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ON THE DIFFRACTION OF A PLANE WAVE
BY AN INFINITE PLANE GRATING

GEORGE L. BALDWIN! and ALBERT E. HEINS?

1. Introduction. Consider a plane electromagnetic wave of arbitrary
polarization which is incident normal to a diffraction grating in the plane
x = 0. The grating consists of an infinite set of identical perfectly con-
ducting strips parallel to the z axis with the spacing between any two
adjacent strips equal to the width of one of them. We shall determine

the field at large distances from the
screen, or, more precisely, the am-
plitude, phase and direction of pro-
pagation of the transmitted and re-
flected waves. (See Fig. 1 for a front
view.)

Related diffraction problems have
been considered by Rayleigh [7] and
Lamb [5], who discussed cases for
which the ratio of the aperture width
to free space wavelength is much less
than unity. The interest in the parti-
cular problem we treat here is that
with the restricted spacing we are
able to calculate the reflection and
transmission characteristics without
assuming the aperture width to be
small compared to the free space
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Fig. 1.

wave-length. Furthermore, these characteristics are calculated in closed
form and this is possible because of the particular spacing which we

have chosen.
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2. The problem and its mathematical formulation. Although we are
not limited to a particular polarization of the incident wave, no loss of
generality results in considering the case for which the magnetic vector
lies parallel to the edges of the strips. Indeed, the complementary exci-
tation, that is, the case in which the electric vector is parallel to the edges
of the strips, leads to a similar boundary value problem. The responses
of the two independent polarizations in the incident wave may be super-
imposed to give the field due to a more general excitation. Henceforth
we shall take the time dependence of the field components to be mono-
chromatic, so that all field components may be expressed as complex
functions of position multiplied by e—%!. This time factor will be sup-
pressed throughout the subsequent calculations.

If we observe that all of the components of the electric and magnetic
fields are independent of the z coordinate, we find that the Maxwell
equations in the steady state may be reduced to the following system,
in which 4 is the Laplace operator in x and y:

(2.1) AH, + k*H, =0,
E,=H,=H,=0,

E,= —(c—iwe)*0H,[ox, E,= (c—iwe)"10H,[0y,

k? = w?ep +twop, k=p+iqg, p>0, g=0.

We have assumed that the medium is homogeneous and isotropic and
free of space charge. Since we have also made the assumption that the
strips are perfect conductors, the tangential component of the electric
field vanishes on each strip, or

z=0, (n—1)b=y<=(4nt+1)b,

(2.2) o0H Jox = 0, {
ne=0, 41, L2 ....

We note in passing that equations (2.1) and (2.2) define a problem in
acoustic diffraction. )

We consider the case of a plane wave incident from the left and of the
form e, In view of the periodicity of the structure, it is convenient to
formulate the problem in terms of a parallel plate wave guide. By sym-
metry 0H,[oy and E_ are zero along the planes y = 2nb,n = 0, 4-1, ...,
so that we may imagine these planes to be occupied by thin perfectly
conducting sheets without changing the nature of the field in any manner.
Furthermore, if we could find the field in the region 0 < y < 2b, the field
in other regions may be obtained by using the relations

Hz(x’ y) = Hz(x’ _y) = Hz(xa ?/+4b) .
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The problem is therefore reduced to y
determining the effects of a conduct-
ing fin inserted in a parallel plate ()
wave guide which is excited by a - ( (;) """""""""" b)‘"“
dominant mode wave from the left.
The fin is perpendicular to the di-
rection of propagation and extends
from one conducting plane half way Fig. 2.
to the other (see Fig. 2).

Turning now to the precise mathematical formulation, we write ¢(z, y)
for H,(x, y) and consider equation (2.1), that is,

(2.1) Adp + k*¢ =0, k=p-+iq,

in the region £ having the two lines y = 0 and y = 2b and the segment
z=0,0<y =<b asits boundary.

The principal case, k non-real, ¢ > 0, will be treated first. Partly for
physical reasons we limit ourselves to seek solutions ¢ possessing the
following properties:

1° The normal derivative dp/on vanishes at the boundary, in particular
at both sides of the segment x = 0, 0 <y < b.

2° The incident wave dominates when x - —oco. More precisely,
@(x, y) may be written
(2.3) P(z, y) = ¢ + p(a, )
where
(24) p(z,y) = 0(e),  y,(e,y) = O@el) for |z >oo.

Here and henceforth partial differentiation with respect to a variable is
indicated by placing it as subscript. We observe that the function g
must satisfy equation (2.1), that is,

(2.5) Ay + Ky =0,

and the boundary conditions

(2.6) p,(x, 0) = y,(x, 2b) = 0 for —co<z <00,
(2.7) v, (0,y) = —ik  for O<y<bd.

3° Besides the regularity conditions imposed by the equations of the
problem, we also assume that ¢(z, y) is sufficiently regular to warrant
the applications of Green’s theorem which are made in the following.
Thus, in particular, we assume ¢, (x, b) to be integrable in the neighbor-
hood of x = 0+.
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Sections 3-5 contain an analysis of our problem. In these sections ¢
denotes a function which is assumed to be a solution of (2.1) having the
properties 1°-3°. The result will be that ¢ is uniquely determined. In fact
both an integral representation and an infinite series representation
(adequate for numerical computation) will be derived. Section 6 deals
with the proof of the fact that the representations converge and deter-
mine a solution to (2.1) having the properties 1°-3°.

The series derived for k£ non-real will converge and its sum will satisfy
(2.1) with the boundary condition 1° in the case k real also. This is
discussed in Sections 7-8. Simple algebraic expressions are derived for
its coefficients.

Returning to the principal case, k non-real, we observe that a simple
proof of the uniqueness of the solution to our problem may be estab-
lished, independently, as follows. Suppose ¢,(z, ¥) = e*@4y,(z, y) and
o, y) = et y,(z, y) to be solutions of (2.1) each having the proper-
ties 1°-3°, and form the difference y(x, y) = v,(, y)—vp,(z, y). Since
Ay—+k*y = 0 and according to (2.6) and (2.7), the normal derivative
of y vanishes on the boundary, application of Green’s theorem

SS [x A% + |grad z|*] dady = Sx%ds

in Q gives
(§rlgradzls — welz1dway = 0.

Since k is assumed to be non-real, this implies

\\dzay = o

and hence y = 0.

Further we observe, if p is the function which occurs in (2.3), then
21(x, y) = p(x, y)+y(—x, y) satisfies Ay,+k*y, = 0 and has zero nor-
mal derivative on the boundary just as y above. Hence again y, = 0, or

(@, y) + yp(—=z,y)=0,

that is, p must be an odd function of x.

3. Derivation of an integral equation. Assuming ¢ to be a solution of
(2.1) having the properties 1°-3°, we first seek representations ¢*, ¢, ¢”
in the regions (cf. Fig. 2):

(x) <0, 0=y =b;
1) z> 0, 0=y =b;

) —o00 < X < 00, b<sy=2b.
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The Green’s function for the regions (x) and (8) which satisfies the con-
ditions ¢, = 0 for y = 0 and y = b and G, = 0 at x = 0 and which
includes only terms which represent outward going radiation from the
source point, is

G,y 2, y) = G, y; ', y')

X 2—0 . . ) ,
= - éﬁzib#fmji cos (nary[b) cos (navy’ [b) (e M 1=l 4 ¢ Tenlwte’l) |
0 27

Here d,, = 1 for n = 0 and is zero otherwise and the numbers I, are
defined by

I'? = k? — (3vn/b)2, Im7I, >0, y=20,1,2,....

They are situated on a hyperbola in the complex plane as indicated
on Fig. 3a. The Green’s function for region (y) which satisfies the con-
ditions ¢/, = 0 for y = b and y = 2b and the condition of outward going
radiation from the source point is

X 2—§ . ,
G, y;a,y)=—23 0t b '[b) ¢! Tenle=a'l
(x,y; 2", y") ST cos (nay[b) cos (nawy’[b) €

The construction of such Green’s func- 0
tions has been described by many authors,
see for example [1, Section 2]. In the
case of region (y) we now integrate over
the rectangle

_L=a'<L, b=y <2

and use Green’s theorem. Observing
that the derivative with respect to y’
of "(x,y;x',y’) is zero for y' = b and
y' = 2b and since also g¢,(z’, 2b) = 0

we have, in virtue of the regularity of ¢, Fig. 3a.
2b L
x'__—L ’ ’
61 gy =—\@n—een "l - ey, d
. v'=-L o y'=b

For L large, we invoke, still assuming Imk = ¢ > 0, the asymptotic
forms of the Green’s function, ¢(z, y) and their derivatives. The contri-
butions to (3.1) due to the integrals over the ends at " = Land 2’ = —L
is seen to be e’** (from the incident wave, cf. 2° of Section 2) plus a
term which is O(e~2¢%). We have seen that ¢,(z’, ') is an odd function
of the variable z’. This enables us to rewrite (3.1) as
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L
(3.2) ¢'(@, y) = € — S [67(x,y;2',0) — G"(x,y; —',b)] ¢, (x", b)da” + Ofe~2eF).
Similarly, if we c(:)nsider the region (), we obtain
L
P, y) =, y: o, b) gy (e, )’ + O
The continuity of ¢(z, :/) along the line y = b then gives us the equation
L
(3.3) ¢(x, b) — g(x, b) = eike — 2 gx(x—x’) o (@, b)da’ + O(e=E) = 0, x>0,
0

where the kernel, »(z—=z'), is defined as

’ R _ . 2-—60" o Doy |x—2”
w(x—z') = @ (x,b;2',b) = — - '2251‘*;6 mlz=e’]
From (3.3) we obtain, by letting L — oo the integral equation we seek,
that is,
o]
(3.4) gikr 2Sx(x—x')<py,(x’, b)ydx' =0, x>0.
0

If we repeat this derivation for x < 0 we obtain the same equation, a
situation which is to be expected in view of the oddness of ¢, (2, b) in
the variable #’. Because the kernel is a function only of |[x—a'| we have
an integral equation of the Wiener-Hopf type, and as such we have a
method to solve it [1], [6].

4. Solution of the integral equation. Derivation of integral repre-
sensations. In order to solve equation (3.4) we extend it so as to hold
for all x by putting

+oo
(1) 0:(@) +95@) = 2 | we—2)f @),
where we take f(x) = @ (%, b), g,(x) = €™*%, g)(x) =0 when 2> 0 and
fx) =0, g,(x) = 0 and g,(x) is to be determined by the equation
when z < 0.

Let us now examine the Fourier transforms of the functions g,(z),
go(x), f(x) and x(x), with the transformed variable being w = u--iv.
Since f(x) and g,(x) vanish for negative «, their respective Fourier trans-
forms, F(w) and G,(w), are unilateral. By the definition of g,(z), we see
that the integral defining @,(w) converges to i/(k—w), whenever v < g,
where ¢ is the imaginary part of k. For this reason, G;(w) is analytic in
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the same lower half plane v < ¢. According to our assumption 3° in
Section 2, the function f(x) = ¢,(, b) is integrable in the neighborhood
of the point 2 = 0+ and since it is O(e~%%) as x> -+oo, the unilateral
Fourier transform of f(x) is analytic in the lower half plane v < ¢. Simi-
larly, Gy(w), the transform of g,(x), is analytic in the upper half-plane
v > —q. The bilateral Fourier transform of »(x) is (cf. [2])
+00
K(w) = S w(x)e~wrdy = —(k2—w?)"t cot[b(k2—w?)}] .

-0

By means of the well known infinite product expansions of sine and cosine
this may be written as

l b2(k2_w2)
1 e84 (n_l)zn‘z
K(w) = — 77 L
b(w?—k?) ;5 b2 (k*—w?)
O mar
1 0o 2__F 2 2 2
_ WL ( " ) — b1 K_(w)/K  (w),
bwr—k?) 5, w*—1I,,% \2n—1
where
1 > w—T, , 2 1 Iy, 2
K_(w) = Jp e 1/K ,(w) = Hw+ oL

w—k iy w—rI,, 2n—1’ wHknty wtT,, 2n—1"

The infinite products in K_(w) and K, (w) are absolutely convergent save
for w= I, w = —1TI, respectively. In particular, K_(w) and its recip-

rocal are regular in the lower half plane v < ¢, while K (w) and its
reciprocal are regular in the half plane v > ¢q. We note the formulas

(4.2) K. (w)K_(—w) = —1
and
(4.3) K_(w)(k2—w?)? sin[b(k2—u?)}] = —bK ,(w) cos[b(k2—w?)].

In view of the fact that the transforms have a common strip of regu-
larity, —q < v < ¢, it is permissible to apply the Fourier transform to

obtain
Gy(w) + i/(k—w) = 2672 F(w) K_(w)[K (w).

By considering the half planes » > —q and v < ¢, we conclude from this
equation (cf. [1] and [6, Chap. 4]) that
10K (k)
2K _(w)(w—k)
We note (cf. [1, Section 3]) that

(4.4) F(w) =
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K_(w)=O0@w?*) for |w >0, v<gq,
and for future reference that
(4.5) K, (w) = O@?) for |w|->oc, v>—q.
Thus F(w) = O@w-?) for |w| - o0, v < q.

By letting L tend to infinity in (3.3) we obtain

(4.5) ¢z, y) = e — S[Gy(w, y; @', 0)— Gz, y; —', b)] g, (2, b)de’.

0
The Fourier transform of ¢”,(z, b) = f(x) is the function F(w) given by
(4.4) and the Fourier transform of G”(x, y; 0, b) with respect to x is

cos[(2b—y) (k2 —w?)}]
(k2—w?)? sin[b (k2—w?)#]’

Ww;y) = —

Hence, by the convolution theorem equation (4.5) yields

oo

1
(4.7) '@, y) = e** | o S W (w; y)[F(w)—F(—w)]e*dw .
Similarly
(4.8) ¢l y) = — 517; S W (w; y)[F(w)+F(—w)]eedw

the Fourier transform of G#(z, y; 0, b) with respect to z being

cos[y (k2 —w?)}]
(k2 —w?)? sin[b (k2 —w?)}]’
Finally, ¢*(x, y) is determined by the oddness of the function y(z,y) =
(@, y)—ee.
It has now been proved that if the differential equation has a solution

@ with the properties 1°-3° of Section 2, then it must be defermined by
the integral representations just derived.

W(w;y) = —

5. Derivation of the infinite series. Calculation of the coefficients.
First we consider, for example, the function ¢”(x, y). The only singulari-
ties of the integrand in (4.7) are simple poles. The calculus of residues
enables us to write ¢” as an infinite series. This procedure has been ap-
plied by many authors to such a situation and since the conditions of
applicability are satisfied, we shall not pursue this point [3, Sections 5
and 7].
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In order to put the poles into evidence, we now rewrite equation (4.7)
as

¢z, y) = e** — (Yifn) S K (k) cos[(2b—y)(k2—w?)}] {. ..} e duw ,

—00

where
_ 1 bK_ (w)
b= K ) ) coslb (#— )] () (— ) sinfb (— )]

and we have used equations (4.2), (4.3) and (4.4). In order to find ¢” for
x> 0, we need only calculate the residues from the poles in the upper half
plane. Since K (w) is regular there, we find that we have two different
sets of poles to consider. These, of course, are the zeros of cos[b (k2—w?)}]
and (k2—w?)? sin[b (k2—w?)?], that is, I, Iy, ... and Iy =k, [, .
respectively. By a direct residue calculation, we obtain

.« ey

Y(x, y) = Toe™™ + 3T, cos(Jvaylb) e, x>0,
v =1

where
(6.1) Ty = ${14 (K (k)[k)%}
while
KK
(5.2) T,, = (—1) 2‘F2n (k+F2n)’ 1,2, ...,
and
(5.3) Typy = (—1)" K ) (kb +Ton-s) n=12....

(2n—1)7w Ly 1 K (o) ’
The same series is found for the region (8) from the integral repre-
sentation (4.8) by a similar calculation. Hence

(5.4) (@, y) = Toe™ + 37T, cos (3rayb) €1
v=1

in the whole strip 0 < # < o0, 0 < y = 2b. Finally, due to the oddness
of the function y(z, y) = @(x, y)—e™*?, it follows immediately that

(5.5) P, y) = e + Rye ™ L MR, cos(dvmy[b) e+
y=1

in the strip —oo < 2 < 00, 0 <y < 2b where

Ry=1-T, and R, = -T, v=12, ...

v
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6. Verification. The integral in (4.7) converges for b < y < 2b and for
all values of x, thus defining ¢"(x, y) in the closure of the domain (y).
In the same way ¢*(z, y) and ¢?(z, y) are defined by their integral repre-
sentations in the closures of (x) and (8) It is easily seen that the deriva-
tives of these functions can be obtained by differentiating their integral
representations under the integral signs. The differentiated integrals
converge save for x = 0, y = b. It thus follows that ¢*, ¢ and ¢ satisfy
(2.1) in their appropriate regions.

We already observed that ¢f and ¢” for x > 0 are represented by the
same series (5.4) in their different regions of definition. Since it follows
from (5.1-3) and (4.5) that

T, = 0@}, Y —> o0,
and because of the presence of the factors ¢'/»?, this series and its deriva-
tives converge for x == 0. The derivatives can be obtained by termwise
differentiation. It follows that the function ¢(x, y) which coincides with
o*(x, y), ¢*(x, v), ¢"(x, y) in (x), (B) and (y) represents a solution of (2.1)
in the whole region (x) U (8) U (y) as well as on the line y = b (x & 0).
Obviously it satisfies condition 2° of Section 2.

Necessary information about the boundary values of the derivatives
of ¢ can be deduced from the integral representations of ¢, ¢, ¢”. This
procedure has been indicated in [3, Section 7] and we shall not pursue
these matters in detail. With this procedure we can show that the y
derivative of ¢(x, y) vanishes at y = 2b. The method will also verify the
boundary condition at ¥y = 0 as wellason * = 0,0 <y < b.

From the integral representations it also follows that ¢ = O(1) and
that its first order derivatives are O(r*) when r — 0, where r is the
distance between the points (x,y) and (0, ). This verifies our earlier
applications of Green’s theorem in the neighborhood of the edge of the
fin. In the neighborhood of the corners at (0,0) the function ¢(x, y)
and its first derivatives behave even more regularly.

7. The limiting case k real. We now consider the resulting formulas
derived for non-real k, in particular (5.1-5), for real values of k. The
numbers I, shall be defined by

I'? = k? — (3vz/b)?, k real, positive,

and the following sign conventions. Let N denote the largest integer
not exceeding 2bk/n. If » < N, that is I'2 = 0, the sign is chosen so
that I', is non-negative. If » > N, that is I')? < 0, the sign is chosen so
that I', is situated on the upper imaginary axis (see Fig. 3b).

An examination of the arguments used in Section 6 will prove that the
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series in (5.4) and (5.5) again converge 4
and that the sum ¢(x, y) is a solution of
(2.1). Of course, the paths of integra-
tion in the right hand sides of (4.7-8) !
should then include the poles on the
real axis for x> 0. For x < 0, the poles
on the negative real axis have to be in-
cluded while those on the positive real T4
axis are excluded. The integrals, now
interpreted in an obvious manner in the
sense of Cauchy’s principal, are conver-
gent with ¢(x,y) as their value. The Fig. 3b.

boundary condition 1° of Section 2 is

satisfied. The conditions 2° and 3° and the uniqueness are not discussed
when £ is real.

The formulas (5.1-3) yield, in the case k real, very simple expressions
for the coefficients 7', adequate for numerical computations, especially
for the absolute values |7',|. We are interested only in Ty, T, ..., Ty,
that is, the amplitudes corresponding to propagating modes.

L - L Ik

As a first example, we evaluate T, in the simplest case N = 0, that
is 0 < 2bk < m, where only one propagating term occurs. Since

b+ I')| = 4vn/b, v=12,...,
it is obvious (see also Fig. 4) that the modulus of

© k-+1%,, 2n—1

Klb) = 2kﬂk+rm . 2

is 2k, and the argument ¢ = g(k) = arg K (k) is given by

78

o = Y (—1)»*! aresin (2bk[n7) .
=1

n
From K (k) = 2ke® and (5.1) follows
Ty = 3(1+¢¥) = e cosp, Ry=1—T,= —ie?sinp.
As a somewhat more complicated example we consider the case
7w < 20k < 27, N = 1, with two propagating modes. Writing
k+Ty = k+Ty, 2n—1

k+F1ﬂk+f2n 1 2n

we find immediately (as above)

K. (k)=1F

Math. Scand. 2. 8
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Fig. 4.
&g — § T 2k(k—r1)%
T k4, k+1T,
and

o = arg K_ (k) = arccos (kb/x) + Zw' (—1)™+! arcsin (2kb/nrw) .

n=2

1(. k=T,
Ty= 11 1 griel
° 2{ +Ic+1’le}

Hence we have

In order to calculate 7', for this case, we are required to evaluate the
modulus and argument of K_(I;). We have here that

(k+T') (I +1%) ﬁ I'y+T1, 2n—1
4I I'i+Tey .y 2n .

n=2

K. (I') =

Since
|y 4 T2 = I'? 4|2 = (3n/b)*(v*—1), »=2,3,...,

we get

a3 M+k ® 2n—1((2n—1)(2n+1))%_' k+T,

K (I =-= — _
KA =gy I, 11 2n 21 (2n—2) 2tp 1,

n=2

as a direct application of the Wallis’ product will reveal. The modulus
of T, is therefore
|K (k)| (k4-Ty) 2%k

DK () k-1

|T1| =

and we shall omit the expression for the argument of 7', since our main
interest is to compare the modulii of the 7”s.
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As a final example, we consider the case 2m < 26k <3n, N = 2,
where three modes are propagating. Here we have

k(k+1Iy) 2 k4T, 2n—1

K (k) = /] ,
+(F) k+I'y 32 k+Toy 20
k+T') (I AHTy) = T4-T, 2n—1
K. (I'y) = )
41 nee L1+l g 20
k1), =2 I'y+T, 2n—1
K (T =( +1,) I, s+ 12 20

I+l 35 Dot Topy 20
|\, 4T = T2+ T2 = (3n[b)2(»2—pu?), u=0,1,2;v=3,4,....

Hence

o =argK, (k) = 200'(«1)“1 aresin (2bk/ns),

o\t (k+T') (4T,
e =3 (5) T2,
and
3\ (k+T,)T,
AT = (5) s
since
© 2n—1/(2n—2)(2n+2)\}  /3\}
,LZ 2n ((2n—3)(2n+1)> N (5) '

It follows that

A RET)R—TY
To ”5{1 + (k~r2)(k+7‘56w}’
N\t kk+T,)

"2’) (

k+I)( A1)

A convenient method for checking our results is found in a simple appli-
cation of Green’s theorem. Integrating along the boundary of the rect-
angle —L <x <L,0=<y <2b, we have that

2b
(6.1) S(m—m)dy =0

0

7 = 217y =

since ¢ and therefore the conjugate p are source free and ¢, vanishes

8*
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at y = 0 and y = 2b, while ¢, vanishes at = 0, 0 <y < 2b. For L
sufficiently large, ¢ is composed of two types of terms, that is an expo-
nonential term which vanishes for L — co, as well as a bounded term cor-
responding to the real poles. Hence we need only substitute in the
bounded term into (6.1) and evaluate the remaining integrals. We then
get for Na < 2bk < (N+1)x, after dividing through by 2:bk

N N
(6.2) 1 —|RBy]* — 3k J LR, = |To|* + 3kt X' T,|T,|2
=1 =

vf 1
in the limit L — oc. Upon using the relation that 7, = —R,, we have
finally that

N
|Rol?> 4 [Tz + X k211, |T,)2 =1,
=1

and this serves to relate the magnitude of the propagating modes.

While 7', is the transmission coefficient and R, the reflection coefficient
of the dominant mode, the |T,| for » = 1 are not the transmission coeffi-
cients for the higher propagating modes. The factors k-7, in (6.2) serve
to convert the 7', and the R,,» = 1, from amplitudes of transmitted and
reflected waves to transmission and reflection coefficients, that is, quan-
tities which are numerically less than unity.
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In Figure 5 the quantities [Ty|? and $£-11,|7,|%, v=1,2,3, 0<bk< 2x,
are plotted. Figure 6 gives a plot of the right hand side of (6.2).

8. Conversion of results to give scattered fields. In order to obtain
the amplitudes and directions of propagation of the diffracted waves,
we need only rewrite the wave function describing the field in a typical
transmitted mode as follows:

Py = Tn cos(%mty/b) eil"na: — %Tneil’nx+ nayld + %Tneil‘nac—énny/b.

Obviously ¢, represents two waves, each of amplitude 37, traveling in
directions making angles of plus and minus 0, with the positive x axis,
where 6, = arcsin (inz/bk). Similarly, there are two reflected waves on
the left side of the screen with amplitudes equal to —37', which travel
in directions making angles of plus and minus 0, with the negative x
axis. The energy in each individual wave, expressed in terms of that
in the incident wave, is given by the square of the absolute value of the
amplitude, or }|7",/2.
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