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PLANE CONTINUA ADMITTING
NON-PERIODIC AUTOHOMEOMORPHISMS WITH
EQUICONTINUOUS ITERATES

E. HEMMINGSEN

Introduction. The purpose of this paper is to treat, for compact subsets
of the plane, the following problem posed to the author by A. Edrei:
Does there exist a simple necessary and sufficient condition which a
continuum X must fulfill in order that it possess a homeomorphism onto
itself whose powers form an equicontinuous, non-periodic family; and
how is such a homeomorphism characterized.

If X is a simple closed curve, the problem is a special case of that
treated by Kneser [9, pp. 141-144], who studied the nature of homeo-
morphisms of a simple closed curve upon itself. See also J. Nielsen [12]
and van Kampen [14]. Kerékjarto [6;7;8] has treated aspects of the prob-
lem in case X is a two dimensional, closed, orientable manifold without
boundary. The procedure of the present paper is, in part, similar to that
of Kerékjarté [6]. However, in many cases the author has preferred to
restate and reprove statements made there, since the assumptions here
are different and since some of Kerékjartd’s arguments seem to require
clarification.

The first section contains, for the convenience of the reader, some
more or less well-known lemmas of a general nature which are used
subsequently to establish that a certain open set has a simple closed
curve as a boundary. In particular it includes a condition that a bounded,
open, connected plane set be uniformly locally connected. The second
section deals with some properties of uniformly equicontinuous families
of functions, and with the properties of images of open spheres under
the elements of such families.

The remainder of the paper deals with a plane continuum M and a
homeomorphism f of M onto itself whose iterates {f*},n=0,4+1,42,...,
form an equicontinuous family. The homeomorphism f will be called
periodic if there is an m == 0 such that f™ is the identity f°. Points p of
M will be called periodic if there is an m == 0 such that f™(p) = p.
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The third section establishes, in case M has interior points, the existence
of a simple closed curve in M which is invariant under an iterate of f.
The fourth section deals with the case in which such an invariant simple
closed curve contains a periodic point; it is proved that any component
of the interior of M containing an invariant curve with a periodic point
must consist of fixed points under some iterate of f. The fifth section
considers the case in which there is a non-periodic interior point of M.
Under this condition it is proved that there exists a homeomorphism
k of M onto a circular disc or annulus and that there exists an irrational
rotation @ of this disc or annulus such that, in the case of the disc,
f=hph and in the case of the annulus either f = A-1ph or else
J? = h~l¢h, the latter occurring when f permutes the boundary curves
of M. Thus, if one component of the interior of M consists entirely
of periodic points, all do. The sixth section gives an example which shows
that all interior points of M can be periodic under a non periodic function
f of the desired type and that in this case the structure of M can be
exceedingly complicated. The seventh section deals with the orbit of a
point p € M, that is, the set of points f*(p), n = 0, -1, +2, .... It is
proved that if the closure of such an orbit is connected, then M must
be topologically either a disc, an annulus or a simple closed curve and
either f or f2 must be A~'ph as already described. The concluding section
describes some examples in space.

1. General preparatory remarks. Although a number of the lemmas
proved are obviously valid in more general spaces, they will all be proved
for plane sets. The closure, boundary, interior, and complement in the
plane of a point set K will be denoted by E, ¥ E, Int E, and ‘€ E, respec-
tively. The open sphere with center at # and radius » will be denoted
by S, ,. The distance between two points, » and y, will be denoted by
oz, ).

In this section, let ¥ be a bounded, open, connected point set and let
R be the unbounded component of ‘GV. Its boundary R shall be
termed the outer boundary of V.

LeMmmaA 1.1. The outer boundary of V is connected.

Since V is connected, the closure V is also connected; and hence, ac-
cording to a well-known theorem of Brouwer (see for example [3, p. 345]),
every component of ‘G V has a connected boundary.

The next lemma is essentially due to R. L. Moore [11, Theorem 3].

Lemma 1.2. Let Uy, U,, ... denote those bounded components of GV
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whose boundaries are not contained in the outer boundary F R of V. Then
the set
(1.1) By =[FV—-FRluIntVuU,uU,uU ...

18 bounded, open, and connected, and its boundary is the outer boundary

of V, that is F B, = i R.

It is observed at once that the boundary of every component of GV
is contained in = V = “FInt V; in particular, ¥R < SF V.
Since By, < ‘GR and ‘CR is bounded, B}, is bounded. Obviously

‘CBy = FRURU W,uW,uU...

where W,, W,, ... are those components of ‘G V, whose boundaries are
contained in % R. Hence no sphere S =S, ., for which SnFR =0,
contains points from both By and ‘G Bj. Chosing x € By, one sees that
By is open. Chosing in particular x € % V —"% R < By, as a boundary
point of U,, one sees that B, is connected since Int V and all U, are
connected.

CoroLLARY. The closure of By and the complement of By are, respec-
tively,

(1.2) By,=VuUuU,...,
By =RuW,uW,u...,

where Wy, W, ... denote those bounded components of GV whose boundaries
belong to “FR. The (outer) boundary of By is the same as the outer boundary
of V.

Lemma 1.3. Let A be any bounded, open, connected set in the plane,
whose boundary FA is contained in By but not entirely in F R = —F By,.
Then A = By.

If a point of R belongs to a bounded open set, then this set has a
boundary point in R since R is open, connected, and unbounded. Hence
the set 4 is contained in ‘GR, and thus

Ac CGR=[FV —FRluIntVu[U,uU,u...Ju[W,uW,u...]
=B,uW,uW,u....

Since there is a boundary point of 4 in B;, — % R = By, there is also a
point a € 4 in Bj. Assume that a point a’ € 4 belongs to one of the
sets W,, W,, ..., say W,. Since 4 is connected, there is an arc in 4
connecting @ and a’. Such an arc would contain a point p € FW, < FR.
Since p € 4, this contradicts 4 < ‘GE, and the lemma is proved.
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As usual, a set A will be called locally connected at a point z € 4 if
to every ¢ > 0 there exists a y = y(¢) > 0 such that whenever g(x, y) < y
then there is a connected set in 4 n S, , containing x and y. If a set is
locally connected at each of its points, it is called locally connected. If
to every ¢ the same y = y(¢) may be used for every x € 4, then A is
called uniformly locally connected. The following lemma yields a crite-
rion for uniform local connectivity.

LemmA 1.4. Let B be a bounded, open, connected point set in the plane
having the following properties:

1° B contains every bounded, open, comnected set in the plane whose
boundary is contained in B but not entirely in the boundary FB;

2° B is locally connected.
Then B is uniformly locally connected.

Since B is bounded and closed, it is uniformly locally connected; let
¢ > 0 be given and let y = y(¢) > 0 be chosen to correspond. Then, to
any given « € B, y € B, with o(z, y) < y let a connected set N < Bn S, ,
be chosen such that x € N, y € N. Without loss of generality it may be
assumed, that N is closed. It will be proved that there exists a curve in
Bn S, , connecting « and y; this will clearly prove the lemma.

Since the set B is open and connected, there is an arc in B connecting
z and y, which consists of straight line segments. It can be chosen in
such a way that none of its vertices lies in =¥ 8, , and none of its segments
is tangent to S, ,. Let K be such an arc. If K belongs to S, ,, no
further argument is needed. If K contains points outside S, ,, it is
easily seen that the union K U N separates the plane, and thus that
there is an unbounded component and at least one bounded compo-
nent of ‘G(K UN). At a point p, where the circle S, , crosses the
polygonal line K, it must pass from the unbounded component of
‘G(K U N) to a bounded one, say . Obviously @ < B. Moreover,
since 7 ) contains points of K, ZF@ is not contained in “%B. Hence,
according to 1°, ¢ < B. Thus one may proceed from p along an arc of
' 8,, . which lies in B and whose second endpoint lies on K. Using such
circular arcs, it is easy to obtain an arc K, consisting of straight line seg-
ments and circular arcs of =S, , which lies in Bn S, , and which con-
nects x and y.

2. Uniform equicontinuity. Mapping of spheres. Let M be a point
set of a metric space with distance function g and let @ denote a family
of homeomorphisms of M onto M. As usual, the family @ is called equi-
continuous at x € M if to any ¢ > 0 there is a § = d(¢) > 0 such that
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ye M, o(x,y) <6 imply o(f(x),f(y)) < ¢ for every fe ®. The family
is called equicontinuous on M if it is equicontinuous at every x € M.
Equicontinuity on M is called uniform if the d(¢) is independent of x;
thus @ is called uniformly equicontinuous on M if there exists a real
function & = d(¢) = dy(e) > 0 such that

(21) xe M,ye M,fe ®,o(x,y) < i) imply o(f(®@),f(y)) <ce.

Equicontinuity on a compact set is uniform.
Throughout the following @ denotes a uniformly equicontinuous family.

Lemma 2.1. Assume M compact, and let @ be an infinite, uniformly
equicontinuous family of homeomorphisms of M onto M having the following
property: If o, € @, ¢, € D then either ¢, 9,1 € D or g, ¢, 1 € .

Then, to every ¢ >0 there are infinitely many fe @ such that o(x,f(x)) <
Jfor every xe M.

Since @ is infinite, it contains a sequence g, g,, ... such that g,g,~ is
different from both g,¢,~* and g,9,~" for (v, u) == (%, A). Letcy, ¢,, ..., ¢,
be the centers of a finite covering of M by spheres of radius § = J,(1e).
The sequence ¢,, ¢,, . .. has a subsequence which converges on all the
centers. In order to avoid complication of the notation, it will be as-
sumed that g,(c;) converges for every j, j=1,2,...,7. Then there
exists a number N = N(¢) such that

(2.2) 0(gn(cy)s golc))) < 3,  j=1,2,...,r,

for n > N,q> N. Without restricting the generality, it may be assumed
that f = f,, = 9,9,1€®. To each xe M let y = g,7'(¥) and denote
by c; a center such that g(y, ¢;) < é(3¢). Then

(23) Q(gn(y)’ gn(c])) < %8 and Q(gq(y)’ gq(cj)) < %8 .

From (2.2) and (2.3) it follows that Q(gn(y), gq(y)) < e. Since g,(y) =z
and g¢,(y) = g,9,7'(x), the homeomorphisms f = f,, have the desired
properties, and the lemma is proved. This lemma is essentially the
same as one of Edrei [2, corollary 1].

CoroLLARY. If @ is the semi-group consisting of a homeomorphism f

of a compact set M onto itself and the tterates fi,q =1, 2, ..., then there
is @ sequence 0 < ¢, < gy < ... such that o(z, f*(x)) < & for every xe M
andv =1,2, ....

The results of sections 3 to 7 all involve the case in which @ is the
group of iterates {f}, n = 0, +1, 42, .... It should be noted that the
equicontinuity of the negative powers is a consequence of that of the
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positive powers. This has been related orally to the author by both
A. Edrei (see also [2]) and W. Gottschalk and may be stated as follows:
If a semi-group D consisting of a homeomorphism f of a compact set M
onto M and its iterates f2, 9= 1,2, ..., is a uniformly equicontinuous
Sfamily, then the entire growp generated by f is also equicontinuous.
Let ¢ > 0 be given. To any n > 0 determine according to the preceding
corollary a number ¢ > n such that

(2.4) o(fu), x) < d,(3e)
for every x e M. If o(y, 2) < d,(3¢), we have
(2.5) e(fTm(y), f1™(z)) < 3e

since ¢—n > 0. Further, according to (2.4) with f-*(y) and f"(z) in
place of z,

(2.6) o(f (), f[7Uy) < 4e,  o(fT (), f(2)) < de.
From (2.5-6) it follows that o(y,2) < d,(3¢) implies o(f~(y), fM2)<e.

This holds for n =1, 2, ..., which proves the theorem.
Throughout the following we assume that @ has the property,
(2.7) fe® implies f1e®.

Then the statement (2.1) is equivalent to

(2.8) veM,ye M, fed,o(x,y)z¢ imply o(f(@),f() = d(e) = dale)

It follows immediately, that if A < M, pe M, and p(p, 4) = ¢, then
o(f(®), f (A)) = d(e) for all fe ®. Moreover it shall be assumed that M
is a bounded set in the plane having interior points.

As a basis for later considerations, a study will be made of the images
of spheres in M and their boundaries under homeomorphisms belonging
to @. In all that follows, D denotes an arbitrary open sphere with D
in M. Its boundary and diameter are denoted by C and ¢, respectively.

Lemma 2.2. If p is a boundary point of the set Uy 4 f(D); then there is
a point o of C and a sequence fy, f,, ... of homeomorphisms in @ such that

limf,(@¢) =p and a=lmf, ~(p).
If p is fixed under every f € @, then a = p.

The point p is a limit point of the set U; . ,f(C); and, consequently,
there exists a sequence {a;} of points of U, together with a sequence
{f;} of homeomorphisms in @, such that p = limf,(a;). Without loss of
generality, it may be assumed that the sequence {a;} converges to a
point @ of C. The lemma now follows from the equicontinuity.
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Lemuma 2.3. The set Us. ., f(D) has only a finite number N = N(D, ®)
of components.

According to (2.8) every image f(D), fe @, must contain a sphere
with radius d,(3¢). Hence, since M is bounded, there are only finitely
many disjoint images f(D), f € @. Obviously, this proves the lemma.

If @ is a group of homeomorphisms, then every fe @ maps the set
U;. o f(D) onto itself. From lemma 2.3 there follows immediately

LevMA 2.4. Let @ be a group of homeomorphisms, and let @, be the nor-
mal subgroup of @ consisting of those fe @ which map every component
of the set U; o f(D) onto itself. Then the factor group @[®, is isomorphic
to a group of permutations of N = N(D, @) elements, thus being at most
of the order N!.

In particular, if @ is the cyclic group generated by a homeomorphism f,
then there is an iterate f9, q > 0, of f, which maps every component of
U2 f(D) onto itself. Obviously, if W is the component of Int M, which
contains D, then f@ maps every component of U f(W) onto itself.

The next two lemmas are of quite a different character. They will
serve as a tool on several occasions.
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LemmaA 2.5. Let y denote some positive number not exceeding 3}d(e),
where ¢ is the diameter of a sphere D (D < M) with boundary C and 6 = 0,
is the function of (2.1) and (2.8). Let S, 4, be a sphere whose closure has a
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point a in common with an image f(C), f€ @. Then the component N of
f(D)n 8, , whose closure contains a has in its boundary an arc H of the
boundary of S, , whose length is greater than n = 6(0(3y)).

Let b = f(b'), where b" is the second end point of that diameter A4’
of C which has ¢’ = f~%(a) as its first end point. Since p(a’, ') = ¢, it
follows that ¢(a, b) = d(¢) = 29 and hence (b, S, ,) = $p. Proceed
along 4 = f(A4’') from a to b and denote by y the last point which belongs
to N. Obviously y is situated on an arc H of the boundary of S, , which
is a part of the boundary of N and whose end points, ¢ and d, lie on
f(C). Clearly there is an arc connecting a with y and which, except for
the points @ and y, belongs to N. Let 4, be the curve obtained by prolong-
ing this arc with the piece of A connecting y with b. Since A, crosses H
exactly once, the pair ¢, d must separate the pair a, b on f(C). Hence
¢’ = f-Yc),d’ = f~}(d) separates a’,b’ on (. From the fact that the
four distances from @ and b to ¢ and d are all at least 3y and that f~1 e @
it follows from (2.8) that the four distances from a’ and &' to ¢’ and d’,
are at least 6(3y). Therefore, p(c’, d’) = 6(3y); and hence

length of H > g(c, d) = 6(d(3v)).

LemMa 2.6. Let D, ¢, p, and 5 be as in lemma 2.5. Then the number
of components of the set
Us@dns,,,
feod
whichk have a distance from x less than Yy does not exceed 2my|n, and is
thus finite.

Two distinct ones of these components contain disjoint components,
say N and N’, of one or two sets f(D) n S, ,, such that both N and N’
have a point in S, ;. According to lemma 2.5, each of them has in
its boundary an arc whose length is greater than 5 = 6(d(4y)). Since
the two arcs can have no sub-arc in common, the lemma is proved.

3. Construction of an invariant simple closed curve in M. This section
establishes the existence in Int M of a simple closed curve which is in-
invariant under some iterate of f; if there is no need to specify the iterate
of f, such a curve will simply be termed invariant. A process by which
such invariant simple closed curves may be obtained will also be de-
scribed. This process is used again and again in sections 4 and 5.

Here, and in all the subsequent sections, the equicontinuous family
@ shall consist of the iterates f»,n = 0, +1, 42, ..., of a homeomor-
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phism f of the compact, connected, plane set M upon itself. Except
in section seven, M will be assumed to have interior points.

Let D be an open sphere in M with radius ¢, and let ¥ be one of the
components of U2 f»(D). For this set V form the set By as in lemma
1.2 and denote By by B.

Lemma 3.1. B s uniformly locally connected.

On account of lemmas 1.3 and 1.4, it is sufficient to prove that B is
locally connected. This is obviously the case at all its interior points.

Let  be a point of B < V, and let y be any positive number not
exceeding 1d(¢) as in lemma 2.5. By lemma 2.6, there are just a finite
number of components N of

—+00
U mons,,
Nn=—00

which have points within }v of . Let y be a positive number less than
3y, and also less than the least distance from x to the finitely many sets N
whose closures do not contain «, provided that such sets exist. It is clear
that there may be several sets N whose closures do contain z. Let
z€ B and g(x, z) < y. From the relation B= Vu U,u U, U ... in (1.2)
it can be seen that either z is in a set N containing x and the lemma is
proved, or else z is in one of the bounded open sets U,. In the latter case,
the straight line segment joining z to * must meet a boundary point of
U, that can only lie in a set N containing z. The closure of the portion
of this line segment from z to the first such boundary point together
with the set N in question is a connected subset of Bu S, ,. This com-
pletes the proof of the local connectivity.

THEOREM 3.1. “F B is a simple closed curve.

According to a theorem of R. L. Moore, cf. [15, p. 161 and 164], if
the boundary of a connected, uniformly locally connected, open set is
connected, then it must be a simple closed curve. Lemmas 1.1 and 1.2
prove that B is connected, lemma 1.2 proves that B is open and
connected, and lemma 3.1 proves that B is uniformly locally connected.
Hence “F B is a simple closed curve.

ReMARK. The points of V lie in the inner region of the curve “#B.
The points of 7 V lie in the inner region of or on =F B.

THEOREM 3.2. There exists an integer m == 0 such that B is invariant
under f™.
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By lemma 2.4 there is an integer ¢ == 0 such that f;, = f? maps the
chosen component V of U f»(D) onto itself. Hence f;"(V) = V and
fil(CFV)=FV for r=1,2,.... Thus FB < FV < £V implies
fi'(#B) € FV. From the preceding remark it therefore follows that
the points of f,"(-# B) lie in the inner region of or on the curve —F B.

Let a point x € V be chosen; and let, in accordance with lemma 2.1,
an integer r == 0 be determined such that f," is closer to the identity than
o(x, ¥ B). From Rouché’s theorem (cf. [1, p. 459]) and the fact that z
is inside the curve = B, it then follows that z lies inside f,"(-# B). Thus,
since the connected set V has no point in common with f,"(“% B), V lies
completely inside f,"(-#B). Hence the points of #B < %V lie in the
inner region of or on the curve f,"(-% B).

From these statements it can be concluded that f,"(-% B) = “F B when
7 i3 determined in the indicated manner. The integer m = rq meets the
requirements of the theorem.

In the early pages of [6] Kerékjarté uses a procedure, analogous to the
one of this section, to establish the existence of a simple closed curve
which is invariant under f. However, he has the advantage of having a
fixed point in the set D, and he also treats very lightly [6, p. 237] the
connectedness of the set which becomes his invariant simple closed curve.

Lremma 3.2. If B = By, < M and V is invariant under some homeomor-
phism g of M onto M, then 5 B and B are invariant under g.

The relation g(V) = V implies g(7 V) = & V which, together with
FB < FV, implies g(# B) < ¥ V. Hence, according to the remark
before theorem 3.2, the points of g(-% B) must lie in the inner region of
or on F B. Thus the inner region of g(=% B) belongs to M ; and by the
theorem on ‘‘Gebietstreue’ it must be the image under g of the inner
region of % B, that is, B. From this it follows that g(-%B) < “F B; for
if there were a point of g(~% B) inside 5% B, there would be a point of
B, and hence also of V = g(V) < ¢g(B), outside g(-#B). However,
from ¢g(=% B) < SF B it follows that g(=% B) = & B since no proper subset
of a simple closed curve is a simple closed curve. This, in fact, proves the
lemma.

4. The case of periodic points on a invariant simple closed curve.
In section 3 it was proved that in any component W of Int M there is
a simple closed curve which is invariant under some member of the equi-
continuous family @ = {f»}. If f has a periodic point on such a curve,
then, as will be proved in the next theorem, there is an iterate of f
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which leaves every point of W fixed. However, it is very easy to give
examples where no invariant curve contains a periodic point.

THEOREM 4.1. If K s a simple closed curve in Int M which is invariant
under some iterate of f and on which there is a point periodic under f, then
there is an iterate of f which leaves fixed all points of W, the component of
Int M containing K.

Under somewhat different assumptions, Kerékjart6 has stated and
sketched a proof of a related theorem [6, p. 344]. He assumes the homeo-
morphisms to be order preserving. This will not be assumed here. For the
proof of theorem 4.1 the following lemma is needed.

LeMMA 4.1. Let k denote a homeomorphism of a simple closed curve K
onto tself having the property that the family {k"} is equicontinuous on K,
and let g € {k™}.

If g is order preserving and K has a point fixed under g, then g ts the
identity on K.

If g is order preserving and K has no periodic point under g, then g is
topologically an irrational rotation of K ; that is, there exists a homeomor-
phism h of K onto a circle and an irrational rotation ¢ of the circle such that
g=heh.

If g is mot order preserving, then g2 is the identity on K.

For the first and second parts of the lemma, see Kerékjart6 [6, pp.
243-245]; the second part is a special case of a theorem of Kneser [9,
pp. 141-144]. The third part follows from the first and the fact, that
the square of a non-orderpreserving homeomorphism is order preserving
and has two fixed points.

Proor oF THEOREM 4.1. Assume K to be invariant under f™ and some
point of K to be fixed under fI. Then both the point and K are invariant
under f, = f™!. Hence, according to the first and third parts of lemma 4.1,
every point of K is fixed under f; = f,2; and since W is connected, there
are just two components of W n‘G K, each of which is invariant under f,.
Let ¢ be a point of W so close to K that it lies on the boundary C of a
sphere D which is centered on K, and which is so small that its images
under all iterates of f; are contained in an open sphere with diameter
less than that of K and lying in W.

The set

v = D)

is connected since every f,”(D) contains the center of 1. By theorem 3.1

Math. Scand. 2. 9
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its outer boundary F B is a simple closed curve which, by lemma 3.2,
is invariant under f,; for V is invariant, under f;, and B < M. Since
¥ B must cross K, there is an arc L of % B which, except for its end
points, lies in the inner region of K, while the end points are on K and
thus fixed under f,. Hence, since 5 B and the inner region of K are both
invariant under f,, L is invariant under f,. Consequently, f, preserves
the order of rotation on =% B. Thus by lemma 4.1 all points of K, are
fixed under f,, and by lemma 2.2 each point of K, is a point of C = F D,
Hence K, = C and ¢ is a fixed point under f,.

The set E of all such points g sufficiently close to K forms an open set
in W of points fixed under f,. Their limit points are also fixed under f,.
If E 4 W, points sufficiently close to the set E can likewise be proved
to be fixed under f;. The points z of W that can be proved fixed by a
finite repetition of this process form a set which is both open and closed
in W, and hence include all of W.

5. The case in which Int M contains a non-periodic point.

THEOREM 5.1. If @ component W of Int M contains a non-periodic point,
then W = M ; and there exist a homeomorphism h of M onto a disc or an
annulus and an irrational rotation ¢ of this disc or annulus such that either
f=nh"1lph or f2 = h~'¢h, the second power being necessary only in case M
18 topologically an annulus and f permutes its boundary curves.

The proof of this theorem falls naturally into two parts: In the first
part, Theorem 5.1a on p. 136, is proved the existence of the required
homeomorphism between W and a disc or an annulus; and in the second
part, theorem 5.1b on p. 136, the fact that M = W. The first part is
proved by means of lemmas 5.1 to 5.7; the second, directly. It should
be noted that, even where it is not explicitly stated, the first part of the
proof of theorem 5.1 makes frequent use of ideas contained in [6].

Since W contains a non-periodic point, it follows from theorem 4.1
that no simple closed curve in W which is invariant under an iterate of
J can have a periodic point. It is also clear from the third part of lemma
4.1 that the iterates of f are order preserving on the simple closed curves
which they leave invariant. These remarks will be used without further
comment throughout the proof of theorem 5.1.

LemMma 5.1. W contains a one parameter family K of disjoint, invariant,
simple closed curves K,, where 0 is the parameter, such that if « < § then
K, is contained in the inner region of K, and such that each curve of K
either lies entirely in W or else is a boundary curve of W.
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It follows from section 3 that there is a simple closed curve K = W
which is invariant under an iterate of f, say f;. It follows from the
Brouwer fixed-point theorem that if the inner region of K belongs to
M, then f, has a fixed point in the inner region of K. In this case, let
such a fixed point be chosen and let it be called p. Otherwise let p
designate a point of K. Let {D,} be the family of all open spheres in W
having p as center. The index 0 indicates the radius of D,. The set

Vo= U /"Dy
is connected since the sphere D), is centered on a fixed point or else on
a simple closed curve on which f;, behaves, according to lemma 4.1,
topologically as an irrational rotation. The outer boundary K, of V, is,
by theorem 3.2, a simple closed curve which is invariant under some
iterate of f,. Thus {K,} is a family of simple closed curves each of which
is invariant under some (eventually to be proved the same) iterate of f.

Either all the inner regions of the curves K, contain the fixed point p,
or else they contain the curve K. The symbol K, shall designate either
p or the curve K, depending on the case considered.

The distance d from the center p to the nearest boundary point of W
is the largest possible radius for the spheres D, centered at p. Let f; be an
iterate of f leaving K, invariant. If there are points of W in the outer
region of K 4, the curve K, will obviously lie entirely in W, for the set of
all images under iterates of f; of a small sphere in W centered on K,
will contain K,. If there are no points of W in the outer region of K,
then K, is the outer boundary of W.

In case K, is not the outer boundary of W, it is possible to extend the
family {K,}, 0 < 0 =d of invariant simple closed curves by using a
second family of open spheres centered at a point q of K;. Each of these
spheres is to be indexed by the sum of its radius and the number d. The
additional invariant simple closed curves are the outer boundaries of the
sets 0o

Vawe = U Ja"(Dax) -
They are to be given the index of the sphere from which they arose.
If the largest of this second family of spheres does not yield a curve K,
which is the outer boundary of W, the process of extending the family
of curves can be repeated.

If the inner region of K contains a point of ‘G M, it contains an open
set in ‘6 M. Let z be a point in this open set; let the plane be compacti-
fied to a sphere; and let the sphere be punctured by the removal of the

o*
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point z. The inner boundary of a connected open set in M shall be defined
as its outer boundary in the punctured sphere. Clearly it is possible to
carry over to this situation all the previous results proving that certain
outer boundaries are invariant simple closed curves. All further con-
siderations will be carried out in the original plane.

The inner boundary of V,, where the sphere D, is centered at p € K,
is thus well defined. Each of these inner boundaries is to be indexed by
the negative of the radius of the open sphere from which it arose; and,
if it is necessary to consider further families of spheres as above, they
shall be indexed by the negative of the numbers described there.

The family “K shall consist of all the simple closed curves obtained
in the manner just described. It is clear that they form a one parameter
family, and that K, is contained in the inner region of K, if x < §.
Thus the curves of K are disjoint.

The next lemma is analogous to statements made by Kerékjarto
[6, p. 247 and p. 249] for a family of curves formed in somewhat the same
manner as “A. It involves the rotation constant k of an iterate f, of f
leaving a curve K € “X invariant. In the lemmas to follow two well-
known determinations of the rotation constants are used. It will be
clear that these determinations are equivalent and that it is meaningful
to speak of a function f; inducing the same irrational rotation on two
curves of K.

LemMa 5.2. To each K, € K and each ¢ > 0 there is a number n = (e, x)
with the following property: to each index  with |f—«| < n there is a
homeomorphism f, € ® = {f"} leaving K, and K, invariant and a homeo-
morphism g of K, onto K ; such that

(5.1) o, g)<e and fi(x) =g Ygl) for zek,,

and f, induces the same irrational rotation on K, and K.

Without loss of generality the discussion may be restricted to the two
oases: (1) d<a<fsd, (2 d=a<f=d,
where d and d, are successive indices at which a new family of concentric
open spheres entered into the construction of . The iterate of f leaving
K ; invariant which was used in the formation of K, from D; will be de-
noted by f;.

Let 8§, , denote a sphere contained in the inner region of a given curve
K, and let v be any positive number less than both r = r(x) and the
given number &. Then 7 = 8(}4(y)), where § = 4, is the function of
(2.1), meets the requirements of the lemma; the proof of this follows.
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Let f be any index with 0 < 8—o < 7.

To each point b € K; there is, by lemma 2.2, a point ¢ of C; = %Dﬂ
and an integer m such that Q(fdm(C), b) < 3d6(y). In case (1), since
f—u < 6(%5(1/))), there is a point y of D, so close to ¢ that
o(f"(). fam(c)) < 36(y). Thus g(b, f7(4)) < (y). The point y, however,
lies in the inner region of K . Thus, there is a point ¢ of K _ with
o(b, @) < d(y). In case (2), the point ¢ is so close to the center x of D,
that o(f;"(x), f"(c)) < 36(p). Thus, a = f;m(x) is a point of K, with
o(b, @) < 6(y). Hence in both cases

(5.2) o(f @), frd) <v, n=12,....

Obviously there is an iterate f, of f which leaves both K, and K in-
variant. By lemma 2.1 and the continuity of the functions 2 and ¢ of
lemma 4.1 there is an iterate f; of f, such that the minor arcs from f;*(a)
to fi"*Y(a) on K, and from f,"(b) to f"*'(b) on K, respectively, have
diameter less than y for all integers n. It will be proved that the rotation
constants k, and k; which f, has on K, and K, respectively, are equal.

Let an orientation of the plane be chosen and denote by o, the angle
from the first to the second of the two vectors pointing from ¢ to the points
fi"Ya) and f,"(a), respectively. The angle ¢, is chosen such that
lo,] < %m, which is possible on account of the choice of f;. Then

k,=limn1(o;+ ... +0,).
n—>oo
Similarly,
ky = lim n~Y(7;4. .. +71,),

n—> 00

where 7, is defined analogously to ¢,. According to (5.2),

o1+ ... .Fo,) — (1+ ... F )l < §m.

Hence k, = k;; and thus f; may be said to induce the same irrational
rotation on K, and K.

From this follows, by a standard argument, that there is a unique
homeomorphism g of K, onto K, such that g(f,"(a)) = f,"(b) for all
n. Obviously ¢ satisfies (5.1) and thus the lemma is proved.

Lemma 5.3. To each « there is a positive number y such that if
0 < ax—f <y, and if f, is an iterate of f leaving K, and K, invariant,
then f, induces the same irrational rotation on K, and K.

Let f, be the least iterate of f leaving K invariant. It follows from
lemma 4.1 that f; = h,'¢,h, on K, where h, is a homeomorphism of
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K, onto a unit circle C and ¢, is an irrational rotation of C. Obviously
h, fs" = @k, for all integers n. Let w(2,, 2,) denote the length of the
smallest arc on C joining the points 2, and 2, of C; and let ¢ be a positive
number such that if o(zy,2,) > 3z then o(h,(z), b, "1(z,)) > 3e.
To this & choose y as in the proof of lemma 5.2 so that y <e¢; and
let y = 6(46(y)). Choose § such that 0 < x—p <y and denote by f,
a homeomorphism having the properties stated in lemma 5.2. There is
no loss of generality in supposing that f, is the least iterate of f leaving
K, and K, invariant. Then f, is an iterate of f,, say f,* = f,; and from
the definition of f, it follows that f, is an iterate of f,. As before,
fo = by @ghs on Ky, where hy(K;) = O, and f, = h,'¢,’h, on K,. In
the proof of lemma 5.2, points a € K, and b e K, satisfying (5.2) are
found. It may be assumed that g(a, b) <y and k,(a) = hyb) = y € C.

By lemma 5.2 the function f, has the same rotation constants on K,
and K, Thus k, and k; the respective rotation constants of f, on K,
and K,, satisfy the relation: sk, = sk;, mod2s; and hence k,—k; =
2ns~1n g for some integer n,. If n,is not a multiple of s, there is an integer
p such that |p(kz;—k,) —n| < {7, mod2n. From the continuity of A,~!
there can be found a positive number yu, less than 3z, such that if
y,€C, and w(y,,y) <u, then Q(hﬁ—l(yl),b) <wy. Since k; is an ir-
rational multiple of 27, there exists a number ¢ with w(pz+?(y),y) < p.
Thus o(f;**?(b), b) <y. From the choice of p it follows that
o(p,'**?(y),y) > $x; this implies that o(f,*¢*?(a),a)> 3¢ > 3y, which
leads to a contradiction since o(f,%*?(a),f,**?(b)) <y and g(a,b) <y.

LemMa 5.4. Each point of the annular region between two curves of the
family K lies on a member of K and thus belongs to M.

Let « be a point between K, and K,, two curves of K. Let « be the
supremum of the indices 0 such that K, has x in its outer region, and let
f be the infimum of the indices 6 such that K, has x in its inner region.
It is clear that « = g, since otherwise an index between «. and § would
furnish a curve contradicting their definitions. It follows from lemma
5.2 and Rouché’s theorem that if x is not on K, then there is an index

6 such that K, separates « from K, in contradiction to the definitions
of « and p.

Lemma 5.5. The process of lemma 5.1 which defined the family -X
required just a finite number of steps before reaching and including in K
the outer boundary of W. If W has an inner boundary, this is unique and also

in K. Thus W is either a disc on which f has a fixed point or else an
annulus.
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If K, is not the outer boundary of W and if the spheres D, , centered
at the chosen point ¢ of K; do not encounter an outer boundary point
of W, then, by lemma 5.4, their maximum radius is at least r = o(K 4, K,).
Thus, if D, is the largest open sphere in W at ¢, o(K,, K;) = d4(r), where
0, is defined in (2.1). If the next family of open spheres, centered on
K,, does not meet an outer boundary point of W, its maximum radius
will be at least r+d4(r). Thus in a finite number of steps a point y
of the outer boundary of W will lie on the boundary of one of the chosen
spheres, say D,. On account of lemma 5.4 the point y cannot lie in the
inner region of K,. Thus, since y is a limit point of points of the inner
region, it must lie on K,. As observed in the proof of lemma 5.1, this
is sufficient to prove that K, is the outer boundary of W.

In case there are inner boundary points of W, a similar argument shows
that they lie on a unique curve of “X.

LeMMA 5.6. With the possible exception of a single fixed point, each point
of W lies on a curve of the family K. All invariant curves of W are in K.

Let z be a point of W which is not the fixed point p = K,. Since the
outer boundary of W belongs to K, z is in the inner region of at least
one member of “{’. It is also in the outer region of at least one member
of K : indeed, there is either an inner boundary of W which becomes the
required member of X, or else there is a fixed point K, about which are
to be found small curves of X having x in their outer regions. Thus
lemma 5.4 applies and x € K, for some K, e K.

Since all points of W other than the possibly existing fixed point K,
lie on a curve of “}, there is at most one fixed point in W.

If L is an invariant curve in W, let K, be a curve of “X through a
point of L. Since there is an iterate of f leaving them both invariant
which is topologically an irrational rotation of each, L = K,,.

LeMMA 5.7. The curves of “K are invariant under either f or f2; and, if
they are not all invariant wnder f, then W is an annulus whose two bound-
ary curves are permuted by f.

Let K, be any curve of “A" and let n, be the least positive value of v for
which f” leaves K, invariant. Then the set {f*(K,)},» =0, +1, £+2, ...,
consists only of the finitely many curves

F™Ky), n=0,1,2,...,m—1.

Since each of these curves is invariant under f™, they belong to “X ac-
cording to lemma 5.6. Thus, according to lemma 5.1, they may be or-
dered according to the inclusion of their inner regions. Obviously they
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are permuted among themselves by every iterate of f, in particular by
f and f2.

If W is topologically a disc, f must preserve the ordering of the curves,
and hence maps each of them, K, in particular, onto itself. Thus n, = 1.

If W is topologically an annulus, there are two cases. If f does not
permute the boundary curves of W, f must preserve the ordering of the
curves, and thus again n, = 1. If f permutes the boundaries of W,
then f2 does not, and hence f2 preserves the ordering. Thus, in this case,
f? maps K, onto itself. It follows that n, = 1 or 2.

THEOREM 5.1 a. There s a homeomorphism h of W onto either a disc
or an annulus and an irrational rotation ¢ of the disc or annulus such that
either f = h~'@h, or else f? = h=lph, the second power being necessary
only in case W is an annulus and f permutes the boundary curves.

Lemmas 5.3 and 5.7 imply that f, or f? as the case may be, is topologi-
cally the same irrational rotation ¢ of all the members of “}'.

According to [5, p. 244 III], which presupposes lemmas 5.2 and 5.4,
there is an arc @ in W which crosses all the curves of “X’ precisely once.
Let h, be a homeomorphism of ¢ onto a straight line segment L. L be
so placed on the radius of a circle C' that the image of the point of @ on
the outer boundary of W falls on C and that the other end of L falls
either on the center of C or else on a point half way from C to the center,
depending, respectively, upon whether W has one or two boundary curves.
Let ¢ be the irrational rotation to which f or f2 is equivalent on each curve
of K. It is clear that the points of {¢"(L)},n = 1, 2, ..., are dense in
a disc or annulus bounded by C and that mapping the point f*(@ n K,)
on ¢"(h,(Q n K,)) with a suitable extension to limit points yields the re-
quired A.

THEOREM 5.1 b. W = M.

It is well known, see for instance [5, p. 73], that the homeomorphism 4
of theorem 5.1a can be extended to a homeomorphism (still ‘to be called
k) defined on P, the plane of W, in such a manner that 4(P) is the plane
of A(W). The function Afh-! (or hf>h-1, if the second power of fisrequired),
defined in h(M), coincides with ¢ on W, and the designation ¢ will be
retained for the extended function. Since M is compact, the function
¢ will have equicontinuous iterates ¢ = hf*h-1 on h(M).

It may thus be assumed without loss of generality that W, itself, is a
circular disc or annulus on which the function f is an irrational rotation.

Let it be assumed that there is a point « of M outside the outer bound-
ary circle K of W. A contradiction will be obtained by proving that
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there must then be an annulus in M — W having K as one of its boundary
curves. (The case in which there are points of M in the inner region of
W can be handled by an inversion and a similar treatment.)

Let A be an annulus with boundary circles K and K*, where K* is
outside K and so large that M is in its inner region. Let x be chosen in
MnA and let 4’ be a smaller annulus in 4 with boundary circles K
and K’ so close that f*(x) is outside K’ for all n. It will be shown that
any sphere S, , in A" must contain a point of M, which proves the theo-
rem.

Consider, as usual, the universal covering space B of 4 as an infinite
strip having covering mapping = and boundary lines K ; and K z* such
that #(Ky) = K and n(K5*) = K*. Points y of B such that n(y) is
outside K’ will be said to be outside the line K 5’ defined by n(K ") = K'.
The strip between K and K’ is mapped on 4’ by z. For convenience
the metric in 4 will be so changed that = is a local isometry. Let # be a
number such that z is one to one and isometric on every sphere S, ,
of the space B.

Let ¢ < min({r, 1n). Further, let

(5.3) £ = min(s, 6(8)) ,
where § = d, is the function of (2.1); and choose in M n 4 an ¢,-chain C,,
Co: @y = Tyy, Xggy - - -, Loy = X,

connecting x with some point @, € K. Such a chain exists due to the
connectedness of M. It will be proved that, for some =, a point of f*(C,)
will enter the sphere §, , in A4’.

Let s be a number such that f¢ is closer to the identity than ¢, and
consider the chains C; = f%(C,), Cy = f2%(C,), . . .,

Ov: fys(a()) =a, = xvl’ Loy oo s xvm :fvs(x) ’

where z,, = f*5(x,,). The ¢-chain C, lies in M and connects the point
[*3(x) outside K' with the point e, of K.

Now let b, be a point on Ky such that z(b,) = a,; let b, be the first
point of K, to the right of b, such that n(b,) = a,; let b, be the first point
of K5 to the right of b, such that n(b,) == a,; ete. Then by, by, by, ... is
a sequence of equidistant points on K5 which proceeds to the right from
bo; the constant distance between two consecutive points is less than e,.
Since by (5.3) &; < ¢ < 7, there is exactly one e-chain in B,

D,,I b,, =Y Yp2> -« s Yom »
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such that n(y,,) = «,,, 0 = 1,2, ...,m. D, connects the point b, of K
with the point y,,, outside the line K 5" and every point of D, is mapped
on a point of M by n. Moreover, it can be seen from (5.3) that

Q(yv+1,u? yvp) = Q(xv+1 w xvu) <e&e< %T'

Let ¢ be a point such that n(q) = p and such that the sphere S, ,
lies to the right of all points of D,. Choose = so large that all points of
D,, are to the right of S, ,. Consider the cycle Z, made up of straight
line segments joining the successive points of the following e-chains in
the order given:

o .

1° Dy Y Y2 -+ Yom >
o

2 Yoms Y1 mo * ) yv+nm ’

o —_—

3 ——Dv+n Yosnm Yoinm-1>+ o9 Ypan1 = bv+n ’
o

4 bv-*-'n? bv+n—l7 ] bv =Y -

If there are no points of z=*(M) in §, ,, it can be seen from (5.3) that each
pair of cycles Z,Z,,,, v=0,1,2, ..., n, satisfies the conditions of
Rouché’s theorem with respect to ¢, and thus that Z, and Z,,, have
the same linking coefficient with respect to ¢q. However, it is clear that
the cycle Z, has linking coefficient 1, whereas Z, has linking coefficient
0. Hence there must be points of #~!(M) within S, ,. This completes the
proof of theorem 5.1b and thus of theorem 5.1.

Since W = M in case there is a non-periodic interior point of M,

theorem 5.1 implies

THEOREM 5.2. If one component of Int M consists of periodic points,
then all interior points of M are periodic.

It should be noticed that this theorem does not imply that different
components of Int M have the same period. In fact, there exist examples
in the plane of sets M and functions f such that there is no iterate of f
leaving all the components of Int M fixed.

6. A set M whose interior points are periodic but on which the family
{f™} is not periodic. Let I be the closed unit interval from (0,0) to (1,0)
in the cartesian plane. Let py, py, ..., P, ... be the successive prime
numbers, ordered according to increasing size. Let I be divided into 3
equally long subintervals and let the interior of the middle third be
deleted. In each of the remaining make a division into 5 equal intervals
and let the interior of the second and fourth be deleted. The process
will be continued in such a manner that if p, subintervals of a given
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interval have been retained at a certain step, then at the next step p,,,
subintervals of each of these will be retained. If 4, is the set of points
remaining at the end of the ¢th step, then

Q=4

is obviously a Cantor type set. The points « of  may be described
arithmetically for the purpose of this paper by sequences of numbers
Ay, oy Qy, ..., Where 1 < a, < p,. The number a, is either one or two
depending respectively upon whether the abscissa of x is in the interval
[0, 4] or in [4, 1]. The element a, refers to the a,th subinterval, counting
from the left in the nth step, of the interval defined by the sequence
a,, ay, . ..,a, . Clearly these sequences describe the points of ) uniquely.
The operation 7' will be defined as follows:

Apt1s if Ay < Pns
T(a”):{l , i a,=mp,.
The function ¢ shall be defined to be the one which sends the point
(a1, - .., @, ...) onto the point (T(a,), ..., T(a,), ...). Clearly ¢ is one
to one and non-periodic. The collection, taken over all subintervals at
all steps of the subdivision process, of sets consisting of the points of @
in a subinterval retained at the 7th step, forms a basis for the open sets of §.
All points in such a basis neighborhood have the same coordinates in
the first ¢ positions. The function ¢ transforms each open set of this
type into another of the same diameter. The iterates of ¢ thus form an
equicontinuous family of homeomorphisms.

Let E be the cone on @ from the point (0, 1) and let the function f
be defined to be the identity on (0, 1), ¢ on @ and the obvious thing on
the lines of the cone. Let N be a compact set in the plane having interior
points and arbitrary complexity. Let the function g be defined to be
the identity on N. Let homeomorphs of the brush £ be distributed in
the plane in such a manner that they have just their vertex (the image
of the point (0, 1)) in common with N. Let g be extended over these
brushes so that it behaves on them as f did on £. The function g is clearly
a non periodic homeomorphism of the resulting set onto itself, and the
iterates of g form an equicontinuous family. In this example the interior
points were all fixed; it is not hard to construct examples in which the
interior is not connected and each component of the interior consists of
periodic points with non-trivial periods. It is also possible for different
periods to occur, and for f to be periodic on each point of M without
being periodic.
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7. The case in which the closures of the orbits are connected. If it is
desired to introduce additional hypotheses which exclude unpleasant sets
having the character of the last example, one may of course require
that there be a non-periodic interior point of M. However, since the
unpleasantness of the example arose from the fact that there were points
the closures of whose orbits were zero dimensional, it is natural to ask
what happens if no point p of M has an orbit whose closure is separated.

In this case it is useful to know that the closure of the orbit of each
point forms a topological group. The author has obtained this result
from a conversation with A. Edrei and has found that it is also known
to Gottschalk and Hedlund. It can be proved by defining the operation
f™p) f™(p) to be fr+m(p), and by extending the operation to limit points
so that

lim f"i(p) limf™i(p) = Lim f"*™(p) .

The existence, uniqueness, and continuity of this product follow from the
compactness of M together with the equicontinuity. It is not hard to
prove the existence and continuity of an inverse. The group G, so ob-
tained, is compact and abelian. The additional hypothesis of connected-
ness permits the use of very strong group theoretical results.

As a subset of the plane, G is at most two dimensional. It cannot,
however, have dimension two, for then it would contain an open subset
of the plane [4, page 44] to which the results of section 5 would apply.
There the closures of the orbits were simple closed curves. Since G must
be one-dimensional, a theorem of Kodaira and Abe applies [10, p. 172]:
The only n-dimensional, connected, compact, separable, abelian group which
may be imbedded in euclidean (n-1)-space is the torus group. Hence G
is a simple closed curve or a point. If G' contains elements other than
the identity, it follows that G has no fixed points under f. If M = @,
from the proof of theorem 5.1b it follows, if @ is used in place of W,
that M contains an open set bounded on one side by ¢; and hence,
by theorem 5.1, M is either a disc or an annulus and f or f? is topologi-
cally an irrational rotation. Otherwise M 1is a simple closed curve and f
topologically an irrational rotation.

8. The situation in space. This is considerably more complex as can
be seen from the following examples:

(1) Let N be a solid spherical ball from the interior of which have
been removed a large number of non-overlapping, open spherical balls
having their centers on a chosen diameter of N. Let f be an irrational
rotation about this diameter. (Toroidal holes in N are clearly also pos-
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sible.) This set is clearly locally connected and the closures of the non-
trivial orbits are simple closed curves.

(2) Let N be a solid torus (the product of a circle and a disc). Let f
be the mapping obtained by composing an irrational rotation of the
circle and one of the disc. Here the closures of all the orbits are toroidal
or circular.

(3) Let N be a solenoid and f the “rotation” to which van Dantzig
refers in his paper on solenoids [13, page 107, footnote 16]. This con-
tinuum is compact and connected but not locally connected.

There are reasons to believe that the existence of an open set of non-
periodic points around a point p of a space continuum is sufficient to
guarantee that the closure of the orbit of p will be toroidal; however,
the author does not know a proof of this.
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