated forming of tangentials. The exceptional group,
of order 7, can consequently not contain a sub-group of order p*, p an
odd prime, where k=1 for p> 3 and £ =2 for p=3. It follows that we
must have n =3-2" h = 0,1, 2, .... However, Lind [6] has shown that
24 t n, which concludes the proof.

There are always at least three exceptional points (the inflections) on
the symmetric curve. We shall now give parametric representations for
the cases n = 6 and » = 12.

An exceptional sub-group of order 6 will contain the inflections (2.6)
and three more points

(5'1) (8’ t’ t)’ (t’ 83 t)’ (t’ t’ 8) H

which have the inflections as tangentials. Substituting this in (2.3), we
see that the equation
(5.2) A(s+2t)° + Cst2 =0

must have integral solutions s, . We can then transform the points (5.1)
into
(5.3) (1,0,0), (0,1,0), (0,0,1)

by the symmetric substitution

(5.4) X = s&+tn+tL, Y = t&4sn+te, Z = tE4tn+4-sC .
The determinant (s—¢)%(s+2¢) == 0, and we find

(5.5) B(En+EC+nl) (E+n+L) + yénl =0,

where f=t, y=s—t.

The transformation (5.4) can of course be applied directly to the
general symmetric curve (2.1) if this contains the rational points (5.1),
leading again to an equation of the type (5.5). In particular, the equian-
harmonic case ¢ = — 3b (which cannot be reduced to the form (2.3)) gives

Math. Scand. 2. 16
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B=1,y=—3. The curve (5.5) is then equivalent to the Weierstrass form
(2.7) with f=1.
The condition (2.2) takes the form

(5.6) By (B+y)(96+y) + 0.

THEOREM 6. Under the condition (5.6), the form (5.5) will represent the
general cubic curve with an exceptional sub-group of order sixz. The ex-
ceptional points are given by (2.6) and (5.3).

A parametric representation of the invariants 4 and B in (1.2) for
n=:6 has been given by Nagell [8, pp. 10-11]. Simpler expressions for
the form
(5.7) y?=ua% +Mx? +Nx

were obtained by Lind [6, pp. 36-37].

6. Sub-groups of order twelve. An exceptional sub-group of order
12 can be cyclic or non-cyclic. In the latter case, each inflection must be
the tangential of three other points. Substituting é = ¢, 7 == 7 in
(5.5), we find one root t=0, corresponding to the points (5.3). The
remaining roots are determined by the equation

2802 4+ (Bf+y)oTr + 2812 =0,
of discriminant (f+y)(98+7y)==0 by (5.6).

TaEOREM 7. The general cubic curve with a non-cyclic exceptional sub-
group of order twelve is represented by the form (5.5), satisfying (5.6) and
with the further condition that (6+y)(96-+y) is a square.

This formulation makes it simple to decide if such a sub-group exists.
As parametric representation, we may choose

(6.1) == 87¢(A%2 — u?), y = 87¢(9u®— 12"

Here A and p are coprime integers, subject to some obvious conditions
obtained from (5.6). The exponent ¢=1 if 1 and x are both odd, and
=0 otherwise.

The corresponding representation for the form (1.2), as given by
Bergman [1, p. 503], is very complicated. However, the formulae of
Lind [6, p. 44] for the curve

Y¥=@+U)@+7V)x

are quite simple (degree 4 in the parameters).



EXCEPTIONAL POINTS OF A CUBIC CURVE 235

We now turn to the cyclic sub-group of order 12. There must then
be a set of 6 exceptional points (&, #, (), with &==n=C{=4&, such that
each of the points (5.3) is the tangential of two points from the set.

We must determine &, » and { by the formulae (3.1) such that for
instance

BEE 1, C)+yEm=L02=BFE&n L) + yn(l—E2=0.

It is easily seen that these two equations, in connection with the given
curve (5.5), are equivalent to the system

En =202  BE+nFiR2+y2=0.

We conclude that (£, é+n-+8)=((, §+n)=1. Assuming > 0 (no re-
striction), we must consequently have

B=p>2 v=—r*  Etntl=y, {=p.

It follows that & and # are the roots of an equation

P+ (Br—y)d + B2=10,
of discriminant (y;-+p8,)(y1—3p,) == 0 by (5.6).

THEOREM 8. The general cubic curve with a cyclic exceptional sub-group
of order twelve is represented by the form (5.5), satisfying (5.6) and with

the further condition that § = B2, v = —y,%, where (y,+p,) (y1—3p,) s
a square.

A parametric representation is given by
(6.2) B=16-(A2— 2,y = —16-(3i+ ),

with the same remarks as after (6.1).

The corresponding representation for the form (1.2), as given by
Bergman [1, p. 504], is extremely complicated. The formulae of Lind
[6, pp. 36-37] for the curve (5.7) are simpler, but still rather complicated.

We conclude with a weak but very simple theorem, reminiscent of the
results obtained by Hurwitz for the curve (1.1). — It is clear from (5.2)
that ¢t = 4- 1 if all prime factors of A occur in odd powers. The trans-
formation (5.4) gave f=1¢1in (5.5), but neither (6.1) nor (6.2) will represent
p= 4+ 1 under the condition (5.6), except in the one case A=1, y=3 in
(6.1), which implies 4 = 32. Combining this result with Theorem 5, we
get the following

THEOREM 9. If A is squarefree, the curve (2.3) has three or six exceptional
points.

16*
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