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A CONJECTURE CONCERNING RATIONAL POINTS
ON CUBIC CURVES

ERNST S. SELMER

1. In a previous paper [2], I have studied the cubic curve
(1) X34 Y= AZ3,

giving the number of generators and the basic rational solutions for
nearly all positive (cube-free) integers 4 < 500. The extensive tables
contain a few blank spaces, where no solution had been found when [2]
was written.

I have later had the opportunity to run my unsolved equations on the
electronic computer at the Institute for Advanced Study in Princeton,
N.J. With two exceptions, mentioned in section 4 below, the machine
found solutions of all my unsolved equations. The numerical results will
be published elsewhere [3].

2. It will be useful to repeat shortly the methods for treating (1). We
operate in the quadratic field K(p) = K(¢*"?), where the left-hand side
factorizes. This ““first descent” takes two different forms:

Type I leads to equations

(2) ax®+-byPtct=0, abc=4,
where we may assume
lsa<b<e, (a,b) = (a,c) = (b,c)=1.
Type II leads to equations
(3) bud + 3(a—b)uv — 3auv? + bv® = 34, u?,

A(@®—ab+0%) =4,
where we may assume
b>0, (¢, b) =1,

and where conjugate values a-+bp and a+bp?= —(b—a-+bp) are
not considered separately.
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Type I is always a prior: possible if A (cube-free) contains at least two
different prime factors. Type II, however, is only a priori possible with
a = 0 if A contains prime factors = +1 (mod3), which are the only
primes = 3 contained in a form a2 —ab -+ b2 Withae = 0,5 = 1, type I
is also a priori possible if 4 is a product of primes = 41 (mod9), or
9 times such a product. ’

A solution of (2) or (3) will always lead to a solution of (1), and all
solutions of (1) (except the so called “triplications’) are generated in this
way. The exclusions of the first descent are obtained by applying elemen-
tary congruence conditions to (2) and (3). The remaining equations (if
any), possible for all moduli, are then treated by means of a ‘second
descent”’, which also takes two different forms:

For type I, we multiply (2) by a? and replace ax by —« to get an equa-
tion s 5 s

2 —my® = n2d,
where the left-hand side factorizes in the purely cubic field K (m?'/3). This
descent leads to new and stronger congruence conditions, which can be
used for further exclusions. .

Type II is treated similarly, in the non-purely cubic field defined by
the left-hand side of (3).

3. The number of possible equations (for all moduli) of the type (2)
or (3) is of the form

N, =33 —1) or N,=3}@E%—1),

respectively, that is N =0,1,4,13,40,... for ¢ =0,1,2,3,4, ....
The number of soluble equations is also of the same form:

ny = }(3"—1) or mn,=4$(3%—-1),

where of course g, < G4, g, = G,. Here

g=019:

is the number of generators (basic solutions) of infinite order for the equation
X34 Y3 = AZ5.

Without exception, my numerical calculations have shown the fol-
lowing properties of the second descent (cf. [2, Ch. VII, § 4, and Ch. IX,
§ 14, the concluding remarks]):

When N = 1, the one possible equation can not be excluded by the
second descent. When N = 4, none or all four equations are excluded.
When N = 13, none or twelve equations are excluded.

This holds for the types I and II separately (I have no simultaneous
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exclusions of the two types within my tables, and no case with N, = 13).
I stated in [2] that we always seem to get 12 exclusions when N, = 13,
but later on I discovered several values of A which give rise to 13
possible and soluble equations (2), cf. [3].

The above results may be given in condensed form: When the first
descent indicates at most three generators, then none or two of these seem to
be excluded by the second descent.

To get cases also with N > 13, I have recently examined the two
values A = 5610 = 2-3-5-11-17 and 4 = 11220 = 22-3-5-11-17, both
giving rise to 40 possible equations (2) (but no equation (3)). For the
latter value of 4, there are 36 excluded and 4 soluble equations, that is
two excluded generators. For A = 5610, however, all 40 equations,
that is four generators, are excluded by the second descent. I therefore
feel justified in formulating the following

CONJECTURE (weaker form): The second descent excludes an even number
of generators.

The word “weaker’ refers to the fact that nothing is said about actual
solubility of the non-excluded equations. The conjecture is only a state-
ment on the strength of the congruence conditions resulting from the
second descent.

4. The problem of sufficient conditions for solubility seems to be
extremely difficult. After [2] was written, I have discovered some cases
where the conditions of my second descent turn out to be insufficient.
Details will be given in [3], and I shall only state the results here.

The equation (1) is rationally equivalent to the Weierstrass normal form

g = 48— 27 A2,

which can be treated by the methods of Cassels [1] in the purely cubic
field defined by the right-hand side. I have earlier (cf. [2, Ch. I, § 6])
used the above equivalence to show the insufficiency of Cassels’ condi-
tions in some cases. On the other hand, his methods imply that my
conditions of the second descent are insufficient for the values

A =473 =11-43 and A4 = 1886 = 2-23-41,

which can be shown insoluble by Cassels’ methods. (The latter value
results from the unsolved equation 234134622 = 0 in Table 2¢ of [2].)
In both cases, my methods indicate two generators:

For 4 = 473, there is one possible equation of each type (2) and (3),
and these equations are not excluded by the second descent.—Another

4*
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example of the same kind is 4 = 508 = 22-127 (the first value of 4 > 500
where my methods fail).

For A = 1886, there are four possible equations (2), all of which
“survive”’ the second descent.

Considering the above conjecture, it is striking that my methods fail
to indicate the loss of an even number of generators. This has led me to
formulate a similar

CONJECTURE (stronger form): When a second descent exists, the number
of generators is an even number less than what is indicated by the first descent.

This form is stronger, since it implies actual solubility when the first
descent indicates an odd number of generators.—If my conditions of the
second descent had been sufficient, the weaker and stronger forms of the
conjecture would of course have been equivalent.

The cases 4 = 473 and 4 = 508, where one generator from each type
of descent was lost, show that the stronger conjecture can be valid only
for the tofal number of generators. The types I and II must no longer be
considered separately.

5. The real importance of the stronger conjecture stems from the fact
that it seems to hold (at least in certain cases) also for the Weierstrass

normal form W= B CE—D.

We must first show that a second descent is really possible.—1t is well
known how the first descent is performed: The rational solutions (&, %)
correspond to the integer solutions (z, y, t) of

(4) y? = a2®— Cat* — Dit® = N(x—120),
where the norm refers to the cubic field K(0) defined by
(5) #—-C0—D =0

(here assumed irreducible, to simplify the arguments). This leads to one
or more ideal-equations [x—£26] = ma2,
where m is an ideal from a finite set. This equation can sometimes be
proved insoluble by class-number considerations, but will otherwise lead
to a finite number of equations between integers of K(0):

(6) x—120 = po? = (e+f0+¢g02) (u+v0+w6?)2.
The coefficients of u (known) and « (unknown) are rational numbers,

and their common denominator must divide the discriminant of the
equation (5).
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A solution (u, v, w) of (6) must satisfy certain congruence conditions,
which can be found by examining the quadratic residues in the cubic field
K(0) (cf. Cassels’ treatment [1] of the case C = 0). The exclusions of the
first descent are obtained from these conditions, and the remaining equa-
tions (6) (if any) are possible for all modult.

Multiplying out the right-hand side of (6), and equating the coefficients
of 0 and 62 to —¢2? and 0, respectively, we get two simultaneous ‘‘resulting
equations”

(7) Jalu, v, w) =12, go(u, v, w) = 0,

with quadratic forms f, and g,. These equations are also possible for all
moduli, and it is clear that they are soluble in real numbers (since this is
the case for the original equation (4)). Both equations (7) are conse-
quently separately soluble, but this does not necessarily imply a common
solution.

Ordinary elimination of one of the unknowns u, v or w in (7) will result
in one homogeneous ternary quartic equation, to which a further descent
is at least very difficult to apply. But since g,(u, v, w) = 0 is soluble,
we can express the solutions %, v and w as rational quadratic forms in
two parameters r and s. Substituting this in the first equation (7), we get

12 = Fy(r,s),

where F, is a rational quartic form. This equation represents a curve of
genus one, and we can apply a second descent in the quartic field defined
by the right-hand side. The calculations involved may be very laborious,

but the theoretical possibility of a second descent is in itself of great in-
terest.

6. To verify the first, weaker conjecture for the Weierstrass normal
form, one must actually carry through the cumbersome calculations of
the second descent. The stronger conjecture, however, is often more
easily verified, namely when there are two different methods of treating
the same equation. If one method shows insolubility of a given equation,
and the first descent of another method indicates a number g > 0 of
generators, then the stronger conjecture is verified for the latter method
if g is even. Similarly, we can get a verification if the two methods indi-
cate different numbers > 0 of generators (and the smaller number is
attained by numerical computations).

I have already explained how Cassels’ methods show the insufficiency
of my conditions in some cases, which led to the formulation of the stronger
conjecture. On the other hand, I can check Cassels’ conditions by my
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methods in many cases, and these calculations all verify the stronger
conjecture. The results will be submitted for later publication in the
Mathematica Scandinavica.
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