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ON THE FLUCTUATIONS OF SUMS OF
RANDOM VARIABLES II

ERIK SPARRE ANDERSEN

1. Let X, X,,... be random variables and let §; = X,+...4+X,,

1=1,2,.... We shall study here some random variables which are
defined in terms of the sums S,=0, 8, S,,.... These random variables
are:

1° the index L, at which S;,7 = 0, ..., n, attains, for the first time,
the maximum value max(8S,, Sy, ..., S,).

2° the index M, at which S,, 7 = 0,.. ., n, attains, for the last time,
the minimum value min (S, S;,...,8,),

3° the number N, of sums 8,,...,S,, which are > 0,

4° the number H,, of values ¢, ¢ = 1, ..., n—1, for which S, coincides
with the largest convex minorant of the sequence Sy, S;, ..., S,.

The variables L,,, M, and N, have been treated in several papers, see
e. g. P. Lévy [10, in particular pp. 303-304], P. Erdos and M. Kac [8],
K. L. Chung and W. Feller [6], E. Sparre Andersen [1]{2], D. A. Dar-
ling [7], G. Maruyama [13], M. Lipschutz [11][12], M. Udagawa [14],
E. Sparre Andersen [3][4]. In sections 3-5 of the present paper we
obtain certain new results for these variables in the case where the
variables X, are independent and have the same distribution function
F(z). In particular, we obtain explicit expressions for the probabilities
Pr{K,=m} and the conditional probabilities Pr{K,=m |S, >0},
where K, is one of the random variables L,, M, or N,, in terms of the
probabilities a; = Pr{S;>0}. In the case in which a, converges to a
limit @, 0 < @ < 1, we obtain the limiting distribution of K,/n, which
for @ = { becomes the arcsine law found by Erdsés and Kac [8]
for independent random variables, which are not necessarily identically
distributed, but which satisfy the relations E(X,) =0, E(X,?) =1
and to which the central limit theorem is applicable. Our result for
a = } contains the result found by Udagawa [14], but does not contain
Erdss and Kac’s theorem, since we have here assumed that X;, X,, ...
are identically distributed.
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In section 6 a result is proved which supplements the results in [3]
on symmetrically dependent random variables.

In sections 7-9 we study the variables H, under conditions, which in
particular are satisfied when the variables X, are independent and have
the same continuous distribution function F(x). We find the distribution
of the variables H,. It turns out that the distribution is independent
of F(z).

2. As sample space £ we take the product set (R, R,...), where
R is the set of real numbers. By [...], where ... indicates a number
of relations involving X;, X,,..., we denote the event in £ at which
the relations are satisfied.

If the joint distribution function Pr{N?_,[X; <x;]} of X,,..., X,
is a symmetric function of x,,...,x,, we shall say that the random
variables X, ..., X, are symmetrically dependent. If the sequence
X;, X, ... is infinite and X, ..., X, are symmetrically dependent for
n=2,3,..., we shall say that the random variables X, X,,... are
symmetrically dependent.

If an event C is invariant under permutations of the variables z,, . . .,z,
or x;, Z,, ... we shall say that the event is symmetric with respect to
X,..., X, or X;, X,,..., respectively.

By an s-permutation of n numbers, a,,...,a,, we shall understand
a permutation, of the » numbers, ¢a,,...,¢,a,, where & = 41,
1 =1,...,n, are arbitrarily chosen.

Let the random variables X, ..., X, satisfy the following conditions:
a) the joint distribution of X, ..., X, is invariant under s-permutations
of the variables, i. e. for any set x,, ..., x, of real numbers, the proba-
bility

Pr{ rn] [min (0, ;) = X; < max (0, xi)]}
i-1

is invariant under s-permutations of the numbers x,,...,z,; and b)
Pr {§;=0} = 0, t=1,...,mn.

Then we shall say that the random variables X, ..., X, satisfy condi-
tions (8). If the sequence X, X,, ... is infinite, and X,, ..., X, satisfy
conditions (S) for n = 1, 2, ..., we shall say that the random variables
X,, X,, ... satisfy conditions (S).

From the papers [3] and [4], we shall quote the following results which
we shall use in the proofs below (cf.[3, p.125], [3, p.128], [3, p. 133]
and [4, p. 269] for Theorems A, B, C and D, respectively).



ON THE FLUCTUATIONS OF SUMS OF RANDOM VARIABLES II 197

THEOREM A. Let X, X,,... be symmetrically dependent, and let C,,
be an event which is symmetric with respect to X, ..., X,. Then

m=0,1,...,n.

TaEOREM B. Let X, ..., X, be tdentically distributed and independent,
und let K, be one of the variables L,, M, or N,. Then

Pr{K,=m}=Pr{K,=m}Pr{K, ,=0}, m=0,1,...,n.

TaroreM C. Let X, X,,... satisfy conditions (S), and lei K, be one
of the variables L,, M, or N,. Then, if C, is an event which is invariant
under s-permutations of the variables X,, ..., X,, we have

Pr{[K,=m]C,} = Pl)“(j) (n:m Pr{C,), m=0,1,...,n,
and when Pr{C,} > 0,

Pr{Kn=m|On}=(——l)"(_%>( —% ), m=20,1,...,n.

m ) \n—m
THEOREM D. Let X, ..., X1 be symmetrically dependent, and let
C, .1 be an event which is symmetric with respect to X,,..., X, 4. Let

N, * be the number of points (j,S;), j = 1,...,n, which lie above the
straight line from (0, 0) to (n+1,8,.,). Then, for Pr{C, ,,} > 0,

Pr{N,*=m|C,,,} = (n+1)", m=0,1,...,n,
if and only if

Pr{i-18;=(n+1)18,,, | Cpiydl =0, i=12...,n.

3. In this section, we shall prove a theorem which gives explicit for-
mulae for Pr{K,=m}, Pr{K,=m]|8S,,;>0} and Pr{K, =m|S,,;=0}
in terms of Pr{S,>0}, n = 1,2,... . In order to simplify the formulae,
we use the symbol 2*. This symbol shall indicate that the summation
is restricted to those values of the summation variables «, ..., «,
which are non-negative and satisfy the relation o+ 2x,4. .. 4+nx, = n.

TaEOREM 1. Let X,, X,,... be independent and identically distributed,
and let a, = Pr{S,>0}, n=1,2,.... Let K, be N,, L,, or n—M,,
and let p, = Pr{K,=n} and q, = Pr{K,=0}, for n =1,2,.... Put
Po=¢, =1and q_;=0. Then, forn =1,2,... and m = 0,...,n,
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(3.1) Pr{K,=n} = p, = 2* T (1) (i1,

Lop t=1

62 Pr{K=0)=g,= X" 1”71 T (L—ay)it)

(3-3) Pr {Kan} = Pmn-m >

(3.4) Pri{K,=m|8,,,>0} = “n+1_1k§:: Pr1(@nt—Tn-k-1) >
(35)  Pr{E,=m] 820} = (10,07 X0 i)
Furthermore the generating functions
A(s) = i?ans", P(s) = S?)pns" and  Q(s) = Zq s
. n—
satisfy, for |s| < 1, the relations

(3.6) P(s) = exp( “IA(o)da)

Og/‘%

8

3.7 Q) = (1—s)Llexp (— So‘h‘l(a)da) = (1—-8)—1(P(s))”1 .
0

Proor: It follows from Theorem A that it is sufficient to prove the
theorem in the case in which K, is ,. Since we have

[N, 2m41] = [N,=m][S,,s>0]U [N, =m+1],
where the two components are non-overlapping, we obtain the relation
Pr{[N,=m][S,,;>0]} = Pr{N,,,=2m+41} — Pr{N,=m+1}

(3.8) —Z’Pr{Nn+1—~7c+1}~ 5’Pr{N =k+1},

=m

and, using Theorem B, the formula,

(3.9 Pr{l=m)San= 00 = X P ok ta-ied)

We now sum equation (3.9) for m = 0,1, ..., n and obtain
(3.10) PN, =[S0 0] = 3 (k1) Pr (G52 -

The left hand side is Pr {S,,;>0} = a,,,. If we introduce this in (3.10)
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and multiply by s® and thereafter sum for n = 0, 1, 2,..., we obtain
for |s| < 1 the relation

[ee] oo n
ana’n-*-l = 2 s 21 (k+ l)pk+1 (Qn—lc_Qn—k—l)
n=0 n=0 k=0

or

311 52406 = ( Snp,e) (3 a—ga)en) = P6) Q) (1),

n=0

We now consider the product P(s)@(s) and obtain for |s| < 1 the
relation

PE) Q) = 3 ( 3 puton )

n=0

Since p,.¢,_, = Pr{N,=m}, we obtain

.zvpmqn—m = ZPI'{anm} = PP{E} =1 ’
m=0

m=0
so that
(3.12) P(s) Q(s) = (1—s)1.
From (3.11) and (3.12), it follows that s-1A(s) = P'(s) (P( )y a
(3.13) ga‘lA(a)da — logP(s), |s| <1.

0

Formula (3.6) follows from (3.13), and, using (3.12), formula (3.7) also
follows. The formulae (3.1) and (3.2) are derived from (3.6) and (3.7),
respectively, by evaluation of the power series. The formula (3.3) is the
conclusion of Theorem B, while (3.4) follows from (3.9), if we change to
conditional probabilities. From (3.3) and (3.9),

n

Pr {[Nn:m][sn+1—0]} = Pm9n-m —kgjplcﬁ-l(Qn kT Dn—1:— 1)

= ZQn—k (Pr—Pr+1)
k=m
follows. When we change to conditional probabilities, we obtain the
relation (3.5).

4. We shall now consider the special case where we have a;,=a,=. . .=a.
We shall assume that 0<a<1, since we have in the cases a=0 and a=1
that Pr{K,=0} =1 and Pr{K,=n} = 1, respectively, for all n. We
prove the following:



200 ERIK SPARRE ANDERSEN

THEOREM 2. Let X, ..., X, be independent and identically distributed,
and suppose that Pr{S;>0} =a for k=1,...,n+1, where 0 <a < 1.
Let K, be N,, L,, or n—M,. Then, for m =0,1,...,n,

n’

(4.1) Pr{K,=m} = (—1)"(—7”“)(a~1>,

n—m
(42) Pr {Kn:m l Sn+1>0}
— a2 () (7)),
(4.3) Pr{K,=m|8,,;=0}
= =gyt (et Aty () (0T,
(4.4) Pr{K,=m} — n-1sin (na)gx““l(l——x)*adx
0
< (M(a)) ' (n+1)21 + (IF'(1—a))* (n4-1)-
(4.5) Pr{K,=m|8,,,>0} — (za)~'sin(na) .x“(l—x)‘“dx
0
< (F(14a))™ (n41)
(4.6) Pr{K,<m|8S,1=0} — (x—na) 1sm(5za)\wa Yl—z)-odx

<(I'2—a)) ™ (n+1)-°
where u stands for (m~+1)/(n+1).

ReMARK. It is evident that we have a, = } for all » if the common
distribution function of X;, X,, ... is symmetric and continuous. (When
a = } the integrals in formulae (4.4), (4.5) and (4.6) can be evaluated,
and we obtain the corollary below.) Examples where a;, =a, = ... =«
and a = }, 0, 1 are rarer. There does, however, exist at least one simple
example. Let X, X, ... be independent, and let them all have the
same Cauchy distribution with distribution function,

F(x) = a—tarctan (x4 cot (na)) + };
then a, = Pr{S,>0} = a for all =.

CoroLLARY. Let X, ..., X, 1 be independent and identically distributed,
and suppose that Pr{S,>0}=14% for k=1,...,n+1. Let K, be N,, L,,
or n—M,. Then, for m =0,1,...,n,
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(4.7) |Pr{K,=m} — 2n-larcsinu? | < 22~ (n41)7F,
(4.8) IPI' {K,<m | 8,,,>0} — 2n~1(arcsinut — (u—pu?)?) I

< 2w ¥ m41)7%,
(4.9) | Pr{K,<m|8,,,=0} — 2z~ (arcsinu? + (u—u2)?)|

< 2 ¥ (1),
where u again stands for (m—1)/(n+1).

Proor or THEOREM 2: From Theorem 1, it follows that Pr{K,=m},

Pr{K,=m|8,,;>0},and Pr{K,=m|8,,,=0} are functions of a,, . . ., a,
and do not depend on a, ., a, .5, ... . We can therefore in this proof
replace a; by a for k = n+1, n+42, ... . We then obtain, from Theo-

rem 1, since now
o0
A@s) = Na,s" = as(1—s)1,

n=1
the relations,

(4.10)  P(s) — exp ( S a—lA(a)da) — exp <a§ (l—o)“lda)
= exp(—alog(l—s)) = (1—s),
(4.11) Q(s) = (1—8)(P(s))t = (1—s)21.

When we introduce the binomial series for (1—s)=® and (1—s)%-1, we
obtain, from (4.10) and (4.11), the formulae

= 0 () a= (7)) and ggn = (1)

n

Formula (4.1) follows from (3.3), and the formula,

; - — g=1(__1\n+1 1; —a @
Pr {An—m l Sn+1/ 0} =a ( l) ' k%n (k+1> (n'_k>

n-m
= aq-1(—1)"r1 a —a )
a=(=1) Prd (z) (n—l—l—z ’

follows from (3.4). This formula can be simplified by using the formula

w1 2(0) () =meen (W G5) I

which can be proved by induction, see [5]. We then obtain (4.2). The
formula (4.3) follows from (4.1), (4.2), and

Math. Scand. 2. 14
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Pr{K,=m|8,,;=0} = (1—a) (Pr{K,=m} — aPr{K,=m | S,,,;>0}).

Since there does not seem to exist summation formulae for

2065 2 ()00
Sor-a () (,50)

corresponding to the formula (4.12), we are not able to obtain equally
simple expressions for

Pr{K,=m}, Pr{K,=m|S,,;>0}, and Pr{K,sm|S,,,<0}.

and

We shall, however, prove the inequalities (4.4), (4.5) and (4.6).
For 0 < a < 1 we have the formula of Gauss,

(4.13) (—1)» (:;a) nl=e — (F(a))‘l for n—>oo.

As is easily seen, the converging sequence is monotonically increasing.
Thus we obtain from (4.13) the inequality

(4.14) (-1)( ) (@) 'net,  n=1,2,... (0<a<l).

For m = 0, 1,..., n—1, the inequalities,
(4.15) Pr{K,=m|8S,,,>0}
< at(n4+1)(m~+1)(I(a) " (m+1)-Y(I'(1—a)) ™ (n—m)~*
= (na)~1sin (wa) (n+1)-1(m+1)* (n—m)=¢
follow from (4.2) and (4.14); and, for m = n, the inequality

(4.16) Pr{K,=n|8,,,>0} = a-1(—1)H (n-——{—al) < (F(A+a))™ (n+1)2-1

follows from (4.14). As is easily seen from (4.2), we have
Pr{K,=m|8,,,>0} < Pr{K,=m-+1]8,,,>0}

form = 0,1, ..., n—1. We therefore obtain, from (4.16), the inequalities

(4.17) Pr{K,=m|8,,,>0} < (I'14+a)) ' (n+1)*1, m=0,1,...,n

By summation of (4.15), we obtain, for m = 0, 1,..., n,

(4.18) Pr{K,<m | 8, ,,>0} < (na)-lsin(7a) (n+1)* fl(lﬂ— 1e(n—k)-e.
=0
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For m = 0,1,...,n,
m—1
(4.19) Pr{K,=m|8,,;>0} < (ma)=tsin(za) (n41)" X' (k+1)*(n—k)-¢
i=o0
+ (I'A+a)) ™ (n41)2-1
follows from (4.17) and (4.18).

By summation of (4.15), we obtain, using (4.16), for m = 0, 1, ..., n,
n—1

(4.20) Pr{K,>m|8,,;>0} < (na)-1sin(na) (n+1)-t ' (k4+1)*(n—k)=
k=m+1

+H(I'(14a)) ™ (1)1,

We shall now compare ' (k-+1)*(n—k)-¢ with Sx“(l—x)—adx. Since
the function z%(1—zx)-¢, for 0 < a < 1, is strictly increasing in the interval

0 < x < 1, we obtain, for £k = 0,1,...,n—1, the relation,
(k+2)fn+1)
(1)1 (k4 1)2 (n—k)~@ < S 2t(1—a)-tdz ,
1) (n+1)
and, therefore, for m = 0,1,...,n—1,

(4.21) Pr{K,<m|S,,,>0}
(m+1)/(n+1)

< (na)~! sin (na) \ a(1—x)~*de + (I(1+a)) ™" (n+41)2-1

11
and

(4.22) Pr{K,>m| S, ,>0}
1
< (na)~! sin (na) S w(1—ax)~de + (I'(14-a)) " (n+1)2-1 .

(m+2)/(n+1)

Since {} #* (1—x)~*dx = (na)(sin (za))™", we obtain from (4.22) the relation

(4.23) Pr{K,=m|8,,;>0}=1—Pr{K,>m|8,,,;>0}
(m+2)./(n +1)
> (ma)-" sin (7a) S 2t (1—a)=ade — (I(1-4+a)) ™ (n41)e-1 .
0
The inequalities (4.5) follow from (4.21) and (4.23). The inequalities (4.6)

are proved in a similar way and, thereafter, (4.4) is obtained from (4.5)
and (4.6) by using the formula

Pr{K,<m} =aPr{K,=m|8,,,>0} + (1—a) Pr{K, <m|S,,;<0}.

14*
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5. We shall now consider the more general case where we do not have
Pr{S,>0} = a for all n, but only Pr{S,>0} = a, - a for n - cc. We
shall first prove the following:

Lemma. Let the value of Pr{K,<m} corresponding to the sequence
ay, ..., a, be denoted by b, ,.(ay,...,a,). Then

(51) bn,m(ab""a ) >bn m( 17""bn)’
fosa, b, 51 forv=1,...,n
REMARk. Since b, ,(a,,...,a,) is a polynomial in a,,...,a,, we

may extend the domain to the whole n-dimensional cube 0 < a; < 1,
¢t =1,...,n, although Pr{K, <m} is only defined if there exist random
variables X x such that a; = Pr{S;>0}, ¢ =1,

Proor: We introduce, for n = 1, 2, ..., the notations

Pal@y, ... a,) = D* I () (ai—1)™,

oq, Loap =1
n
Qn(a’l, “ ey a'n) = zw* ]I (o‘i!)-l((l—a/i)iﬂl)ai’
Klyensoy B=1
and put po=¢,= 1. For k= 1,...,n we have

0
= Paly; - - = 2% 0 [I o) Hagi )

aak &1y . :é"n k@ 1

When we differentiate, the terms with «;, = 0 disappear. The terms with
o > 0 give new terms of the form

k- 1]] rl)ﬁ ,

where f; = oy for ¢ =1,...,k—1,k+1,...,n, while 8, = «;,—1. The
numbers f; are non-negative and satisfy the relation

Bt 2Bt ... +np, = n—k,

so that 8; = 0 for ¢ =n—k-+1,...,n. We evidently obtain all sets
Bis++ s Bu—pe for which f; = 0 and which satisfy

Brt2Bs+. . .+ (n—k)By_ = n—Fk .

Each set is obtained once and only once. Therefore the terms in

Opp(ay, - .., a,)/oa,
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are exactly the terms in the sum

2* ke~ 11] ﬂz ’L‘l)

Bl Bn—k i=
and we have
9 1
(5.2) o Pp@y, .. a,) =k1p, (..., ¢, ), k=1,...,n.
k

Since q,(ay,...,a,) = p,(1—a,, ..., 1—a,), we obtain

0
(5.3) P gy, .. a,) = —ktp, (1—ay, ..., 1—a,_;)

= —k1q, (@, ..., 1), k=1,...,n

The formula b, ,(ay,...,a,) = 27"  pgay, ..., a) ¢u_i(ay, . .., a,_;) fol-
lows from (3.3) by summation, and is valid, by extension, in the whole
n-dimensional cube 0 <a;, <1, ¢=1,...,n Using (5.2) and (5.3), we
obtain

Ay,
" 2
= (Pi(av Cees ) 20 i@y - o5 )+
=0 Ay
0
+ Qn—i(al’ RS an—i) é'_ T)i((ll, RN ai))
ay
min (m, n—k)
_ Al
= —k! 2/ Pil@ - ooy @) Qi@ o Q)+
=0
+k -1 in z(al’ L] an—i) pi—k(a’b RN a’i~k)
i=
min (m, n—k)
_ 2l
= —k-! ( 2 pi(a’b RN} ai) Qn—i—l\'(al’ JERE) an—i—k)—
=0
1njk
- ._>7 Qn—i-—k(a’b ] a’n—i—k) pi(al’ ] ai))
1=0
min (m, n—k)
= —k1 2 Pil@y, o5 @) Qi@ o s Uiy)
t=max (0, m—k+1)
=0,
if 0<a;,<1 for ¢ =1,...,n. Formula (5.1) follows from (5.4), for

k=1,...,n, since we obtain
b

v

n, m(al, e ey an) g bn,m(blv (12, cre a’n) g bn,m(bl’ b2’ “3a ] a’n)

2 by by, by)
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Using the lemma and formula (4.4), we shall now obtain the limiting
distribution of K,/n for n — oo in the case in which a, - a for n — oco.

TaEOREM 3. Let X,, X,, ... be independent and tdentically distributed,
and suppose that Pr{S,>0} = a, - a for n — oo, where 0 < a < 1. Let
K, be N,, L,, or n—M,. Then, for 0 < x <1,

(5.5) lim Pr{K,<an} = n-1sin(na) \x"’*l(l-—x)—“dx .
n—>00 :)

REMARK. For a = }, the integral in (5.5) can be evaluated, and we
obtain
(5.6) lim Pr {K,<an} = 2n-larcsina? .

n—>oo

Proor: Let m = [an]. We then have Pr{K, <an} = b, ,(ay,...,a,).
From the lemma, it follows that

(5.7) by mby, ..., 0,) 2 Pr{K,<m} =b, ,(c,...,c,)
fosb,=sa,=c¢,<1for k=1,...,n. Let now b, = min(a;, a—9)
and ¢, = max(a;, a+9) for k= 1, 2, ... . It then follows that, for
0 < min(a, 1 —a), we have

limsup b, (b, ..., b,) = limsup Pr {K,<m}
(5.8) - N

= liminf Pr {K, <m} = liminf b, ,,(c;,...,¢,) .

7n—> 00 n—>00

Since n—1sin(na) ng“*l(l—x)—“dx is a continuous function of a in
the interval 0 < @ < 1 for any « in the interval 0 < x < 1, it follows
from (5.8), which holds for arbitrarily small ¢, that it is sufficient, in
order to prove Theorem 3, to show that,

23

(5.9) lim b, ,(ay,...,a,) = 7~lsin(7a) g x“—l(l——x)'—“dx ,

n—>00 D
0

if 0 <a, <1 for all » and a, = a for » > N, where N is an arbitrary
but fixed number. Since we know already from (4.4) that (5.9) holds
if N = 0, it is sufficient to prove that

(6.10) b, ulay,...,ax,a,...,a) — b, (a,...,8) >0 for n-—>oco.
Let now

A(s)-—Za sn4 Z as" .

n=N+1
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Then b, ,(a,,...,ay,a,...,a¢) = 27 Ppq,-1, Where p, and g, are de-
termined by

S

P(s) = X p,s" = exp <§ a—lA(a)da>
and =0 0

Qs) = 3 gus" = (1—s)1 (P(s)) .
n=0

We evidently have

S N
o1 A(0)do = \ ( Naon14 Y (an—a)(”l_l) do

n-=1 n=1

O

<

N
= —alog(l—s) + X' n ' (a,—a)s" .

n=1
We therefore obtain
A7
(5.11) P(s) = (1—s)° exp( PR (an——a)sn)
n=1
and
N
(5.12) Q(s) = (1—s)*1exp (— ' nt (an——a)sn) .
n=1
Let now
N o
exp ( P (an—a)s”> = X'b,s"
n=1 n=0
and

N 00
exp (— 'nt (a,,—a)s") = Yec,s".

n=1 n=0

If we introduce these series in (5.11) and (5.12), we obtain

o9 S (D[ 17)0) (Sr)
n=0 n=0 n=0

and

(5.14) g, st = <2 (—1)» (a )s") (2%8”).
n=0 n=0 n n=0

n [ —a 2 fa—1
=20 (T o = X0 (T ey

7=0
and
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m
(6.15) by @y, ..., ay, a5 ..., ) :k%’ PeSn—ic

_ 3y _1)L( @a>bk,z§k(—l) ( ;l)cn_k-,-

k=0 7=( j=0

Vl"l —a a—1 min (n—j, m)
A\-( ) ( i >(‘ﬁl)]< .7 ) 2 bk—icn—k—f

j=0 k=i

n —a fa—1\ min (n—j—i, m—1)
j= =

follow. From the definitions of b, and c,, it follows that

(fbns") (fcnsn) =1;
n=0

n=0

(=1
=

Ms T:':[Vs
JL

Il
)

7

therefore X} _ b.c,_, equals 1if n =0and 0if n = 1,2,... . We thus
obtain
min (n—j—1, m—i) 1 @f 7/_’__‘7 =n
kzz(; b] Co—j—i~k -{ 0 ’l,f J =n—m, i< m

(for other values of 4 and j no reduction seems possible). If we use this,
we obtain from (5.15) the relation

(5.16) b, ,lay,...,ay,a,...,a)

n N EAYL n-m-l L.——a a—1\ 5
=5 ( 56 )+‘va & - A (W UL
= bw,m(a’ N + 207 ]2 l)iH'( 7/ > ( )2{ b/c n—j—i—I *

We now use the fact that X% (b,s" and X c,s" are regular
functions in the s-plane, so that we have |b,| < C8-" and |¢,| < C8-",
where the constant ¢' depends on ay, ..., ay, @ but not on n. We then
obtain from (5.16) the inequality ’

(5.17)  |by (@ Ay, @,y 0) — by @, .., a)
< Zm‘ nzm’ 1(“1 t+]( ‘a) ( ) 3;"208 —k () §-n-+it+i+k
=0 j= v J k=0

zg_ngz(éj(_l)i<—ia)( m—i+1)8 )(nzm; ( 91>3o’).

In the two sums in the last line of (5.17), each term is less than half the
following term. Each sum is therefore smaller than twice its last term.
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When we use this and the inequality (4.14) together with the inequality
derived from (4.14) by replacing @ by 1—a, we obtain

(5.18) by i@y, ..., ay,a,...,a) — b, .(a,...,a)

< 8-nC22(I'(a)) 'me-18"2(I'(1—a))™ (n—m—1)-a8r-m-1

= 1 C2x~1sin(na) m*(n—m—1)-.

This completes the proof of Theorem 3, since (5.10) follows from (5.18).

6. If in Theorem C we put C, = E, we obtain the same value for
Pr{K,=m} as the value which we obtain from Theorem 2 for a = }.
We shall now prove a theorem which shows that the formulae in Theorem 2
(for @ = }) and in the corollary are also valid, if we replace the assump-
tion “X,,..., X,,; are independent and identically distributed and
satisfy Pr{S,>0} = }” by the assumption “X,,..., X, satisfy con-
ditions (S)”.

THEOREM 4. Let X,,..., X, satisfy conditions (S), and let K, be
N,, L,, orn—M,. Then (4.1), (4.2), (4.3) of Theorem 2 hold with a = }.
Furthermore (4.7), (4.8), (4.9) of the corollary hold.

Proor: The formula (4.1) follows from Theorem C and is true also
if we replace n by n-+1. From (3.8), which holds for any set X, ..., X,
of random variables, it follows that when two different sets of assump-
tions on X,,..., X,,; lead to the same formulae for Pr{K, A =m} and
Pr{K, ,=m}, then the two sets of assumptions lead also to the same
formulae for Pr{K,=m|8,,,>0} and Pr{K,=m|S,,;=0}. The in-
equalities (4.7), (4.8), (4.9) are consequences of the formulae (4.1), (4.2),
(4.3). Therefore the inequalities hold when conditions (S) are satisfied,
and we have finished the proof of Theorem 4.

7. Let b,,...,b, be a sequence of real numbers. We shall say that
the sequence is convex if the sequence b;—b,, by,—b,, ..., b,—b, ; of
the differences is nondecreasing. If a,, ..., a, is an arbitrary sequence
of real numbers, then there exists a unique, largest, convex minorant
sequence by, ..., b,. We evidently have b, = a, and b, = a,. Further-
more, for ¢ = 1,...,n—1, we have either b, = a, or

b= (b—g)(k—i)a; + (i—j)a)

where j is the largest subscript » less than 4 for which a, = b, and £ is
the smallest subscript » larger than ¢ for which a, = b,.
The number of equalities b; = a;, ¢ = 1,..., n—1, is, to some extent,
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a measure of the fluctuations of the sequence a,,...,a,. We shall
therefore study the probability distribution of the number of these
equalities when a,, . . ., a, isreplaced by the sequence of sums S, S, . .., S,
of the random variables X, ..., X,,. We first prove the following:

THEOREM 5. Let the random variables X,,..., X, be symmetrically
dependent, and let the joint distribution satisfy

(7.1) Pr{i-18;=j-18,;} = 0, Isi<j=mn.
Let Ty=0,T,,..., 7,1, T,=8, be the largest convex minorant sequence
to the sequence 8;=0, Sy, ..., S, 1, S,, and let H, be the number of equali-
ties S; =T;, i=1,...,n—1. Then for m = 0,...,n—1
(7.2) Pr{H,=m} = ((m41)1y* 3™ []y -1,

j() ..... ]m v=0

where X" indicates that the summation is restricted to those values of the
summation variables j,, . . .,J,, whichare positive and satisfyj,+ . . . +j,, =n.
Furthermore we have, for |s| <1 and 0 < |t < 1,

(13)  H(s, 1) = ,"2 Pr {H,—m} sntn — t-1((1—s)-1—1).

i [\’8

The condition (7.1) em'dently 1s satisfied if the random variables X, . . ., X
are independent and have the same continuous distribution.

n

Proor or (7.2): Let A™, . for 0 <4, <...<1i, <n denote the
event in which the equalities S; = 7', are satisfied for ¢ =¢,..., 1,
and for no other values of ¢ in the interval 1 <¢ =n—1. (If m = 0,
then there are no lower indices.) Then [H,=m] is the union of all
possible A™, . . Since the events A™;  , are non-overlapping,

we obtain
(74) PI‘ {Hn:m} = 2;’ PI' {A(")il’“.ﬂ.m} s
where the summation is over all possible sets of m integers 4,, .. ., 1, for

which 0 <4, <...< 4, <n. In the following, we shall, when convenient,
write i, for 0 and 4, for n.

We now consider the event A®, . for a fixed set of indices
1y -+« 4y, 1f follows from the defmltlon of Ty, ..., T, that 4™, is
the event at which the inequalities

e 0stm

(7.5) (01 —1g) 71 (S5, —S,) < (Ga—1y) 71 (S;

12

—S;) <...

< (im+1_7:m)_1 (Sim+1_Si,,L)
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(7.6.0) S;>T, for i=1,...,4,—1,
(7.6.1) S;>T;, for ¢=14,-+1,...,i,—1,
(7.6.m) S;>T; for i¢=1di,+1,...,0—1,

are satisfied. If we denote the event at which (7.5) is satisfied by
B®™, . (for m =0 we have B™ = E), and for v =0,..., m the
event at which (7.6.») is satisfied by D, (for 7,, =17 41 we have
D, = E), then we obtain

(7.7) 4w, . =B™, . Dy...D

seentm m*

We now use the fact that the event B™, . D,...D,, for k=
1,...,m+1, is symmetric with respect to X; ., ..., X;, so that we

may apply Theorem D, first to the events
Dy = [N;,*=1i,—1] and B™, D,...D,,

thereafter to the events D, and B™; . D, ,...D, for k=1,...,m.
We then obtain

seestm

(1.8)  Pr{A®, %= (i,—i) Pr{B", . D,...D,}
(13 —g) M (tp—1y) " Pr{B™;  ; Dsy...Dp}

seeestm

I

= < ﬁ (immi,,)—l) Pr{B™,; i)

v=0

Before we apply Theorem D to D, and B™; = . Dj.,...D,, we must
of course perform the permutation

‘Xi_)Xi'Fn“"l:]‘» fOI‘ i: 1""’/1:]6’
X=Xy, for ¢=94,+1,...,n,
on the variables X,,..., X,,. This permutation, which carries D, into

[Nipprmiz—1* = tk1— 0 —1], does not change the probabilities we are
considering.

From (7.4) and (7.8) it follows that Pr{H,=m} can be expressed as
a linear combination of Pr{B™, .\ wherei,,...,1, run through all
possible values for which 0 <, <...< 14, <n.

The event B™, . defined by (7.5) depends only on the random
variables (i;,1—19;)7 (S5, ,—S), k= 0,...,m. We shall denote these
variables by W,@+17% f = 0, ..., m. The upper index, which we shall
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omit when no ambiguities can arise, indicates the number of random
variables X, used in the definition of W,.

Asan 1llustrat10n of the idea in the following more complicated argument
let us first consider the case in which ¢, —iy = t,—¢; = ... = 11—,
Then the random variables W, W, ..., W, are symmetrically dependent,
and, from (7.1), it follows that Pr{W,=W,} = 0 for i=j. It therefore
follows that
(7.9) Pr{B®™, . }=((m+1)!)",

since we have B®™, . = [W,<W;<...<W,], and evidently the
probability that the m-1 symmetrically dependent random variables
We, ..., W,, assume values which form an increasing sequence is
((m—+1)1)"". The relation (7.9) is not used in the following.

If we do not assume that i;—iy = t5—t; = ... = 4,11, then (7.9)
does not hold in general. This is easily seen from the following example.
Let n =3, m=1, 7 = 1. Then B®, = [X, < }(X,+X3)], and if the
random variables X;, X,, X; assume the values 0, 1, 3 in arbitrary order
such that each of the 6 permutations have probability 1/6, then
Pr{B®} = Pr{X,+3} = 2/3.

We may, however, show that if we consider together with B®™,

STRRPN
the events B®, ., for which k;, k,—Fky,..., n—Fk, is a permutation
of 4,, 45—y, ..., n—1,, then
(10) X Pr{BY g} = plis- i) ((n D),

1se s om
the summation being over all sets k, .. Ic for which k,, k,—k,, . . .,
n—=k,, is a permutation of i;, 1,—1,,...,n—i,, and where p(iy, . .., 2,, n)
is the number of such permutations. In the illustration given above,
the equalities 4;—%q = lo—0; = ... = 11130, IMPLYy P(ty, . . . , 0, ?) = 1

so that (7.9) is contained in (7.10).

Before we give the proof of (7.10), we shall use this relation to prove
(7.2). We first sum (7.8) overall &, . . ., k,, for which &y, ky—Fky, . . ., n—k,
is a permutation of i, t,—1,, . . ., n—t,,, and obtain, since [I7" (3,,,—1%,)?
is a common factor,

(7.11) Y Pr{A("’kl,...,km}:(]I(m —1,)” )kZ Pr{B™; . .}

kiye..rbom o = m
=<H(m v,)” ) Pligy -+ s by 0) ((MA1)1)2
v=0

On the left hand side of (7.11), we have all events A®™; .,  where
ky, ko—ky, ..., n—k,, if we disregard the order, is the same partition
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of n into m+1 positive integers. If we now sum all the equations (7.11)
corresponding to different partitions of » into m--1 positive integers,
we obtain on the left hand side X'Pr{d4®™,  , 1, where the summa-
tion is over all sets of integers ki, ..., k,, for which

O<ky<ky<...<k,<mn.

It follows from (7.4) that the sum of the left hand sides of the equations
(7.11) is Pr{H,=m}. The sum of the right hand sides is the sum over
all partitions of n into m-+1 positive integers. Each term, however,
may be considered as the sum of equal terms of the form

m
(21 =0 (et 1)
v=0

each term corresponding to a permutation of the m-+1 numbers in the
partition. The sum of the right hand sides of the equations (7.11), there-
fore, is the sum, over all ordered partitions ¢, i,—%y,...,n—1, of n
into m-1 positive integers, of terms of the form

(41 G0 ) 1y

If we make the substitution j, = ¢, ,—%,, we obtain the right hand side
of (7.2).

We shall now prove the relation (7.10) in order to complete the proof
of (7.2). We first consider a fixed set ¢, ..., ¢, and show that if exactly

p of the numbers ¢, 15—?q, ..., ty—1,_; equal n—7,, then

(12) (1) X Br{B% w)= 3 PriE ),

where on the left hand side the sum is over those k,, .. km, for which
ky, kg—Fky, ..., n—k, is a permutation of ¢, ¢,—i4,..., n—¢,, while the

sum on the right hand side is over those k,’,..., k,_;" for which

’ ’ ! . ’
ks ke —kys. ooyt —kpy

is a permutation of ¢;, 95—1;,. . ., %,,—¢,_;. Choosing u, 0 < u < m, such
that k,.,—k, = n—i,,, the transformation
'Xi__>Xi fOI‘ i=1...,k”,
X, > Xipip-n for 1= kﬂﬂ—l—l,...,n

/Hl ’
b

transforms the random variables W, in the following way:
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W, - W, for »=0,...,u—1
W, - Ww,,
W,-W,, for v»=pu+l,...,m

b

and carries the event B™, . into the new event,

(7.14)

(m) ey—kep—1) (n—im) Bpet-2~kp41)
B mkl, ks kg ot im—n,. . kptim—n [Wﬂ—l [ S Wm "< Wy 12t :l s

with the same probability. The event [W, ,<W,<W ] for u =0 or
u = m is to be understood as [W,<W,] or [W,_,< Wm] respectively;
for y=m—1 and = m, the event B . by abimtn. oo i 1S
to be understood as B%?, ~ , . For each B‘")k kg WE have p+1
transformations of the form (7.13). Furthermore any event of the form
(7.14), where B¢m Ktoe v or kg 2t imerts o ki 1S OO of the events on the
rlght hand side of ( .12), is obtained once and only once when we
apply the transformations (7.13) to the events B™; . . We there-
fore obtain

(7.15)  (p+1) 2 Pr{B®

k1,....km

- ky’ Zk' ’ ,42; Pr {B(im)kl'nwkm—l’ [WM-1< W< W,u]} .
seve bm—1 =
Since the events [W,_,<W,<W,], u=0,...,m, are non-overlapping
and Pr{W,=W,} = 0 for i<+ j, we obtain

2 Pr {Wﬂ_1< w,< WM} =
n=0
and

m . .
(7.16) 2; Pr{B. oy (W <W,<W,} = Pr{B" . 1.
n= .

Formula (7.12) follows from (7.15) and (7.16).
We now assume that (7.10) holds if we replace n by %, and the set.
Tgs e es by DY ¥4, .-, by_y. We then get, from (7.12), the equation

(7.17) Zk Pr{B™, = .= (P‘H)—l 2 Pr {B(im)kl',...,km_l'}
1s- s fm la- ok 'm—1
= (p+ 1) p(iy, ..., 0) (M)
Since p(iy, ..., ,) and p(iy, ..., %,, #) are the number of permutations

of the numbers &y, t5—iy,..., 5, —0p 15 01, lg—01, . oy by—Tp_1, B—10p,
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respectively, and there are p of the numbers ¢, i,—1,

s T — et
which equal n—1,, we obtain
(7.18) Plgs sy 0) = (ML) (p+1)"1 pig, . . ., 5) -
If we eliminate p(¢y, ..., ¢,) from (7.17) and (7.18), we obtain (7.10).

We can therefore use induction with respect to the number of lower
indices 7,, to prove (7.10), since we have Pr{B®} = 1 for all k.

ReEMARK. An alternative form of (7.2) is the following:

(7.19) Pr{H,=m}= JYm ﬁ(%g)—li-ai

Kyeoosdp =1

b

where 2™ is the summation over those values of «,,..., «, for which

a+ 204 . . 01, = n, 4. Fa, =m+1,

and «; = 0. This relation may be derived from (7.2) as follows. In

each term of (7.2), we replace j,, ..., j,, by their values. The exponents
«,; indicate the multiplicity of the value ¢. The condition

x4+ .. +a, =m+1

insures that we have, in (7.19), m4-1 factors in each term corresponding
t0 Jg, - - -5 jms Whereas the condition ;4 2x,+ . ..-+nx, = n corresponds
t0 jo+ . - - +Jjm = m. The number of terms for which I j,~! represents

II? i is (m~4-1)' II"_, (x;!)~1. We therefore obtain from (7.2) the
relation (7.19).

Proor or (7.3): We have, for |s] <1 and 0 < Jt] < 1

3

M 2
b3

-1

(7.20)  H(s, t) = Pr{H,=m} s"t™

n=1 m=0
0 n- ~1
= V' ( m+1)?) 27["] (1[,] —1) snim
n=1 m=0
= ‘g’((m—l—l)!)“tm z’ )‘[nl HJ
m=0 n=m+1l Jo,....jm v=
= 2 ((m+1)!)" t"‘Z X I
m=0

Jm=1 r=0

Mz

(nt Dty em JT 3j s

y=0 gp=1

3
I
(=4
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78

((m—41)1) " gm ]_mz (—log(1—s))

=]

m=

I
be

(m—41)1)y em(—log (1—s))™**

Il
= o

l

t-1 (exp(—t log(1—s))—1)

= t1((1—s)*—1).
The operations performed are all valid, since we have, for
ls| <1, 0<jtl<1,

absolute convergence of the infinite series which occur in the operations.

8. The formulae (7.2) and (7.19) are both rather useless for numerical
calculations. We shall, however, derive, 1° a method for calculation of
the probability distribution of H, for a fixed n, and 2° the limiting form
of the distribution of H,. We expand the function ¢-1((1—s)~!— 1) in
a power series in s; then the coefficient of s® is the generating function

H,(t) = EPr {H,=m)} tn
m=0

of the sequence Pr{H,=0}, Pr{H, =1},..., Pr{H,=n—1}. We there-
fore obtain for » = 1, 2,... the relation

n—1 _ n—1

(8.1) H,(t)= > Pr{H,=m}t" = t-l(—l)"< nt) =n1J] 1+m1t).
m=0 m=1

If we compare (8.1) for two consecutive values of n, we obtain

(8.2) H, () = Hy(t) n(nt-1) (1 +n12) .

From the relation (8.2), '

(8.3) Pr{H, ,,=m} = (n+1)-1(Pr{H,=m—1} + n Pr{H,=m}),

m=20,1,...,n,

follows by comparison of coefficients of ™ on both sides.
We shall now use (8.3) to show, by induction with respect to n, that
if §,,(n) = 27"} 1™, then, for n =1,2,... and m = 0,1,...,n—1,

(8.4) m Pr{H,=m} = f (—1)i+1gy(n) Pr{H,=m—1i} .
-1
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The relation (8.4) evidently holds for n = 1, since both sides equal 0
in this case. As for m = 0, the sum on the right hand side is empty.
We assume that (8.4) holds and shall show that the corresponding relation
with n replaced by n-+1 also holds. We have

m

2 (=)t s(n+1) Pr{H, ;=m—i}

i=1

ll

Il
-

(1)t s(n+1) (n41)"Y(Pr{H,=m—i—1} + n Pr{H,=m—1})

7

I
bas

(—1)it sy(n) (n+1)1Pr{H,=m—i—1} +

<
I
-

= Zm’ (—1)iin=t(n+41)-1 Pr{H,=m—i—1} +
-1

+ 5 (— 1)1 8(n) (n+1)"tn Pr{H,=m—i} +
-1

+
bss

(—1)i*1n=i (4 1)-1n Pr {H,=m—i}

.
I
—

= (n+41)"Y(m—1) Pr{H,=m—1} 4+ (n+1)"nm Pr{H,=m} +
+ (n+1)"'Pr{H,=m—1}
= m(n+1)"(Pr{H,=m—1}+n Pr{H,=m}) = m Pr{H, ,,=m} .

The formula (8.4) is useful, since, as we shall see below, E(H,) ~ logn
and V(H,) ~ logn, for n — oo, so that Pr {H,=m} is small if m is con-
siderably larger than logn.

The generating function,

Hy(t) = nt JT (L+m-tt) = JT ((m+-0)(m-+1)71),
m=1 m=1

also shows that H, has the same distribution function as a random
variable which is the sum of n—1 independent random variables
Y,,...,Y,_;, where Y, for i =1,...,n—1, assumes the values 0
and 1 with probabilities ¢(i41)-1 and (¢+41)-1. Since E(Y;) = (¢+1)-1
and E(Y;2) = (i+1)"!, we obtain V(Y,) =¢(i4+1)-2. We therefore
have

EH,) = (H—l)
=1
and

Math. Scand. 2. 15
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n—1 n—1 n-1
V(H,) = i(i+1)2= 3 (+1)" — Y (i+1)2.

i=1 i=1 i=1
If we apply the central limit theorem to the random variables
Y,,..., Y, it follows that the distribution of H, is, for large values
of n, approximately normal. Since the values of I, are integers, and
we have E(H,)~ logn, V(H,)~logn for n - oo, we also get an ap-
proximation to the distribution of H, if we use a Poisson distribution
with mean logn. The convergence to the normal or the Poisson distribu-
tion, however, is very slow, since the mean of H, increases only as logn.

ReMmaARK. Itis known (see e. g. Feller [9, p. 205]) that the distribution
of the number of cycles in a random permutation of n elements, if we
assume that all n! permutations are equally probable, has the same
distribution as the sum of n independent random variables Z,, ..., Z,,,
where Z,; assumes the values 0 and 1 with probabilities (:—1)7~! and
¢-1. If we let k, ,, denote the number of permutations of n elements for
which the number of cycles is m, we therefore obtain

ky m=mn!Pr{lH,=m—1}.

9. We shall consider the distribution of the random variable H, under
the assumption that the random variables W, +1~% defined in section 7,
p- 211, assume values which belong to some given sets. These sets
may e. g. be [W,®>0]. It is now necessary to assume that the random
variables X, ..., X, are independent and identically distributed, since
we should otherwise have to introduce probabilities, e. g. of the type
Pr{N:_,[W,®=0]}, in the theorem below.

THEOREM 6. Let the random variables X, X,,... be independent and
tdentically distributed, and let the common distribution function be con-
tinuous. Let H, be defined as in Theorem 5, and let Fi, F,, ... be given
point sets on the real axis; let a;, = Pr{k-18,eF,}. Let C, ,, be the event
in which H,, = m and, furthermore, for v =0, ..., m, the random variables

Wt qssume values belonging to F, . ;. Then
m .
(9.1) Pr{C, n} = ((m+1))" 2™ JT (a;, 3,7,
J1r-sJm v=0
where 2™ indicates summation over those values of jo, - - ., jm for which

we have j,> 0 and jo+...+j, = n.
Furthermore, we have, for |s| <1 and 0 < || <1,
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(9.2) H*(s, t) = 200’ 3 [ Pr{C, ,}s"tm = ¢! (exp (tSa-Ul(a)da) — 1),
0

n=1m=0
where A(s) is the generating function 2'5_, a,s" of the sequence a,, a,, . . . .

Proor or (9.1): This proof is a modification of the proof of (7.2).
We shall therefore, when possible, refer to the corresponding steps in the
proof of (7.2). Symbols introduced in section 7 will have the same
meaning here.

Corresponding to (7.4), we have

9.3) Pr{C, = 23 Pr{AWi . n (W, (’V”‘Z")EF%. 1_%][
i15-+ s tm

where the summation again is over all possible sets of m integers 4,, .. ., i,
for which 0<i4, <...<4, <n Since the events A™, . and
Ny (W, DeF, | 1_z] may be non-overlapping, some of the events
in the summation may be empty.

The event N, [W, >+ %eF, .1 is symmetric with respect to
the variables X; 4,..., X"v+1 for v =0,...,m, so that we may use
Theorem D as in the proof of (7.8) and thereby obtain

C NN LU s )

= (I G oo B, (Y OV,

v=0

Corresponding to (7.10), we have the relation

(9.5) 2 Pr { B® ok N (W, &rteR Ty g 1-kp ) }

k1. km y=

= p(iy, - - -5 by 0) (M 1)!)‘1]1 (@i, 1-4,) 5

where 2, . has the same meaning as in (7.10). Before we turn to
the proof of this relation, we note that (9.1) follows from the relations
(9.3), (9.4), and (9.5) in the same way in which (7.2) followed from (7.4),
(7.8), and (7.10).

The proof of (9.5) also follows the proof of (7.10) with small modifica-
tions arising from the events [Wv(k”“_"”)eFk” +1-k,)- Corresponding to
(7.12), we first prove, for a fixed set of indices 4,,.. ., t,, the relation

15*
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©.7 -+ ):k Pr{Bm’kl,...,km r]0 (W, frertoel, l_kv]}
1,..., m =

m—1

_ (i (g1~

=y, 2 Pl‘{B R 0| (W, Eka'—k/]}’
-

ky's. okt

| . .
where X, and X, . ;. . have the same meaning as in (7.12),
and where we assume that p of the numbers ¢}, ¢,—9;, ..., 6,— 0y
are equal to n—¢,. We consider one of the events

m

(9.8) B™, o km DO [W, ke ey g 1T *

The transformation (7.13) carries this event into the new event

n=1

G k. —k
(9'9) B(lm)kl,.--,kmky+2+’im*n n [WV( ok V)EF’CV-H—’%]

r=0

m—1

n [ Wr(k"+ 2_kv+ l)eFk,,+ 2~kv+ 1] [ I/Vm(n—@m)an_zm] [ W/l—l < W1n< W”] *

v=p

For each of the events (9.8), we have p-1 transformations of the form
(7.13). Furthermore any event of the form (9.9), where

-1 m—1
Gm) (ky1—ky), (hey-2—ky 1)
B TR P e — ( 0' (W, vEFIc,,,H—Ir,,] ﬂ [W, et EFkarg-ka]
v—

v=y

(9.10)

is one of the events on the right hand side of (9.7), is obtained once and
only once, if we disregard the cases where the events (9.8) and (9.10)
are both empty. We obtain, analogously to (7.15) and (7.16), the relations

(9.11)  (p+1) 3 Pr{B™ 4}
k1, ko

m—1

m
. s i oyt 1~y
= 23 3 Pr{Bim)kl'....,km-,ﬂ[Wf TRy, o]

k1's. o km—1" p=0 v=0

[ Wm(n—im)EF n—-im] [ W,u—1< Wm < Wﬂ] }

and
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m—1 m—1
@m) ey 11"~k
(9.12) ZPr{B " ki, km—t’ n [Wv v EFkvﬂ'—kv']
=0

n=0

][W[H—1< Wm< I47/1] ]

f

m—1
— (im) (kyy 1'—ky) (n—im) ]
= Pr { Bt ks kma’ n I’V,, vy EF]‘»',_,r 1"76;:’][]/Vm " EF"—JM] ] :
r=0

[ w m("‘hn)eF

n—im

We now use the fact that we have assumed, in this section, that the
random variables X,, X,,... arc independent and that the event
BOy oty O (W8, ] depends only on X, ..., X, ,
while [W (- "")EFn _i,,] depends only on X; ...., X,, so that we may
use the multiplication rule for probabilities of independent events and
thereby obtain (9.7) from (9.11) and (9.12).

The relation (9.5) now follows from (9.7) in almost the same way in
which (7.10) followed from (7.12). We need only observe that the factor

veo @, . i, goes into the induction together with p(iy, ..., 1,,n)
and use the fact that Pr{B@W[W WeF, ]} = Pr{W WekF,} = a,.

An alternative form of Pr{C, ,} corresponding to (7.19) is

m>

(9.13) Pr{C, .} = Z(m) II (00 1) " (@ i-1)™;

yon 4=1

the proof is an easy modification of the proof of (7.19).

Proor or (9.2): We have, for |s| <1, 0 < |i| < 1,

o n-l o
=2 XY Pe{C,,}s"tm=1t1 (exp (t P ajj—lsf> — 1),
n=1 m=0 j=1

which may be seen by calculations similar to those of (7.20). We do,
however, have A(s) = 272, ;s and {jo-14(0)do = 232, a;j-1s7, so
that we obtain (9.2).

We shall now consider the probability of the event

C, = CpoU...UC

n,n—1 *
In general this event is connected with the random variables X, ..., X,
and the sums S,, Sy, . . ., S, in a rather complicated way. When, however,

we choose the point sets F, to be, for all k, the set of all positive numbers,
then it follows that O, is the event at which the largest convex minorant
sequence 7'y, T',...,7T, to the sequence S, S;,..., S, assumes only
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positive values (except, of course, Ty = 0). Since we have §; = T, it
follows that in C, the sums S, ..., S, assume only positive values.
Conversely, if S,,...,8, are all positive, then 7,,...,7T, are also

positive. Therefore, in this case, we have
n
= [ [8;>0] = [N,=n] = [M,=0].
=1

From the definition of C, and the relation (9.13), the formula

n—1
(9.14) Pr{C,}=23" ™ ]I(oc Ya,i-1)%
m=0 «y,...,ap =1

2* In] (a Z—l)ow

KYseeesoip 1=1
follows.

We have, in this way, obtained a new proof of the formula (3.1) of
Theorem 1. (In the case K, = L,, we use Theorem A.) This proof is
valid only if the common distribution function of X,,..., X, is con-
tinuous. It may, however, be extended to the general case, if we introduce
auxiliary random variables Y, Y,, ... and use the method indicated in
[3, section 7].
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