REMARKS TO THE PAPER: ON THE FLUCTUATIONS OF SUMS OF RANDOM VARIABLES

ERIK SPARRE ANDERSEN

1. In the review of the above mentioned paper (Math. Scand. 1 (1953), 263–285) in Mathematical Reviews 15 (1954), 444, K. L. Chung has pointed out a misprint on page 267 and a mistake in the formulation of the argument in the first lines of page 268.

On p. 267, l. 18 read

$$\bigcup_{j=0}^{i-1} \bigcup_{k=i}^{n} \quad \text{for} \quad \bigcap_{j=0}^{i-1} \bigcap_{k=i}^{n} \quad .$$

On p. 268 the first nine lines should be replaced by the following:

$$(*) \quad B = \bigcap_{h=1}^{n} [S_h \leq 0] [S_i = 0] [S_{n+1} = 0]$$

$$\subseteq \bigcup_{m=0}^{i-1} [L_n = 0] [S_{m+1} = 0] \bigcap_{h=1}^{m} [S_h < 0] [S_{n+1} = 0] .$$

From (3.3) on p. 266 and (*), it follows that

$$(**) \quad \Pr \{BC\} \leq \sum_{m=0}^{i-1} \Pr \{[L_n = 0] [S_{m+1} = 0] \bigcap_{h=1}^{m} [S_h < 0] [S_{n+1} = 0] C\}$$

$$= \sum_{m=0}^{i-1} \left(\Pr \{[L_n = m] [S_{n+1} = 0] C\} - \Pr \{[L_n = m+1] [S_{n+1} = 0] C\} \right)$$

$$= \Pr \{[L_n = 0] [S_{n+1} = 0] C\} - \Pr \{[L_n = i] [S_{n+1} = 0] C\} .$$

Since we have assumed that (3.1) holds, it follows from (**) that \(\Pr \{BC\} = 0 \). From Lemma 1 it then follows that \(\Pr \{AC\} = 0 \). This completes the proof of Theorem 2.

2. On p. 269 the proof of Theorem 3 is incomplete. As it stands, the proof is valid only if the event \(C \) can be defined by means of

Received November 15, 1954.
$X_1^{(n)}, \ldots, X_{n+1}^{(n)}$, i.e. if the event C has the property that the points $(x_1 + t, \ldots, x_{n+1} + t)$ belong to C, for any t, if (x_1, \ldots, x_{n+1}) belong to C. We can complete the proof as follows:

Since the proof, as it stands, is correct when $C = E$, it follows that Theorem 3 is true for $C = E$ and any probability field $\Pr \{ A \}$ in which X_1, \ldots, X_{n+1} are symmetrically dependent. The conditional probabilities $\Pr \{ A | C \}$ with an arbitrary C subject only to the condition $\Pr \{ C \} > 0$, define a new probability field. The random variables X_1, \ldots, X_{n+1} are symmetrically dependent also with respect to this new probability field when C is symmetric with respect to X_1, \ldots, X_{n+1}. Therefore Theorem 3 holds for this new probability field. Thus it holds in general.

THE LIFE INSURANCE COMPANY
PENSIONS- OG LIVRENTE-INSTITUTET AF 1919 A/S
COPENHAGEN, DENMARK