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ON INEQUALITIES OF THE TURAN TYPE

H. SKOVGAARD

In 1948 Szego [10] called attention to the following remarkable ine-

quality of P. Turan for Legendre polynomials:

(0.1) (P,(®)* — P,_4(@) P, ,(x) =0, —l<z=s1l, n=z=1,

with equality only for « = 4 1. Since that time several proofs of this
inequality have been given and analogous inequalities for other functions,
especially polynomials, have been established. Most of the proofs of
these inequalities are based upon special recurrence relations for the
particular functions. Recently Thiruvenkatachar and Nanjundiah [11]
have given a rather extensive treatment of this subject and proved
several inequalities of the Turan type in a simple and uniform way ; they,
however, also use special recurrence relations. In this connexion we may
also refer to the investigations by Burchnall [2], Sansone [6], [7], and
Szasz [8], [9].

Of special interest is a proof given by Szegé [10], which does not use
recurrence relations. It is based on an inequality deduced from a theorem
of Poélya and Schur for a certain class of entire functions. By specializing
this inequality almost all known inequalities of the type (0.1) may be
obtained. This has already been pointed out by Szegé for some cases.
In the present paper we shall deal with this subject; however, we shall
take as our starting point the following more general inequality of
Laguerre:

(0.2)  (F™(z))> — F=D(z) F+(z) = 0, —o<z<oo, m=1l.

Here F(z) is an entire function of a special type. In addition we shall
mention a few functions, which also satisfy an inequality of the Turan
type, and two other proofs based on Laguerre’s inequality.

Throughout the paper we follow the notation of G. Szegi’s monograph
Orthogonal polynomials (American Mathematical Society Colloquium Pub-
lications, vol. 23), New York, N. Y., 1939.
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1. Let u,(x),n = 0,1,2, ..., be a system of real functions of a real
variable 2. The inequality

(11) An(x) = (’I’Ln(m))2 - un—l(x)unirl(x) 2‘ 0’ n g 1 ’
which is identical with (0.1), if u,(z) = P,(x), —1 < x <1, has been

proved true for the following functions:

Ultraspherical (Gegenbauer) polynomials PP(z), —1 =z <1, 1=},

Hermite polynomials H,(x), —o<z< oo,
Hermite polynomials of the second kind G,(z), —c<x < oo,
Laguerre polynomials LP@), —o<x<o0,xz=0,
Tschebychef polynomials T,(), —1=z=1,

Bessel functions Jux), —oo<x<o00,
Modified Bessel functions L(x), —oo<x<oo,
Derivatives of Legendre polynomials P/(x), —o<x< .

Here the Hermite polynomials of the second kind have to be defined
as in Appell et Kampé de Fériet, Fonctions hypergéométriques et hyper-
sphériques, Paris, 1926, pp. 360-361. The inequality (1.1) for these poly-
nomials has been proved by L. Koschmieder [3]. It should however be
noticed that (1.1) does not hold for Hermite polynomials of the second kind
defined by G,(x) = e~="dnes’/da™ and having e2*2+%* = X°_ G, (x) z"/n!
as a generating function.

It may be added that for Bessel functions the following more general
inequalities have been proved (see, in particular, [11]):

(Jv(x))z - Jv—-l(x)Jv+1(x) g 0 ’ —o0 ¥ < © ) v

(I,@) — I, ()1, ,(x) 2 0, —o<xr<oo, W

v

—1,
—1.

Y

For z negative J, (x)J, (), %k =0,1, must be interpreted as
@) (a7 PJ,_y(@) 2P J, 1 (x)). A similar interpretation should be
given to I, ,(x)I, ,(x). For v < 0 we must exclude x = 0.

The inequality referred to by Szego [10] states that (1.1) holds for such
values of z, for which the functions u,, = u,(z) have a generating func-
tion of the type

(1.2) S u, 2t n! = F(z),

where nee

(1.3) F(z) = Ce»®+P2ar [T (1 — zfz,,) €¥m
m
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is an entire function with « = 0, C, 8, and all z,, real, and 2'z,~% con-
vergent. In the following a function (1.3) is said to be of type (1.3), if
these conditions are fulfilled. The proof of the inequality used by Szegé
is based upon a theorem of Pélya and Schur stating that under these
conditions each of the polynomials

-

" In
2,<r)u,z', n=12,...,

r=0

has real zeros zy, z,, ..., z, only. By means of the inequality

<z1+z2+ cootz, 2>zlzz+z1z3+. ..
n ) - n
(5)
it then follows that w,_,2—u, ,u, =0, n = 2,3, ..., and thus (1.1) is
established.

However, the same result may be obtained by using the inequality
(0.2) of Laguerre, which holds for entire functions of the type (1.3) (see
[1, pp. 32-34]). To be sure, Laguerre has only considered the case where
F(z) is of genus 0 or 1, that is « = 0. As indicated in Section 2, his proof
may, however, easily be extended to the case « > 0. Now, assuming the
funetions u, = wu,(x), » = 0,1, 2, ..., to have, for some values of z, a
generating function #(z) of the type (1.2)-(1.3), it follows from u, =
F®@(0), that for such x inequality (1.1) is a special case of Laguerre’s
1nequality.

2. In order to extend Laguerre’s inequality to functions of type (1.3)
with « > 0, we follow the method of Laguerre. Since X'z,~2 is con-
vergent, we find by logarithmic differentiation of (1.3)

F'(z) roof 1 1
= F 2 A ()
and i 1F® X

2 r 5
=2 Elrw) = Yy

If 2z is real and different from the zeros of F(z) the expression on the right
is negative or zero, hence

4R _FOr - (e,
dz\F()] (F(2))? =

and so (0.2) is true for n = 1. Hence (0.2) will be true for arbitrary =,

(2.3)

5%
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if F'(z) and therefore all derivatives F™(z) are of the type (1.3). If
o« = 0 this is a simple consequence of a well-known theorem of Laguerre
(see, for instance, [1, p. 32]), and if x > 0 it may be obtained essentially
by copying the proof of this theorem. We meet only one difficulty,
namely in proving that F’(z), written in the form (1.3), has an « = 0.
However, this may be seen from the proof of another theorem of La-
guerre about the derivatives of an entire function of genus p and having
at most a finite number of imaginary zeros (see [1, pp. 37-47]).
From the preceding it follows that if F-1(z) is of the form

(2.4) Fr-1(z) = Cef?,
then Laguerre’s inequality becomes
(2.5) (F™(z))2 — F-D(z) Fn+D(z) = 0, —o0 <z < 0o,

In all other cases d(F‘”)(z)/Fm—”(z))/dz < 0. This follows from an ex-
pression for this derivative analogous to (2.2). Hence equality in (0.2)
occurs only at multiple zeros (if such ones exist) of F*-(z). Consequently,
if (1.2) and (1.3) are assumed to be fulfilled, equality in (1.1) holds only
for such values of z, for which F®-1(z) is of the form (2.4), or for which
z = 0 is a multiple zero of F»-D(z) .

3. The inequality of Laguerre obviously holds for the foilowing gener-
ating functions:

& PP () 2m 9
(3.1) ; Py nl = 27+ ) e ((1—a?) 22T, (1—a?)tz),
B —1=sx=s1, 1> —4%,
L(“) x) 2"
(3. 2) sz()) = I(a+1)e(xz) 4T (2 (22)}),
—o < r <o, x>—1,
(3.3) Z'Hn(x)%' = o2, —0o << oo,
n=0 .
o0 n
(3.4) X (—1)'LG™@) o = LY ds), —c<a<oo, xz—2,
n=0 n!
[oe] zn
(3.5) X' J,(2) —= Jo((@* —2w2)t), —c0 <X < 0,
n=0 :
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The first three of these functions are mentioned in Szegé [10]; the
identity (3.4) is stated in Truesdell [12, p. 84] while (3.5) is generally
known, and (3.6) is easy to prove.

The functions u,(x) appearing in the formulas (3.1)-(3.6) will satisfy
A,(x) = 0 as follows: In (3.1) for x = 4 1. In (3.2) for x = 0. In (3.3)
for no value of z. In (3.4) for all z if m =0, and for x =0 if
o= —2,n=1. In (3.5) for x = 0. In (3.6) for x = p=.

It may be added that, since

P =("TEN e = ("E),

it is easily proved that (1.1) also holds for

U, () = PPx), —1=szxz=<1,
if A=24, and, if « =0, for

Up(x) = L(x), —oco< < oo.

Since cosnz and sinnz satisfy (1.1), the same is true for the Tscheby-
chef polynomials of the first and second kind, 7, (z) = cos(n Arccosx)
and U,(x) = sin[(n+1) Arccosz]/(1—22)? in the interval —1 <z < 1.
That (1.1) holds for cosnx and sinnx may, of course, also be shown by
direct calculation; in fact

A4,(x) = cos*nx — cos(n—1)x cos(n+1)x

= gin?nx — sin(n— 1)z sin(n+1)x = sin?x =20, —oco < < oo.

4. It has already been mentioned that the derivatives of Legendre
polynomials, P,’(z), satisfy the Turan inequality (1.1) for all values of x.
This has been proved by Nanjundiah [5] by means of recurrence formulas.
In this section we shall give a few other examples of derivatives satisfy-
ing (1.1).

The derivatives of the ultraspherical polynomials satisfy the recurrence
formula

op I;M P&MP(x) p=n.

@) ¥
Here and in the following the symbol D”f(x) means d*f/da?. Since P{(x)
satisfies (1.1) for —1 =& <1, 1 = }, it follows from (4.1) that D? PP (x)
satisfies (1.1) for —1 <z =<1, 2 = §—p. Similarly, we have from the
recurrence formula for Laguerre polynomials

(42) DPL;;")(Q;) — (_ 1)pL£:x_+?§))(x) ,

(4.1) DPPP(x) =
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that DPL®(x) satisfies (1.1) for —oco < & < oo, « = —p. The correspond-
ing recurrence formula for Hermite polynomials is
DPH » ™ g
4.3 ) =2P— _ .
(4.3) o) =2 H (@)
Since 1 < p <n—1, we have

(@ (m—p)1)2 > (n—1)! (n4+1))/((n—p—1)! (n—p+1)!);

hence DPH,(x) satisfies (1.1) for —oo < & < oo, because H ,(z) satisfies
(1.1).

To prove the Turan inequality for ./, (x) we first notice that the series
23, (x) 2¢[n! converges uniformly in —oo <z < co. This follows
from 2J,'(x) = J,_;(x) — J,4(x) and from |J, (x)| = 1. Thus, by dif-
ferentiating (3.5) with respect to x and using J,'(x) = —J,(x), we get

(4.4) 3, (@) 2l = (z—2) (22— 202) BT y((22—202)F) , —o0 < @ < o0 .

Since this generating function is of the type (1.3) for all x, the inequality
(1.1) holds for wu,(x)=J, (), —oo <2 < oco. That (1.1) holds for
DPL(x) and DPH ,(x) might be proved in a similar way by using (3.2)
and (3.3), respectively; it turns out, however, that the proof is more
complicated in these cases, since it requires the use of asymptotic esti-
mates for L{*(x) and H,(x) for n - oo,

5. Finally we shall mention two methods, which are similar to the
method used in Section 1 in the sense that inequality (1.1) is transferred
into Laguerre’s inequality.

The first method consists in finding a function F(z), not depending on
n, such that w,(x) = D"F(x). Inequality (1.1) is now satisfied for all x,
provided F(z) is of type (1.3). Thus it holds that

(5.1) (—1)re~*"H,(x) = Dre~",
(5.2) (—1L)me—=L(x) = D™(e= L, (v))

hence (1.1) is satisfied for the functions on the left hand side of (5.1)
and (5.2) and therefore also for H,(xz) and L{”(x). The formula (5.2)
appears in another connexion in Truesdell [12], which deals with functions
satisfying a functional equation of the type D, F(z,v)= F(x,v+1).
Such functions are suitable for the present purpose, because if a function
F(x,v) satisfies this equation for the values », v+41,v+2, ..., of
the parameter we have F(x, v4+n)= D "F(x, v); hence wu,(x)=
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F(x,v+n) satisfies the Turdn inequality (1.1), provided that F(x) =
F(x,v) is of the type (1.3). Thus in (5.1) and (5.2) we have v = 0,
and F(zx) is e~ and e~* L,,(x), respectively.

The second method to be mentioned is used (without reference to
Laguerre’s inequality) by Mukherjee and Nanjundiah [4] in a proof of
(1.1) for H,(x) and L,(x). In this method u,(x) takes the place of F(z)
in the inequality (2.3); this is made possible by the use of two recurrence
relations and a differential equation for w,(x), whereby 4,(x) can be
written as a product of a non-positive function and D(u,'(%)/u,(x)). Thus
Mukherjee and Nanjundiah have found the following expressions for

A,(x):

H
(5.3) A, (z) = __( @) D] ((x))
(5.4) o) = = (L) D g

n(n+1) (x)

We may add that the same method applies to the generalized Laguerre
polynomials. Thus we find for u,(x) = L{(x)/L{’(0), using the recur-
rence formulas

Upy = U, — (@M)U,, Uy = 1—2xm+at+1)u, + (@/n+ot1)u,
and the differential equation zwu,” + (1+«—zx)u,” + nu, = 0, that
2 ’
(5.5) A@) = — — = w2D™,
n(n+o+1) U,

Consequently A,(z) = 0 for « > —1, because for « > —1 the function
L®(x) has real zeros only and L{(0) + 0. For u,(x) = L{(x) the cor-
responding result would be

x? u,’ &
o0 00 = = (P~ )

which shows that 4,(r) = 0 for « = 0.

For ultraspherical polynomials and Bessel functions the analogous re-
presentations do not immediately settle the question about the inequality
(1.1).

For u, = P{(x)[P{P(1) from the recurrence formulas
Up_y = xU, + (1 — 2%n)u,’ and U,y = zxu, — (1 —x3n+21)u,’

and from the differential equation
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(1—x*)w,” — (2A4+1)zu, + n(n+24)u, =0

we find
1—2x2)2 ’ ’

(5.7) Aw) = — L s (Du*" - u_>

n(n+22) u, 1—z%*u,
Factorizing now u, = P (x)/P{’(1), we obtain u,’[u, = 27 (x—z,)7",
where z,, %,, ..., , are the zeros of P{’(x), and so

1—a? " 1 —xx;

5.8 A, (x) = — U, 2 —=
(5.8) @) = et X s

Since for 2 > —3} each |z;| < 1, it follows that 4,,(x) = 0 for —1 <z < 1,
A> —4.
Similarly, for «,(x) = J,(z) from the recurrence formulas

u,_, = (vx)u,+u,’ and u,,, = (v/r)u,—u,’

v—1

and from the differential equation

2?2u, +xu, + (x2—r3)u, = 0
we find

(5.9) A,(x) = — 9_10 u,2D (x %,) .

v

Using the factorization

o0

J,(x) = (x/2)”/]“(v+1)‘]7(1 — 2%, %), vE-—1, -2, ...,

=1

we obtain , 0
u, v ad x
u_v B ;’—f-i:z: x? “jm'z’
w,’ ® j 2
)< er S
u, =1 (x __JV,'L' )
hence .
had ]v i2
(5.10) A,(x) = 4u?2 D' L

o1 (#—7,,%)°

For real » > —1 all the zeros of J (z) are real, and therefore we have
A (@) = (J ()2 — J, (@), ;4(x) = 0 for —oo < & < oo, where J, ()], ()
for negative x should be interpreted as in Section 1.
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