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ON A THEOREM OF GRACE

LARS HORMANDER

In this paper we give a generalization of a classical theorem of Grace
(Grace[5], compare also Szegt [10] and Polya—Szeg6 [8, Fiinfter Abschnitt,
2. Kapitel]). We generalize it in two directions: where Grace considers
polynomials in one complex variable, we consider polynomials in several
variables ranging over an arbitrary algebraically closed field of charac-
teristic 0. At the end of the paper we confine ourselves to the case
treated by Grace and show how some known inequalities can be proved
simply by means of Grace’s theorem. That section is entirely elemen-
tary and can be read independently of the first one by those familiar
with Grace’s theorem.

We shall not suppose anything known about previous work on Grace’s
theorem, but the proofs, though simplified by our invariant approach,
are strongly influenced by those of Szeg6 [10].

The author’s study of the topic of this paper originated from a new
formulation of Grace’s theorem (Theorem 3’, p. 62, for (z-4b)" = 1).
This formulation, and also the abstract characterization of Lorentz sig-
nature used here (Conditions 1° and 2° p. 58), are due to Professor
Marcel Riesz. The author wishes to express his gratitude to Professor
Riesz for communicating to him these results as well as for pointing out
to him the usefulness of the symbolic notation applied in the last section.

Preliminaries. Let Z be a vector space over a field K of characteristic 0.

DErINITION. 4 function P(x) defined in E with values tn K 1is called an
(abstract) homogeneous polynomial of degree n if, for any =z, yeck,
P(sx+ty) is a homogeneous polynomial of degree n in s, t € K in the alge-
braic sense.

From the definition it follows that P(t,x, + tyx,+. ..+ f,2;,) is also a
polynomial (in the algebraic sense) in ¢y, £,, . . ., ¢, € K for arbitrary fixed
Zy, Ty, ..., %, € B. Hence, if the dimension of E is finite, the abstract
and the algebraic definitions of a polynomial coincide so that the
distinction between these two concepts can be dropped.
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LeMmA 1. To each homogeneous polynomial P(x) of degree n in K there
exists one and only one function P(xy, ,, ..., x,) with values in K which
18 defined for x; € E and has the properties:

a) P(x,, z,, ..., x,) 1s linear in x; if the other arguments are kept fixed,
1=1,2,...,n,

b) P(xy, 2y, ..., x,) 18 Symmetric in its arguments,

c) Plx,z, ..., x) = P(x).

Proor. In order to prove that P(z,, z,, ..., z,) is uniquely deter-
mined, we have to show that, if P(x,, x,, ..., x,) satisfies a) and b) and
if P(x,z,...,z)=0, then P(x,, «,, ..., %,) = 0. But this is obvious
since according to a) and b) the coefficient of ¢,, ... ¢, in the identically
vanishing polynomial P(t,x,+...+t,2%,, ..., %, +...+1t,2,) equals
n!P(xy, gy ..., X,) -

To prove the existence we set P(x;, ,, ..., x,) equal to 1/n! times
the coefficient of #,¢, ... ¢, in the expansion of P({,x, +t,2,+. ..+ 1, 2,)
as a polynomial in ¢, € K. The verification of a), b) and c) is then easy
and may be omitted.

DeriNtTION. The function P(x,, %, . . ., x,) defined by Lemma 1 ts called
the (ntt) polar form of P(x).

In case E is the finite dimensional vector space K¥ of all N-tuples
(', 2", ..., 2®) where 2 € K, this definition agrees with the usual one
involving derivatives. For in this case we have the representation

1/, X 0
Pxy, 2y ..., x,) = — < 2,
( 1 Y2 > n) n! kI=7ip:1 k ax(v)

)P(x) .

In fact, the right-hand side is independent of x and obviously satisfies a)
and b) above, since the differentiations commute with each other. Fi-
nally, c¢) is a consequence of Euler’s identity for homogeneous polyno-
mials.

Beside our assumption that K is of characteristic 0 we shall suppose
from now on that K is algebraically closed. As is well known (cf. [3],
[11]), our hypotheses imply the existence of a maximal ordered field
K, = K such that K = K(i), where —i2 is the unity element of K.
(Our terminology is that of Bourbaki [3]; van der Waerden [11, §§ 70-71]
calls such a field “reell-abgeschlossen”.) Generally K, is not uniquely
determined. In the sequel K, will always denote a fixed field with these

properties and the signs > and = will always refer to the order relation
in K,.
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Having fixed K, we have a conjugation defined in K which we shall de-
note in the usual manner. The definition of a hermitian symmetric form

in a complex vector space can thus be extended to forms in a vector space
E over K.

DeriniTION. A function H(x,y) defined for x,y € E with values in K
18 called a hermitian symmetric form if H(x,y) ts linear in x for every
fixed y, and H(x, y) = H(y, x).

We remark that for positive definite or semi-definite forms the in-
equality of Schwarz, |H(z, y)|2 < H(x, ) H(y, y), is still valid.

A generalization of Grace’s theorem. We first give a lemma, which
generalizes a theorem of Laguerre [6, p. 48-50], usually employed in the
proof of Grace’s theorem.

LemMA 2. Let P(z) be a homogeneous polynomial of degree n and H(x, y)
a hermatian symmetric form defined in E. Suppose that P(x) = 0 for every
x == 0 such that H(x, z) = 0. Then it follows that P(x,, x, ..., x), the first
polar, cannot vanish if x == 0, x, == 0, and H(z, x) = 0, H(zy, ;) = 0.

Proor. P(sz-1iz,) is a homogeneous polynomial in s and ¢. Since K
is algebraically closed, we can write it as the product of linear factors

P(sx+tz;) = ]n](sri——tcr,-) .
i=1

Identification of the coefficients of s®~1¢ on both sides of this identi-
ty gives nP@y, 2, ...,2) = 271, ... T;_1(—0))Tisq - .. Tn, and since
P(x) = P(x,z, ...,2) = 7, ... T,, we obtain

nPxy, z, ..., %)|Px) = — f o;l%; .

To prove that this sum does not vanish, we first observe that, since P
vanishes at o,z + 7,%,, we must have

H(o;x+ 7,24, 0,24 7;7,)
= 0,0;H(x, x) + 2Re (0,7, H(x, x,)) + 7,7, H(x,, 2,) < 0.

From the assumptions of the lemma it follows that the first and last
terms are non-negative so that we must have Re(aﬁiﬂ (x, xl)) < 0.
After dividing this inequality by 7,7;, which is positive, we obtain
Re(H(x, ;)0;/7;) < 0. If we add these inequalities fori =1, ..., n, we
find that Re(H(z, x,) 2}oy/t;) < 0; and this inequality immediately
implies that X7o;/7; = 0.

It is now very easy to prove a generalization of Grace’s theorem:
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THEOREM 1. Let P(x) be a homogeneous polynomial of degree n and
H(x, y) a hermitian symmetric form defined in a vector space E over K.
Suppose that P(x) &= 0 for every x == 0 such that H(z, ) = 0. Then it fol-
lows that the polar P(xy, x,, ..., %,) =0 if ;= 0 and H(x;, x;) 2 0 for
1=1,2,...,n.

Proor. From the lemma it follows that P(x,, z, ..., ) & 0 for every
2 == 0 such that H(x,x) = 0. Hence the lemma can be applied again,
and after n—1 applications of it the theorem is proved.

We observe, that Lemma 2, and consequently Theorem 1, would also
hold if = is replaced by > everywhere in the statements.

Theorem 1 has been proved for an arbitrary H(z, y), but it is void
except for certain types of hermitian forms. For in the case of a general
H(z, y) there may be no polynomial P(x) such that P(x)== 0 when
H(zx,z) = 0, x4 0. The reason is that every homogeneous polynomial
P(x) vanishes for some = == 0 in any two-dimensional subspace. For if
we introduce a basis in the subspace, P(x) becomes a homogeneous binary
polynomial in the coordinates; and since K is algebraically closed, such
a polynomial has non-trivial zeros. Hence, in order that the theorem
should not be void, we have to assume that

1° there does not exist any two-dimensional subspace where H(x, x) = 0,
and furthermore in order to exclude uninteresting cases that
2° there exists an x with H(x, x) > 0.

For otherwise H(x,x) <0 for all x, and the set where H(x, ) = 0
reduces to the set where H(z, ) = 0 and is thus a linear manifold since
H(z, x) is semi-definite. If this manifold has a dimension = 2, it follows
from 1° that the theorem is void, and, if it has dimension one, all its ele-
ments are proportional and the theorem is cbvious.

Now suppose that the conditions 1° and 2° are satisfied. Take a fixed
element xz, such that H(z,, x,) = 1. Then we have the decomposition
x = tx,+y, where t = H(x,x,) and y = x — z,H(x, z,) so that
H(y, ;) = 0. Hence if we put F = {y | H(y, z,) = 0}, it follows that
every element x € £ can be written uniquely in the form z = tx,+4y
with t € K and y € F. H(y, ) is negative definite in . Forif 0 =y e F
and H(y, y) =2 0, it would follow from the formula

H(txy+ sy, txg+sy) = tt + ssH(y, y) ,

that H(x, x) = 0 in the two-dimensional subspace spanned by z, and y,
which contradicts 1°. Hence we have H(x, x) = tt+ H(y, y) where
H(y,y), ye F, is a hermitian symmetric, negative definite form de-
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fined in F. In analogy to the terminology in finite dimensional real
spaces we shall say that H(x, x) has Lorentz signature.

Conversely, Lorentz signature is sufficient in order that there should
exist a polynomial P(x) & 0 for H(x, ) = 0, x == 0. In fact, an example
is P(z) = t». Hence:

The assumptions of Theorem 1 can be satisfied if and only if H(x, y) has
Lorentz signature.

We shall now give Theorem 1 a more general formulation, which is
convenient in the applications. For that purpose we shall study poly-
nomials defined in ¥ with values in another vector space @ over K. On
page 55 we have only defined polynomials with values in K, but both
the definition and Lemma 1 can be extended immediately to this case.

To be able to formulate a concise theorem, we need the following con-
cept.

DEeriNTTION. A set M in a vector space G over K shall be called support-
able if for every & € G— M there exists a hyperplane through & and the origin
which does not intersect M.

By a hyperplane we mean a linear manifold of co-dimension 1. Hence
if L is a linear form defined in G' the manifold {¢ | L(£) = 0} is a hyper-
plane in . Conversely, every hyperplane in G' through the origin is
defined in this manner by a linear form.

TrEOREM 2. Consider a homogeneous polynomial P(x) which is defined
i a vector space B over K and has its values in another vector space G
over K. Let H(x, y) be a hermitian symmetric form in E and let M be a
supportable set in G such that P(x) € M for every x == 0 such that H(x, x) = 0.
Then it follows that the polar P(xy, z,, . .., x,) € M if x; = 0, H(z;, x;) = 0,
1=1,2,...,m.

Proor. If & ¢ M, there exists a linear form L in G such that L(§) = 0
but L(P(x)) == 0 for every « = 0 satisfying H(x, z) = 0. Hence, according
to Theorem 1, we have L(P(xy, @,, ..., x,)) =+ 0if z; & 0, H(x; z;) 2 0,
from which it follows that P(z,, z,, ..., z,) & &

Theorem 2 is the most general theorem in this paper. The following
theorems are all special cases of it and therefore we do not always formu-
late them as generally as possible.

The next theorem is essentially the special case of Theorem 2 for a
two-dimensional G.

TeEEOREM 3. Let P(x) and Q(z) be two homogeneous polynomials with
values in K, which are defined in a vector space E over K. Suppose that
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Q(x) &= 0 if x == 0 and H(z, x) = 0, where H(z, y) is a hermitian symmetric
form defined in E. Then the range of values of P(x)/@Q(x) when z = 0,
H(x,x) = 0 and the range of values of P(xy, @, ..., %,)|Qx, Zs, . .., Z,)
when x; = 0, H(x;,, 2;) 20,1 = 1,2, ...,n, are identical.

Proor. We shall derive the theorem from Theorem 1, which is as easy
to use as Theorem 2. We first observe that according to Theorem 1 the
polar Q(z,, z,, ..., x,) == 0 for the values of x; in question so that the
quotient P(xy, &, .. ., ,)/Q(%y, X, ..., x,) is well defined. Suppose that
P(x)/Q(x) = «, or, equivalently, that P(x)— «x@(x)== 0, when x= 0,
H(z, z) = 0. Then we conclude from Theorem 1 that P(x,, z,, ..., z,)—
—xQ(Xy, @y, ..., x,) =F 0, that is, P(x}, @y, ..., 2,)[Q(%y, 2, ..., x,) =+ «,
when x; & 0, H(x;, ;) = 0. Hence it follows that the range of values of
P(xy, @gy ...y 2,)[Q(21, X, ..., x,) is contained in that of

P@)/Q(x) = Pz, z, ..., 2)[Q,, ..., ),
and, since the converse statement is obvious, the theorem follows.

In the rest of this paper we shall confine ourselves to the case that K
is the complex field C. In this case Theorem 1 and Theorem 2 can be
improved slightly by means of the following lemma.

LeMmmaA 3. Let H(x, y) be a hermitian symmetric form of Lorentz signa-
ture, defined in a vector space E over C of dimension > 2. Then a homo-
geneous complex polynomial P(x) cannot vanish when x =+ 0, H(x, ) = 0,
if it does not vanish when x == 0, H(x, x) = 0.

Proor. We first prove the lemma for a three-dimensional space Z.
If we introduce a basis such that H(z, x) assumes diagonal form,
H(z, ) = |2, — |12 — |2,/ and put 2, = 1, the lemma can be given the
following form:

If P(x,, z,) is an (inhomogeneous) polynomial such that P(x,, x,) & 0
when x,, z, € C, |x,|2+|2,/2 = 1, then ’

P(xy, 2)) =0 if [z, [y? = 1.

This follows immediately from a rather elementary theorem on ana-
lytic completion (cf. Bochner and Martin [2, p. 64]). For by continuity
P(xy, z,) =0 when 1—¢ < |25+ (2,2 < 1 if ¢ is small enough. This
means that 1/P(x,, x,) is analytic in this spherical shell. Since the
shell has the whole sphere [z,|2+]|z,/2 <1 as analytic completion,
1/P(x,, x,) is analytic in |,|2-+|z,|? < 1, which proves the assertion.

The lemma now follows in the general case. Indeed, take a three-
dimensional subspace F in E such that F contains an arbitrarily chosen
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vector x, with H(z,, z,) > 0. Then H(z, y) has Lorentz signature also
in F, and P(z) = 0 when H(x,x) =0, 0= x e F. Thus P(z,) & 0 ac-
cording to the three-dimensional case of the lemma.

If we apply Lemma 3 to Theorem 2, we obtain

TaroreM 2'. Consider a homogeneous polynomial P(x) which is defined
in a vector space K over C with dimension > 2 and has iis values in another
vector space G over C. Let H(x, y) be a hermitian symmetric form of Lorentz
signature in E, and let M be a supportable set in G such that P(x) e M for
every x =0 satisfying H(x,z) = 0. Then it follows that the polar
Py, xg, oo x)eM if ¢, 0, Hxjy2)) 20,0 =1,2,...,n.

Next we give an important but rather special application of Theorem 2.

THEOREM 4. Let H be a Hilbert space over C with the scalar product
(z, y) and the norm |jx| = (z, x)}, and let B be a Banach space over C with
a norm denoted by | |. Then for any homogeneous polynomial P(x) defined
i H with values in B we have

IPSx)I . |P(£L'1, x2’ ] xn)l

verr 2" aierr llallllegll - - -zl

Proor. Obviously the left-hand side cannot be greater than the right.
Hence we have just to prove that if | P(x)] < «|jz||® then also

| P@y, @y, .oy w)| = almallllag] - - - [l -

Let E be the direct sum of H and C, that is, K is the set of all
pairs [z, t] where x € H, t € 0. The hermitian symmetric form t{—(z, x)
defined in F obviously has Lorentz signature. As our space G we take
the direct sum of B and C, whose elements are the pairs [£, 7]
with £eB, e C. Weset M = {[&, 7] | =0, |é| = «|z|}. That M is sup-
portable is exactly the contents of Hahn-Banach’s theorem. Consider
the polynomial [P(z), t*] defined in E. We have [P(x), t"] € M when
tt—(x, ) = 0, ¢ & 0; for then |P(x)| < «[t|* since |jz| < [t| and, by as-
sumption, |P(x)| = «|jz||*. From Theorem 2 we can now conclude that

[Py, Tgy v vy ), biby ... L] € M if t, =0, t,t,— (x;, x;) = 0. But this
means that |P(xy, ,, ..., 2,)| = «ty||ts] ... |t,] if [lz;]] = |¢;| and hence
| P(y, @, - .., 2,)] = alllllls]] - - . |lx,]l, which was to be proved.

Theorem 4 is very weak compared with Theorem 2; in fact, according
to Kellogg [7] it is valid also for real spaces, for which Theorem 2 does
not hold. We shall return to this theorem later.

Elementary applications of Grace’s theorem. In this section we shall
consider complex polynomials defined in £ = (%, that is, the elements
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x of K are the pairs [2', "] with 2’, 2"’ € . An element x == 0 in ¥ can
then be considered as the set of homogeneous coordinates of a point
(also denoted by x) in the one-dimensional projective complex space,
that is, the complex plane completed by a single point at infinity. A
homogeneous polynomial P(x) of degree n defined in C? can be written

n

P(x) =) (:) a,x' v ky'k

k=0

or symbolically P(x) = (x'+az’’)*. This and the following symbolic
formulas should thus be interpreted by considering a as an indeterminate,
next multiplying all factors together, and then replacing a* by a,. The
polar of P(x) is given by

P(xy, y, ..., 2,) = () +az,") (@, 4 axy’) ... (x,'+ax,”),

for the right-hand side satisfies the conditions a), b) and c) of Lemma 1.

A circular region in the complex plane is the closed interior or exterior
of a circle or a closed half-plane, which may degenerate to a point, to
the empty set or to the whole plane. It is immediately verified that if
H(z,y) is a hermitian symmetric form, then the conditions z == 0,
H(x, z) = axx'x’ + B’z + Ba’’2’ +ya’2” =0, «,y real, mean geome-
trically that « belongs to a circular region. Conversely, every circular
region can be defined in this way by a hermitian form.

Hence, in this special case with 2" = 1 Theorem 3 becomes

TaEOREM 3'. Let D be a circular region and (x-+a)* and (x-+b)* two
polynomials such that (x-+b)" &= 0 when x € D. Then the range of values
of (x+a)*/(x+b)™ when x € D and the range of values of

((@14a) ... (@, +a)/((@+D) ... (x,+b))

when x;€ D, ¢ =1, ..., n, are identical.

Observe that, if D contains the point at infinity, we must consider
x = oo as a zero of (x+b)" when b, = 0.

Theorem 3’ could easily be obtained directly by reformulating Grace’s
original theorem, which is actually the two-dimensional case of Theorem 1.

After these preliminaries we can easily prove some inequalities. The
first of them is the improvement by Szegé6 [9] of Bernstein’s inequality
for trigonometric polynomials. We refer to that paper for formulations
in terms of trigonometric polynomials.
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TaroreM 5. If |Re(x+a)?| = 1 when || < 1, then
[(x+a)1| + [Re(a(@+a)* )| = 1

when |z| < 1.

Proor. It follows from Theorem 3’ with (x-+b)* = 1 that, if x and 2,
lie in the unit circle, we have

1 2 [Re((@,+a) (@+a)*)| = [Re(a@+a)~! + @, (z-+a)), .

This means that the strip |[Rez| < 1 contains the circle with centre at
Re(a (x+a)*1) and radius |(z+a)*-!|. Hence

[Re (a(z+a)") £ |(@+a)| = 1
and the theorem is proved.
The proof of Theorem 5 immediately suggests a generalization.

THEOREM 6. Let W be a sel of points in the complex plane such that
(x+a)"e W when |x| < 1. Then the circle with centre at a(x—+a)*! and
the radius equal to |(x-4a)*1| is contained in W.

For the case that W is convex this theorem has been given by van der
Corput and Schaake [4. p. 350] with a rather difficult proof based on inter-
polation formulas. A number of consequences of Theorem 6 can also be
found in that paper.

TaEOREM 7. Let (x+a)* and (x-b)™ be two polynomials such that (x+a)™
does not vanish in a circular region D with boundary L. Then the in-
equality

l(z+b)" = [(z+a)"|

when x € L implies that

|(@14-0) (22 +D) ... (@, +0)] = [(@1+0a)(@,+a) ... (x,+a)

when x4, ..., x, €D.

Proor. From the maximum principle it follows that the inequality
[(x+b)" < |(x+a)*| holds for x € D, and hence the theorem follows
immediately from Theorem 3'.

Theorem 7 is partly given by Bernstein [1, p. 56]. In particular we
can let D be the upper (lower) half-plane and (x-+a)* be any polynomial
with all zeros coinciding, that is, (x+a)* = (xx+ f)* with complex «
and B. If we observe that g(x) = |xx + |2 is a positive definite or semi-
definite quadratic polynomial in the real variable x, and in fact the most
general one, we obtain
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THEOREM 8. Let q(x) be a positive definite or semi-definite quadratic
polynomial. Then, if |(x+b)*| < q(x)" for all real x, it follows that

l(@:40) ... (@ +b)| = g@)t ... g(@,)}
for arbitrary real x;.

Theorem 8 is analogous to Theorem 4. In fact, it states that Theorem
4 is valid if H is a real two-dimensional Hilbert space and B is one-
dimensional. Using this result we could easily prove, by repeating
arguments from the first section, that Theorem 4 is also valid if H is a
real Hilbert space and B a real Banach space of any dimension. We shall
omit, however, the details of the proof of this statement, which is
essentially due to Kellogg [7].
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