BERNSTEIN POLYNOMIALS AND SEMIGROUPS OF OPERATORS

DAVID G. KENDALL

1. Let $\{T_t\colon t\ge 0\}$ be a semigroup of linear bounded transformations of the real Banach space X into itself which is such that $T_0=I$ (the identity) and $\|T_tx-x\|\to 0$ as $t\to 0$; also let $\|T_t\|\le M<\infty$ when $0\le t\le 1$ (such an M necessarily exists). Then if $A_h\equiv (T_h-I)/h$ for h>0, it is known (Hille [2, pp. 189–190]) that for each $x\in X$ and for each $t\ge 0$,

(1)
$$\operatorname{strong} \lim_{h \to 0} \exp(tA_h)x = T_t x,$$

the convergence being uniform in any finite t-interval. Dunford and Segal [1] have used this "exponential formula" to obtain a simple (though hardly elementary) proof of the classical theorem of Weierstrass concerning the uniform approximability of continuous functions by polynomials.

Here we give a result of the same general type as (1) which has as a simple consequence the explicit approximation theorem of Bernstein (for this see, for example, Lorentz [3]).

2. Theorem. For each fixed $x \in X$,

(2)
$$\operatorname{strong} \lim_{n \to \infty} \{(1-t)I + tT_{1/n}\}^n x = T_t x$$

whenever $0 \le t \le 1$, the convergence being uniform in this interval.

PROOF. Let $U_n \equiv (1-t)I + tT_{1/n}$ and let $V_n \equiv T_{t/n}$, where $n \ge 1$ and $0 < t \le 1$. These operators commute, and $\|U_n{}^r V_n{}^s\| \le M$ if $0 \le r+s \le n$. Thus, if $x \in X$,

$$\|U_n{}^nx - V_n{}^nx\| \leq n\,M\,\|U_nx - V_nx\| \leq M\,\|A_{1/n}x - A_{t/n}x\|\;.$$

Now choose x_0 in the (dense) domain of the infinitesimal generator A of the semigroup so that $||x-x_0|| < \frac{1}{4}\varepsilon/M$. Then

$$\|\boldsymbol{U}_{n}{}^{n}\boldsymbol{x} - \boldsymbol{V}_{n}{}^{n}\boldsymbol{x}\| < \tfrac{1}{2}\varepsilon \, + \, M \, \|\boldsymbol{A}_{1/n}\boldsymbol{x}_{0} - \boldsymbol{A}\,\boldsymbol{x}_{0}\| \, + \, M \, \|\boldsymbol{A}_{1/n}\boldsymbol{x}_{0} - \boldsymbol{A}\,\boldsymbol{x}_{0}\| < \varepsilon$$

Received October 13, 1954.

Math. Scand. 2.

if $0 < t \le 1$ and $n \ge N(\varepsilon)$. This proves the theorem, for (2) is trivial when t = 0.

3. Now let $f(\cdot)$ be any real-valued continuous function defined on [0, 1], and put

$$f^*(u) \equiv f(u)$$
 $(0 \le u \le 1)$,
 $\equiv f(1)/u$ $(1 < u < \infty)$,

so that $f^* \in X$ when X is the space of real-valued continuous functions $x(\cdot)$ defined on $[0, \infty)$ and such that $x(u) \to 0$ as $u \to \infty$, with the customary norm. If we apply the theorem to the semigroup of translations, so that

$$(T_t x)(u) \equiv x(u+t) \qquad (u, t \ge 0)$$
,

and then put $x = f^*$ and u = 0 we get Bernstein's result:

(3)
$$\lim_{n \to \infty} \sum_{r=0}^{n} {n \choose r} (1-t)^{n-r} t^r f(r/n) = f(t)$$

whenever $0 \le t \le 1$, the convergence being uniform in this interval.

REFERENCES

- N. Dunford and I. E. Segal, Semigroups of operators and the Weierstrass theorem, Bull. Amer. Math. Soc. 52 (1946), 911-914.
- 2 E. Hille, Functional analysis and semigroups, New York, 1948.
- 3. G. G. Lorentz, Bernstein polynomials, Toronto, 1953.

MAGDALEN COLLEGE, OXFORD, ENGLAND