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CONVERGENCE AND STABILITY FOR A HYPERBOLIC
DIFFERENCE EQUATION
WITH ANALYTIC INITIAL-VALUES

GERMUND DAHLQUIST

1. One of the most powerful methods for the numerical solution of
partial differential equations is the method of finite differences. It is,
however, well known that this method has to be used with some care.
The problems occurring in actual practice are often very complicated,
and a rigorous discussion of the relation of the solution of the given
differential equation to the solution of the corresponding difference equa-
tion is in general very difficult. However, the investigation of simple
cases, where both the differential equation and the difference equation
can be solved explicitly, frequently shows some interesting features.

In this paper we shall consider the following classical problem: Given
the functions f(x) and g(x) for @ <x < b, find F(z,t), satisfying the
equations

o*F  0°F
e
oF
Fe,0)=f@, (%) —o@.
t=0

This problem will be called ““Problem D’’ in contrast to the following
similar problem for a difference equation, which will be called ‘‘Problem
A”: Given the functions f(z) and g(x) for ¢ <2 <b. Find @(x, ¢), for

t =0, +A4t, 4-24¢, ... satisfying the equations
(L1) D(z,t-At) — 2D(x,t) —l—di(x,t—At)__di(x—{—Ax, t) — 2D(x,t) + D(x—Ax,t)
' (At - (Az)? ’

where Ax and At are constant, positive, finite increments. Note that x
is a continuous variable, while ¢ is a discrete variable.

It is well known that the solution of Problem D is uniquely determined
in the square
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(1.2) attl =x=<b—|t,

that is called the region of determination of Problem D. The explicit

solution is
x+t

(13) Fla, 1) = (f @+t +f@—0) + 1 { gw)du.

x—t
In Problem 4 we get a recursive determination of @(z, ) in the rhombus
determined by the inequalities

atultl =x<b—ult,
in which u = Ax/At.

For convenience, we introduce certain linear operators acting on
functions of x. Let 4,[f(x)] be the solution of Problem D, when g(x) = 0,
and let «,;[f(x)] be the corresponding solution of Problem A. From
(1.3) it follows that

(1.4) A,[f1= 3 (f@+t) +f(x—1)) .

The explicit expression for «,[f] will be given in Section 6. It is more
complicated and is not convenient for our purpose.

Let B,;[g(x)] be the solution of Problem D, when f(x) =0, and let
B:[g(x)] be the corresponding solution of Problem 4. We have

0B,[g] ﬁt[g]'_ﬂt—z!@ _
ot At N

(1.5) = A,[g], x[g],

since both sides of each equation are solutions of Problem D and 4,
respectively, satisfying the same initial conditions. For the difference
equation this follows by means of the relation 8,,[g]+ B_,:[g9] = 0.

We shall study the following convergence problem. Let Ax and At
tend to zero in such a way that w = Ax/A¢ remains constant. Is it true
that @(z, t) tends to F(z, t) uniformly in a certain region of the x¢-plane ?
Courant et al. [2, p. 61£f.] proved in 1928 that @(z,t) - F(x,t) in the
region of determination, if « = 1, provided that f"’’(x) and g¢''(x) are
continuous for ¢ < x <b. They pointed out, however, that if u < 1, @ does
not tend to F in general, in spite of the fact that F(x, t) satisfies Problem
A with an error that is O((4t)?). The reason for this is that ®(z’, 1)
depends on the initial data of the segment a'—ut’ < < 2’+wut’ only,
whereas F(z',t') depends on the initial values in the larger segment
' —t'<x <a’+t'. Thus,if we disturb f(z)in theinterval «'+ut'<x <24t
without disturbing it for z < «'+4-wt’, then F(z',t’) will be changed,
whereas @(«’, t') will not be changed, however small At has been chosen.
This argument shows that we cannot have convergence in general. How-
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ever, it does not tell whether there is convergence or not for a given pair
of functions f(x), g(x). If f(x) is analytic in the interval @ <« < b, the
basis of the argument does not hold, since one cannot change f(x) for
x > z'-ut’ without disturbing it for z < ' +ut'.

The purpose of this paper is to study the convergence problem for
analytic initial-values, when u = Ax/At is constant, v < 1. The main
result is the following

THEOREM 1. Suppose that f(x) and g(x) can be extended to functions f(z)
and g(z) of z = x+1y, which are holomorphic within and on the rectangle

asz=b, |yl=(0b—a)3.

Let At — 0 and Ax — 0, in such ¢ manner that uw = Ax[At remains constant.
Then, even if 0 < u < 1, the solution of Problem A converges to the solu-
tion of Problem D uniformly in the square

atf <z <b—|

in the real at-plane. If u > 59, then the coefficient 1/3 may be replaced
by the smaller value ywarcoshu—1.
Since
F(x7 t):At[f]+Bt[g]: Q(x: t):“th]+/3t[g]a

we conclude by using (1.5) that it is sufficient to prove that «[f] tends to
A,[f] uniformly. The proof of Theorem 1 will be completed in Section 5
where also, in Theorem 2, a generalization will be given. Section 4 con-
tains an example in which a non-real singularity causes divergence. In

Section 6 the relation of the convergence problem to the problem of
numerical stability will be discussed briefly.

2. In Sections 2 and 3 we assume for simplicity that { > 0. By sym-
metry the results can be extended to negative values of .
Let us first seek solutions to (1.1) of the form

D(x, t) = etlz+r

2 and y being complex numbers. We easily find the necessary and suf-
ficient condition

eiyAt__z_I_e—-iyAt ei/IAx__2+e—i1Aac

(4t)? B (4z)? ’

or

(2.1) sin}y At = fu-lsin}ldx,
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which gives the relation between the speed and the frequency of “waves”
in Problem A. (For Problem D, the speed is obviously independent of
the frequency.) y is not determined uniquely by (2.1). However, if the
complex }AAx-plane is cut along the real axis from arcsinu to oo
and from —arcsinu to —oo, a one-valued branch is determined by the
condition that yAt ~A4x/u when Adx — 0. On the real axis, y shall
be determined by a passage to the limit from the upper half-plane if
Rel > 0, and from the lower half-plane if Rel < 0.

It is now easily verified that if y is determined by A according to (2.1)
as just described, then

(2.2) o, [€#] = ei*rcos (y (t—} At))/cos Ly At.
The corresponding relation in Problem D is
(2.3) A, |ei] = eiToos At .

Let At — 0, while z, t and 4 are kept fixed; observe that u is constant
during all limit processes. We infer then from the last three equations
that y -1 and that «,[e?] > A4,[e?*]. The convergence is moreover
uniform in any closed, bounded region in (1, z, t)-space. From these results
we infer that o,[f] > 4,[f] for integral functions f of exponential type,
since we can use representations like

s =\ewn@az,  otf) =l han,
C C

where C is a closed contour in the A-plane and %(4) is continuous on C.
(Cf., for example, Titchmarsh [5, Theorem 33].)

On page 92 an argument of Courant et al. was quoted from which we
may infer that this result cannot be extended to the general class of
functions that can be represented by Fourier integrals, for example,
from —oo to +oo along the real axis. The explanation is, roughly speak-
ing, that we have then to consider such A for which A4z is considerable,
even if Az is small. From (2.1) we see that if 1 is real and if |sin}2 Ax|>u,
then }yAt = 3iy"’At+ 3+ nn, where p”’ is real and » is an integer,
and |4y"'At| varies from 0 to arcoshu—!, which is real since 0 < u < 1.
Hence, in this case

(2.4)  &[e] = —(—1)¥4tei® sinh (3y" At (2t/At — 1))/sinh 3y At .

This diverges very rapidly, when At approaches 0, while z, ¢t and $14x
are kept constant. This circumstance may spoil the convergence of
o[ f] to A,[f], unless h(1) behaves in a suitable manner for large |1|. In
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Section 3, we shall see that the Fourier integral method may be applied

with success to the case f(x) = (x—¢&)~1. In Section 5, we shall extend

the results to general analytic functions, by means of Cauchy’s theorem.
We shall need a few inequalitites. Put

AZ}."’i—iA”, '}’:)’1_}'?:)}”'
If |p| £ M, |¢) =M and if » is an integer, we have

2n+1 2n+1
p————pig— = [p*"—qp* L. .. +¢* = 2nt-1) M.
Put t = (n-+1)At, p = e¥irdt g — ¢~ivat_ Then, by (2.2),
2n+1 2n+1
(2.5) |ox, [€4]| = ’?___:;}q_._ T < (Qt/At)eh/'[(l——At)—zvx.
pTyq

From (2.3) we immediately obtain

(2.6) |4,[e%]] < el lt-1'z

When |14t < 1, we may obtain the very crude inequality,
ly At — A At < |A4¢8)3,

by an elementary application of Taylor expansions to (2.1) using domi-
nant geometric series. Let us introduce 5 = (4¢)}. If <1 and if
|A] < 571, then

(2.7) 24t <n,  |ydtf <2q, |y—A<7.

Assume that 1 7s real and that (2.7) holds. Then we conclude from (2.1)
that y is real, and we get

(2.8) |4, [e%] — o, [€4%]] = |cos At — cosyt — tg (4 At) sinyi|
<ly—2lt+ 2|3y 4l < (¢+2)n.

Next, assume that A ¢s real, but that (2.7) need not be satisfied. Put
u~l|sin}1dz| = 7. Then, by (2.1)
0 if <1,
(2.9) 37" 4t = [Im(arcsint)| = )
arcoshz, if 7>1,
whence we obtain
(2.10) [y”| < (2/4t) max |arcosh 7| = (2/A4t) arcoshu~! .

We also need another estimate for »”’. From the definition of w and ©
follows |3AA4t| = |[u—1}Adx| > 7, and thus according to (2.10)

ly"’[A] < v~tarcosht for 1=7v=<wu'.
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The function z—'arcosht is increasing, until it reaches its maximum,
somewhat less than 2/3, when 7 is a little larger than 9/5. Thus we ob-
tain
2/3,
(2.11) max|y’[Al = K <
w arcoshu-!.
Finally, assume that 4 is imaginary. Put A = ¢1”". Then
(2.12) sinh }y"' At = w1sinh {A""u A¢ ,
whence |y"'| < |4”|, because u < 1. Then we can derive from (2.2)

(2'13) let[e—z"z]l < elv’lt—1"a < et -1z

3. We shall consider the case f(z) = (x—§&)-1, where & = &' }-4£" is a
complex constant. To begin with, we assume that &'’ < 0. Then we have

(3.1) (x—&)1 = —3 S e-itgirzd)
and 0
(3.2) Af@—8 = —i\e-w 4 [e1az,

o[(@—8&)1] = —i\ e~ [e4]dA

Ce 3 ©

since, by (2.6) and (2.5), we are allowed to perform operations under the
integral signs in order to see that the equations and initial conditions
for A [(x—&)1], and «,[(x—&)~1] are satisfied. Hence

|4 [(z—8)7] — o [(@—8)7]]

L 00 00

< S e-1E1| 4, [e3=] — &[] dA + g e~ 1€ 4 [e]|dA 4 S e~ [e3]| dA,
0 z L

=I,+1,+1I.
Put 4t = %2 and L = 5~1. Then, by (2.8), we get,

I, < &7 (t+2)7
and by (2.6), (2.5) and (2.10), remembering that 2" = 0 and & < 0,
12 < IE'll—le——IE"l/n, Ia < 2t7]—2|§H+Kt|—le(5"+Kt)/'l.

These inequalities show that for any given positive values of ¢, 6 and 7',
a value of A¢ (or %) can be found, such that
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|4, [(e—&)7] — oy [(x—§)] <&
for all z, ¢, & satisfying the relations
0=t=T, & =—Kt—9.

The case &’ > 0 may be reduced to the case already considered by
taking complex conjugates. Hence the same results hold more generally
for

(3.3) 0=t<T, & =Kt+6.

We shall obtain a different sufficient condition by the use of the follow-
ing integral, analogous to (3.2)

[ee]

(3.4) wullw—)7 = (o fe man

derived from the relation
(e}

(x—&) 1 = \'e“"' @=dp".
0

From (2.12) it follows that "' ~ uA"’, when 1"’ — co. Hence (3.4) holds

for 0 <t < (x—&")/u, whereas the corresponding formula for 4, only

holds for 0 < ¢t < x—¢’. Assume that
(3.5) 0st<a—&—96, |2=<C, |&=0C.
We have

|4, [(x—&)7"] — &, [(x—&)7H| =

R o 0

\ere1d fero—aferpan + (e 4 e+ az" + ¢ o fer71) a2

R R
=1, +1,+1,.
Now, given any ¢ > 0, we can choose a value of R, depending ounly on ¢

and ¢, such that I, < }e, I; < }e,
because, by (2.6),

o0 o0
I, < 5 eV EH-D 21 < S eV d) < §-le IR
R R

and, by (2.13) the same is true for I;. The quantity R does not depend
on At. Hence, by the comments after (2.3), 4¢ can be chosen so that
I, < }e. Hence

|4, [(x—&) T —ol@—&) = L+ L, + I3 <e.
Because of symmetry, we may replace x—& —0 by |t—&'|—46 in (3.5).

Math. Scand. 2. 7
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Thus far, we have assumed that ¢ is positive. However, by symmetry,
the results hold for negative ¢, and summing up, we get the following

\ VA \ N LeMMA. o,[(x—E&)1] converges to
A, [(x—&)~1] in the real xt-plane out-
side a ‘“shadow’ of the pole &. The

K3

“shadow” 1is determined by the in-
equalities

g”K 1’ ’

¥ z lt] = 1§ K-, i = le—&7] .

3 . . .
The convergence is uniform in every
closed region tnterior to the unshaded

parts of the (x,t, &', &'")-space.

4& \ \ 4. The exact shape of the region
: N N N\ in the zt-plane, in which «,[(x—&)~1]
converges to A,[(x—&)~'] has not
been found. The Lemma gives sufficient conditions only. One may im-
prove the region slightly by the use of integrals analogous to (3.1)
and (3.2) taken from the origin to infinity along different straight lines
in the A-plane. The following two arguments indicate that we are probably
not very far from the best possible region.
First, assume that & is real. Then we get, by (3.4) and (2.2) for
x—& > ut,

o2

wla—87] = | e

cosh (y"’ (t—} At))
cosh "' At

00
an’ >y er w0y i-an gy,
L4

0

From (2.12) we can derive a relation of the form
WAL > A At — A (32 A¢8)3

where A does not depend on A¢. Introduce this, and let ut<x—&<t—At.
Then

ille—8)1) > 3 {44020y > 0 (4155 o
0

Similar results hold, by symmetry, for z—& < —ut¢ and for ¢t < 0. Fur-
thermore, o,[(x—&)~1] is infinite at the points (£+4nAx,t) in the region
lt—&| < wult|]. (Cf. Section 6.) Hence, when & is real, the inequality
[t] < |x—&| 18 a mecessary and sufficient condition for the convergence of

xy[(x—&)"] to 4, [(x—E&)71].
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Second, assume that &'” < 0. We have, by (3.2) and (2.2),

o0

wll@—8)] = —i | e-ilet

0

S‘fl(__ﬂ] ) et @8] .
cos}y At

Assume also that x = &’. In the interval
(2/Ax) arcsinu < A < (2/Ax) (7w — arcsinu)
the integrand is given by
—(—1)¥4t e=21¢"l sinh ("' (¢ — § At))[sinh §y" 4¢ .

The contribution to the integral from this interval can be estimated by
the saddle-point method. The maximum of the integrand is at least as
large as its value at that point ,, where y'’/1 attains its upper bound
K. Hence the contribution is at least of the order (4t)~% ¢ #mt=4m&"D/4t,
When Kt > |&"|, the contributions from the remaining parts of the real
axis are smaller.

By symmetry, the same holds for &’ > 0.

Hence, «,[(x—&)~1] diverges on the line x = & for t > |£"|/K. This
argument cannot be used, when x == &', because of the oscillating factor
et4@=5 In that case, the question of getting necessary conditions for
convergence is still open.

5. Now, we shall finish the proof of Theorem 1. Assume that f(&) is
holomorphic within and on the rectangle R defined by the inequalities
asé<b, £ < 1K (b—a) .

Then, there exists a contour C, enclosing R, such that

fa) = — @iy () w—)a

C

sl = — @iy {f@ -4

C

and

The “shadows’ of the points on C fall entirely in the exterior to the re-
gion of determination belonging to the interval (a, b), i.e. the region
a+t| <x < b—|f|]. We may then apply the Lemma of Section 3. Hence,
by the uniform convergence

lim o [f] = —(2i)* { (&) 4, [0~ &) 148 = 4,11

4t—>0 b
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for all (z, t) in the region of determination, and the convergence is uniform.
After the introduction of the estimates of K, given by (2.11), we imme-
diately obtain Theorem 1.

If the assumptions of regularity for f(£) and ¢(¢) in Theorem 1 are
not satisfied in the whole of the rectangle, associated to the given inter-
val (a, b), the theorem may usually be applied after a division of the
interval into smaller parts (which may overlap). Then @(z, {) converges
to F(x,t) in the union of the regions of determination of the sub-
intervals. In this way, the Lemma in Section 3 can be obtained as a
corollary from the theorem. More generally, this leads to

TeEOREM 2. When f(£) and g(&) are analytic, then ®(x,t) - F(z, 1)
Jor all points (x,t) outside the “‘shadows” of the singularities of f(£) and
g(é)-

6. Since most functions of Applied Mathematics are at least piece-wise
analytic, one might expect that the theorems just obtained would be
more relevant to numerical practice than the negative results of Courant
et al. This is, however, not the case (if the difference equation is used for
recursive numerical computation of F(z, t)). The reason is the presence
of round-off errors, which behave very much like non-analyticities. In
terms of Fourier analysis, the round-off introduces ‘“wave components”,
for which [sin4A4z| > u. According to the comments to (2.4), such
waves have a very rapid growth. Thus, that circumstance which caused
trouble for the proof of convergence under more general assumptions,
gives rise to so-called numerical instability in a computation with finite
differences.

Even an isolated round-off error has a very strong effect. For » = 1,
an error of one unit at x = x,, ¢ = At propagates according to the
following scheme. (Cf. Collatz [1, p. 207 ff.].)

0 At 24t 34t 44t 54t
xog—4dx 0 0 0 0 0 256
xy—34x 0 0 0 0 64 —1536
2y — 24 0 0 0 16 —288 4432
xy— 14z 0 0 4 —48 616 —17920
o 0 1 —6 67 —1780 9541
2o+ 14z 0 0 4 —48 616 —17920
xo+2Ax 0 0 0 16 —288 4432
o+ 342 0 0 0 0 64 —1536
Zo+ 442 0 0 0 0 0 256
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In our terminology this function is equal to f,[d,, ,,]/4¢, where 6, .
is the Kronecker delta. The following facts about the function

B:[0x, z,]/At are easily proved by induction, directly from the difference
equation, when u < 1.

1) Its sign has a “chess-board-distribution”.

2) Its modulus is at least equal to w—2(-40/4t  at every lattice-point
(x, t) for which |x—=,| < ut. It follows from (1.5), that the same holds
for the function g((x—x,)/dx, t) = &[0, ,]. In particular @(u,t) =+ 0,
if |u| <t/4t and if u is an integer, whereas @(u,t) = 0 if |u| = t/4s.
From the identity

f@) = 3 S0 A5)S, o e

y=—00

it follows that

o0
61)  «lf@)] = X f0 40 0lde, i) = 3 90 1) f@tppda)
VY=—00 ul<

This explicit representation of «;[f] is analogous to the expression (1.4)
for A,[f]. We see from it, for example, that «,[f(x)] is infinite at the
points (§ 4+ udz, t) in the region |x—&| < ut, if f(x) is infinite at x = &.
(This was stated without proof in Section 4.)

Putting f(x) = ¢***, x = 0 into (6.1) we obtain a generating function
for the weight-coefficients ¢(y, ?)
(6.2) S o(u, t)(e447)r = cosy (t—} At)[cos §y At .

lul<t/at

One hardly expects that «,[f] can be an approximation to 4,[f], when
looking at (6.1), taking into account the character of ¢(u, t). This fact
appears as the result of a cancellation between different large terms,
which is made possible by the “smoothness” of analytic functions. We
cannot hope for a cancellation of this kind, when round-off errors are
present. For instance, consider the initial round-off errors in the values
of f(x) as uncorrelated samples from a population with mean zero and
variance o2, and suppose that there are no new round-off errors in the
computations. The first assumption is usually reasonable, although it
is very easy to give examples, where it is not valid. The second assump-
tion is more artificial, but it is valid in one special case, namely if u—2
is an integer. Then we have for the variance of «;[f]

D [fTy = 0* 3 (plu, D) > 0 (2] At — 1)u-s¢t-avat,
"
This indicates that a considerable loss of accuracy is probable, when

u < 1. A sharper estimate may be obtained by the application of Parse-
vals formula to (6.2).
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From the point of view of discrete Fourier analysis, as used in the
investigations of numerical stability by von Neumann, O’Brien et al. [4],
Hyman [3], and others, the growth of «,[d, ,] is due to the considerable
intensity of unstable components in the formula

N
Op, 2= N" ;l‘e“v@-“o), ), = 2nv[(b—a), N = (b—a)/dz.

The convergence of «,[f], when f(x) is an analytic, non-periodic function,
appears in the discrete Fourier representation as the result of a cancella-
tion between different diverging components. Therefore, the slightly
different approach, used in this paper, seems to be more natural.

7. When u — 0, the equations of Problem 4 becomes a set of ordinary
differential equations
d*®, (x)
da?
Do(z) = f(x),  Pi(x) = f(x)+ Atg(x).
According to Theorem 1, the regularity of f(£) and g(£) in the rectangle

= (4)2(D,,(¥) — 2D, () + D,_, (), T=1,2,...,

as<é&<bh, & = (b—a)/3

is sufficient for the convergence of @(x, t) to F(x, t) for any positive value
of w. This indicates that also @, ,(x) should converge to F(z,t) when
At — 0. That is true, since the preceding theory can be applied here
almost directly with only a few obvious modifications.
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