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A NEW PROOF AND A
GENERALIZATION OF AN INEQUALITY OF BOHR

LARS HORMANDER

Introduction. Let f(x) be a real function of the real variable x with a
bounded derivative. If f(z) is integrable its Fourier transform is defined by

+00
& =\ r@erida,
and the smallest closed set outside which f(é) vanishes is called the spec-
trum of f(x). When f(x) is not integrable the spectrum is defined according
to Schwartz [7]. The definition is also stated explicitly on page 39.
Suppose that f(x) has no spectrum in (—, A). Then we have

(1) sup |f(z)] = (44)71 sup |f'(2)],

—00 < <00 —00 <X < 0

and in fact the constant (44)-! is the best possible. The inequality (1)
was given by Bohr [2] for almost periodic f(x) with a proof based on the
theory of analytic functions.

Iteration of (1) gives the inequality

(2) sup |[f(x)] = 4™"t, sup |[f™ ()|

—00 < < 00 -00 <X <00

with ¢, = 4-». With methods from the theory of real functions, Favard
[3] found that the best possible value of ¢, is

by = 8 (2) 440 [1 4 (—3)- 040 4 50D o (=)0 ]
We shall here give the following generalization: If f(z) is real and

(3) —M, £f™x) < M,,
then
(4) — A" p (M, M) < fla) = A" (M, M,) ,

where 1™ and u,™ denote the best possible constants and will be de-
termined explicitly. In particular,
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p® = p®» = ﬂz__,
2(M,+ M)
that is, one fourth of the harmonic mean of M, and M,. It is interesting
that the x4, have finite limiting values when one of the bounds M, and
M, tends to infinity. This leads to an estimate even in the case when (3)
is one-sided, which seems to be an essentially new theorem.

We first restrict ourselves to periodic functions f(x). The extension to the
general case is achieved by an improvement of an approximation method
due to Lewitan [5], who was the first to prove (1) for a general f(x).

The periodic case.! Let f(x) be a real function with period 1 which is
n—1 times continuously differentiable and satisfies the conditions:

1

»

(A) The Fourier coefficients c;, = \ f(x)e > dax vanish for |k| < m.

[

0

Ly, @)

(B) r—y
where M, and M, are finite positive numbers.

The condition (B) is, of course, equivalent to:

(B) { f@-Y(x) is absolutely continuous and —M, < f™(z) < M, almost
everywhere.

We start by constructing a function which satisfies (A) and (B) and
which will prove to have extremal properties. Let Ay(x) = hy(x; M., M,)
be the function with period 1 defined by

—M
ho(x) = —M, for - —2——A<x<~——%3~—-,
2(M,+ M,) 2(M,+ M,)
—M, M, :
<x—3}<—"—— that is,
2(My+M,) T 2(M )
ho(x) = M, for
M, —M,
+1.

oM+, T 2(M, )

Obviously {{%,(x)dz = 0. Hence the indefinite integral of k() is peri-

1 This section was written in 1951 and presented at a meeting of the Danish Ma-
thematical Society at Professor Jessen’s suggestion. I take this opportunity to thank
Professor Jessen for his encouraging interest in my paper. My thanks are also due to
C. Hyltén-Cavallius and T. Herlestam for valuable criticism on various details.
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odic, and we can choose the integration constant such that the mean
value is 0. Call this integral k,(x). By integrating successively in this
manner we find &, (x) = h,(z; M,, M,), the ntt periodic integral of %y(x)
with vanishing mean value.

It is easy to express h,(x) in terms of the periodic functions B, (z),
which have the period 1 and in the interval (0, 1) coincide with the Ber-
noulli polynomials B,,(x) (cf. Nérlund [6, Kapitel 2-3]). Since B,(x) =z—}
for 0 < = < 1 we find that

ho(; My, M)

- (M1+M2’{B‘(” * ﬂ%ﬂﬂ) —B(o- W%m)}

From the well-known facts that the mean value of B,(z) is 0 and
B, = nB,_, it now follows that

(5) hn(x;Mlx MZ)

M+ M, {— u, . M,
=1 2lp = \)_B |
(n+1)! "“(”2(MI+M2>) (x 2<MI+M2>>}

The function m~"h,(mx;M,, M,) satisfies (A) and (B). That (A) is
fulfilled is obvious because the period is m~* and the mean value vanishes.
(B’) follows from the fact that the nth derivative is Ay(mx).

TaEOREM 1. If f() satisfies (A) and (B), then

min (m~"h,(mx; M,, M,)) < f(x) < max (m~"h,(mx; My, M,)),

x

or, equivalently,

(6) —m (M, M) < f(x) = m"u(My, My)

where

(7) — ™ = min h,(x), p™ = max h,(x) .
x x

There is inequality for all x unless f(x) = m~="h,(mx-§), where 8 is a con-
stant.

The proof depends on a study of the zeros of f(z). By a zero we shall
mean a point or a closed interval in which f(x) vanishes without being
identically zero in any enclosing interval. By the number of zeros of a
periodic function we mean the number of zeros in a period. Analogously
& maximum or minimum can be a point or an interval. We first prove

3*
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LemMa 1. If the Fourier coefficients ¢, |k| < m, of a real continuous
Sfunction g(x) = 0 with period 1 all vanish, then g(x) has at least 2m zeros.

Proor. Because Ség(x) dx = 0, g(x) has at least two zeros. Suppose
that it has less than 2m zeros. Between two consecutive zeros ¢g(x) has a
constant sign. Now take points 0 <a; <2, < ... <y, <1, one in
every zero at which the sign of g(x) changes. Let P(x) be a trigonometric
polynomial of order ! < m which has simple zeros at z; and hence changes
its sign at these points. Then P(x)g(x) has a constant sign but
(¢ P(x)g(x)dx = 0 by the assumption. Thus P(x)g(x) and hence g(x)
must vanish identically, which gives a contradiction.

For future use we note that it also follows from the proof that if g(x)
has precisely 2m zeros then the sign of g(x) must change at every one of
them.

We can now prove theorem 1 for n = 1. Let f(z) satisfy (A) and (B)
for n = 1. Put

g(x) = m~thy(mx) — f()

and suppose that g(z) == 0. From (B) it follows that g(x) and m-1A,(mx)
increase and decrease simultaneously because the slope of the latter func-
tion is always —M, or M, Hence g(x) has maxima and minima for

g()

\ .

o

m~ hy(mx)

Fig. 1.

the same values of z as m~1h(mz). Furthermore, g(x) has at most
one zero in every interval where m~1h,(mx) is monotone, hence in all at
most 2m. But from (A) it follows that the assumptions of lemma 1 are
satisfied by g(z) so that g(x) must have at least 2m zeros. Hence by the
remark at the end of the proof of lemma 1, g(x) changes its sign once
in every interval of linearity of m-'h,(mz). Thus it follows that the
maxima of g(x) are positive and the minima negative, that is, f(£) <
m=1hy(mé&) if & is a maximum point of m—1A,(mx) and f(n) > m=—1h,(mny)
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if n is a minimum point of that function. Since the conditions (A)

and (B) are also satisfied by the translated functions f(z-0J) (6 = con-

stant) the theorem follows if we apply our result to these functions.
To prove theorem 1 for » > 1 we need the following

Lemma 2. Let g(x) be a real function with period 1 and let the Fourier
coefficients ¢, = 0, |k| < m. Suppose that g(x) is v times continuously dif-
ferentiable (v = 1) and that g®(x) has exactly 2m zeros. Then g(x) has
precisely 2m zeros and 2m extrema, m positive maxima and m negative
minima. The extrema are the only zeros of g'(x).

Proor. By Rolle’s theorem, g'(x) has at least one zero between two
zeros of g(z) so that ¢g’'(x) must in all have at least as many zeros as g(z).
Hence the number of zeros of g®(x), that is 2m, is at least as great as the
number of zeros of g(z). But, according to lemma 1, g(x) has at least 2m
zeros and hence precisely 2m zeros. It was remarked at the end of the
proof of lemma 1 that the sign of g(x) must then change in all the zeros.
Hence g(x) has at least m positive maxima and m negative minima, but
since ¢'(x) cannot have more than 2m zeros (Rolle’s theorem again) these
are the only extrema.

Note that &, (mx) satisfies the assumptions of thislemma (withy =n—1,
for example).

We now prove the theorem for » > 1. Suppose it has already been
proved for n—1. Let f(x) satisfy (A) and (B) and attain its maximum
at a point &, We may suppose that & is also a maximum point of
m~"h,(mx) (otherwise we consider f(x-+0) for a suitable §). Introduce

g(x) = m~"h,(mx) — f(x)

and suppose that g(x) == 0. In the proof for » = 1 we have shown that
g"D(x) = m-1h,(mx) — f"D(x) has exactly 2m zeros. Hence, by
lemma 2, g(x) has 2m extrema, m of which are positive maxima and m
negative minima. Among these is &, because ¢’(£) = 0. Thus in order
to prove that g(&) > 0 we have just to show that £ is a maximum point.

From the induction assumption it follows that g’(x) and (m—hy, (max)) =
= m~®-Dp, (mx) have the same signs at the extrema of the latter
function. Hence ¢’(x) has at least one zero between two such extrema
and as ¢’(z) has only 2m zeros there can never be more than one. Now &
Is a maximum point of m-"h,(mx) so that the extreme values of
m~"-Dp, _,(mx) next to the left and right of & are positive and negative,
respectively. Hence g'(x) is positive to the left and negative to the right
of &, that is, £ is a maximum. This completes the proof of theorem 1 as
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far as the maximum of f(x) is concerned. The minimum is treated analo-
gously.

We now study the case of a one-sided estimate, that is, we consider
n—2 times continuously differentiable functions f(x) such that f®-2(x)
is absolutely continuous and

) OOy <.

rT—Y

This means that f®-V(z)— M,z is decreasing, so that f®-D(x) is of
bounded variation. Put

hn(x;ooa Mz) = MZ

B,(x) .
= lim h,(x;M,, M,)
! Mi—>c0
and define p (o0, M,) according to (7) by means of this function. We
shall show that theorem 14s still valid, in other words: if f(x) satisfies (A)
and (B,) then (6) is valid.

This can be proved by using the same argument as before provided
that we also call z a zero of f(x) if f(x—0) and f(x—+0) have opposite signs
or if one of them vanishes. If we are not interested in the cases of equal-
ity it also follows by regularization from the results already obtained.
For take p(x) = 0 periodic and infinitely differentiable with {;p(x)dx = 1.
Consider L

1@ = oxf@) =\ pe—nsedt = \fe—p(e)d.

The convolution f (x) satisfies (B,). Since all of its derivatives are
continuous, we have f ®(x) = —M, for some M,. Using

Slfq,(x)e‘m’“ dx = {gf(x) e‘zni"’”dx} {Sl(p(x) ¢~ 2ikz dx} : 0

0 0

if |k| < m, we obtain

(n) (n) (n) (72)
™ (00, M) u (M, M,) éfw(x)éuz (M17M2)<M2"(°°aM2)'

m" mmr

m" m"

Here the first and last inequalities follow from the facts that u, ™ (M, M ,),
being the best possible constants in (6), must increase with M, and that
the limits when M,~>oc are u, (oo, M,). If we now let ¢ converge towards
the Dirac measure 6(0), then f, (x) converges to f(x) at every point of
continuity and we have obtained the desired estimate.
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The general case. Consider a real function f(x) which is n—1 times
continuously differentiable and satisfies the conditions:

(A) The spectrum of f(x) is situated outside the open interval (—A, A).

=1 () — f(n-1)
M, = S @) —f D (y)
(B) r—y
where M, and M, are finite positive numbers.

§M23

Note that it follows from (B) that f(x) is continuous and does not
increase more rapidly than z» at infinity so that the Fourier transform
f of f exists in the sense of Schwartz [7]. The spectrum of f is by defini-
tion the support of f Thus assumption (A) means explicitly that
(I f(@)p(x)de = 0 if p(x)e “f and (&) vanishes outside a compact set
in (—A, A). (<f is the class of all infinitely differentiable functions which
vanish at infinity together with all their derivatives more rapidly than
any inverse power of x.)

If f(x) has a Fourier transform or is an inverse Fourier transform in
a classical sense this definition of spectrum is equivalent to the classical
one. Thus, for example, if f(x) is a function with period 1 we have (with
convergence in the mean) f(z)= X!%c, e, .= (] f(x)e ™ du,
80 thatfis the measure having the massc, at £€=4k, k=0, +1, 42, ...,
and no masses elsewhere. Hence, in this case assumption (A) means that
¢, = 0 if |k| < A which coincides with the assumption (A) of p. 34.
Theorem 1 is therefore a special case of the following

THEOREM 2. If f(x) satisfies (A) and (B), then
(8) — AWMy, M) < f@) = A" u"(My, M) ,
where 11, ™ are defined in (7).

Since this theorem is invariant if we substitute f(cz) for f(x) (¢ = con-
stant > 0), it is true for any periodic function f(x) according to theorem 1.
To prove it generally we shall use a method of approximating bounded
functions by periodic functions.

We first consider continuous functions g(x) with the properties

+00

9) p@) 20, No@tn) =1, @0)=1.

An example of such a function is ¢(x) = (wx)-2sin®zz. In this case
we have even X'P@(x+n) =1 which follows from a well-known ex-
pansion of 1/sin?*zx. This identity also follows if we observe that
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@(&) = 1— |£] for || < 1 and vanishes elsewhere, and we apply Poisson’s
formula. Lewitan’s procedure in [5] may be shown to be substantially
equivalent to ours with this special choice of ¢(x).

A more general example of such a function is ¢(x) = «(x)(mx)-2sin®nx
where «(x) is a continuous function with 0 < x(z) < «(0) = 1. This
inequality is obviously satisfied if x(z) = (y(x))? where y() is the inverse
Fourier transform of a positive, even, integrable function (&) such that

+00

If {/}(5) is infinitely differentiable and vanishes outside a bounded set,
we have p(¢) e f and consequently y(x) is also in <f (cf. Schwartz [7],
p- 105). Hence in this case g(x) € f and @(£) vanishes outside a boun-
ded set because it is the convolution of (&) (&) and the function
which is 1 —|&| for |§| = 1 and vanishes elsewhere.

Now take a fixed function @(x) having the properties (9). If g(x) is
a bounded function we set

+00
(10) gn(@) = 3 p(ha+-n) g(x+nh-1) .
It is evident that the series converges and that g,(x) has the period A-1.

Levmma 3. If —M, £ g(x) £ M,, then —M, < g,(x) = M,, and g,(x)
tends to g(x) as b — 0, uniformly on every bounded set.

Proor. The first part of the lemma follows at once from the first two
properties in (9). We may write

gn(®)—g(x) = (p(hz) — 1) g(x) + §<P(ﬁx+n) g(@+nh=t),

l9n(@) — g(@)| = M(1—g(ha)) + M Y p(ha+n)

n+0

< M(1—g(he)) + M(1—p(ha)) = 2M (9(0) —p(ha)) ,
and because @(x) is continuous for = 0 the uniform convergence on
every bounded set follows.

We now calculate the Fourier coefficients of grlx):

hL =
+o00o . )
(11) h g g,,(x) g tikhe g, 2 h S (p(h(x—}-nh—l)) g(x—}—nh‘l)e“zmk’mdx
0 oo Y
+00

= S(p(hx) g(x) e 2k g |

-00
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To our assumption (9) concerning g(x) we now add that ¢(x) € f and
that (&) shall vanish outside a bounded set or, equivalently, that ¢ shall be
an analytic function of exponential type. That there exist functions
satisfying these conditions and the conditions (9) has been shown by an
example above. Denote by 4 a number such that (&) = 0 for |£] = 4.

The Fourier transform of h p(hx)e >"*4 is g((5+kh)[h) = P(Eh—1+ k).
It vanishes outside an interval contained in (—A, A) if |kh| < A—Ah.
Hence

LEMMA 4. g;(x) has no spectrum in (—(A— Ah), (A—AR)) if g(x) has no
spectrum in (—A, 4).

We can now prove theorem 2. The function f®™(x) satisfies the condi-
tions imposed on g(x) above. Denote its periodic approximating function
(10) by f,™(x). According to lemma 3 we have —M, < f,™(x) < M,.
From lemma 4 it follows that f,((x) has no spectrum in |&] < A — A4h.
Hence, if A is so small that A—A4h > 0, there exists a periodic function
fa(x) with vanishing mean value, the ntt derivative of which is f,™(x)
Theorem 1 gives

(M, M)

(A—AR)yn*

< f0(x) < _‘i?_(w k=0,...,n—1.
I3 = (A—Ah)yk e

Now it just remains to prove that f,(x) - f(x) as & - 0 and the theorem
will be proved. Choose a sequence %; — 0 such that f, #(0) converges for
0 =k <mnast—> co. This is possible because we have obtained a bound
for £, above. But then it follows from

Jo@) = fu(0) + ...

x —t)n-1 y
1), +S i Sl

(=4

that f; (x) converges uniformly on every compact set to a function F(x)
whose nth derivative is f®™(x). Hence F(z)— f(x)is a polynomial of degree
at most n—1. Since the functions f,  are uniformly bounded and have
no spectrum in |§| < A4 — Ak — A, F has no spectrum in (—4, A). Hence
F—f cannot have any spectrum in (—, A) either, which implies that
F—f = 0 because the Fourier transform of a polynomial is supported by
the origin. Since we can select from every sequence Snys Ty = 0, a sub-
sequence which converges to f, it follows that f,(z) - f(x) uniformly on
every compact set as b — 0.

We shall now study one-sided estimates, that is, we consider n—2
times continuously differentiable functions f(z) such that f®-2(x) is
absolutely continuous, and
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(A) f(x) is slowly increasing, that is | f(x)] < C(1+22)N for some C and
®" |V N, and its spectrum is situated outside (— A, A),

Je (@) — f" ()

(B.) =M,, (0 < M, < o0y .
x—y

As we have pointed out on page 38, (B,) implies that f®-D(z) is
of locally bounded variation and hence in particular locally integrable.
Observe, however, that now it does not follow from (B_ ) that f(z) is slowly
increasing so we have to include this in the assumption (A_) in order that
we should be able to define the spectrum.

We shall prove that theorem 2 is still valid in this case. The proof is a
reduction in two steps to the case of two-sided estimates.

Suppose first that f, f', ..., f®™ all exist and are continuous and that
[f™(x)] = C(14a2)N for some C and N. Let x(x) be a function in &
such that 0 < a(x) < «(0) = 1 and &(£) vanishes outside (—1, 1), for
example. Such functions exist; in fact an example was constructed on
page 40.

We shall show that «(hx)f®™(x) has no spectrum in (—(A—h), (A—h)).
Take y(z) € S such that (&) = 0 outside a compact set in the interval
(—(A4—h), (A—h)). To prove that

+o0 +0o

| () @) pia)der = § 7@ (k) piw) o = 0

—o0 —o0

we have just to show that the Fourier transform of «(hz)y(x) vanishes
outside a compact set in (—A, A). But this is obvious since the trans-
form is A=1a(Eh-1) % P(£) .

Now we have a(hz)f™(z) < M, and «(hz)f™(x) is also bounded from
below by some number —,. Hence, if h < A there exists a function f,(x)
with no spectrum in (—(A—h), (A—k)) such that f,™(x) = a(hx)f*@(x) and

“#2(")(("” M,) - ﬂl(")(Mla M,) ,u2(n)(M1’ M,) - Hz(n)(‘”’ M,)

Gy = d—mp S E T T = Gy

We conclude with the same argument as in the proof of theorem 2
above that f,(x) - f(x) when A — 0. Hence we get the inequality

— A0, M) < f(x) = A~"u™(00, My) .

In the general case choose any B(z) €/ such that p(z) =0 and

{*2p(x)dx = 1. Form
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fo@) = pf@) = pa—opwd = \ porfw—nar.
We have - oo -
1) =\ poe—osw ar
and hence -
o) = {0+ @—tp)¥ ),

where the right hand side of the inequality is a polynomial in . On the
other hand we can write f,®~D(x) = (% f-D(x—1)B(t)dt and hence

+00

gS M,B(t)dt = M

—00

fﬁ(n_l)(x) ”‘fﬁ(n‘n(y)
r—y

No part of the spectrum of f4(x) belongs to (—4, A). For if y(x) € S
and (&) = 0 outside a compact set in (—1, A), we have

\twyv@de =\ r0)at\ pa—typiaydz = 0

since the Fourier transform of {*3 f(x—t)y(t)dt is ﬁ(—&)@(é) and this
vanishes outside a compact set in (—A4, 4).
We can now conclude, from the case treated first, that

— A" (o0, M) = fo(x) = A7 py™ (o0, M) .
Hence, letting 8 converge to the Dirac measure at the origin, we get
— A7 g0, M) = f() < A7 g™ (00, M)

and the theorem is proved.

The explicit value of 4 ™. By lemma 2 we know that A,’(x) has only
those two zeros which correspond to the maximum and the minimum
of h,(x). Hence to calculate u,™ we have only to find the two zeros of
by, () = h,_y(x). This is easy if n is even, n = 2k. For from (5) it follows
immediately that hy,'(0) = ky,'(3) = 0 on account of the symmetry prop-
erties of By, (x). To determine whether x = 0 is a maximum or a mini-
mum we first note that h,(r) has a maximum at the origin. Hence
hy"(0) = hy(0) > 0 so that h,(x) has a minimum at the origin. In this
way we immediately prove that A, (r) has a maximum for z = 0 if k is
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odd and a minimum if k is even. It is clear that = } has the opposite
extremal character. Now we have

o) = 25 B t ).

@k N\ (M)
M,+M, _ M, 1
l pamony ———— — —
e 2(2k+1)332k+1(2(M1+M2)+2),

and we may drop the bar over B here because the arguments are in the
interval (0, 1). These formulae can be written differently if we use two
well-known formulae from the calculus of finite differences (cf. Nérlund
[6, Kapitel 2-3]): B, (@) + B,(x+1}) = 21"B,(22) , B,(z+1}) — B,(x) =
2-np K, _,(2x) where KE,_, is an Eulerian polynomial. We get

h(O)——M1+M2{ 2 B ( M, )_ 1 E’( M, )}
AT sk (k1)1 T\ M+ M, (2k)! " P\ M, + M,

and the same expression for h,,(}) except that there is a plus instead of
the minus sign. Combining this with the discussion of the extremal
character of x = 0 and x = } performed above, we get the perfectly
symmetric formula

M+M,( 2 o, (— 1) M,
(2k) — 1 2 - i 1
My 92k+1 {(2k+1)!B2k+l(M1+M2) + (2k)! Ezk(Ml-}—Mz)},

i=1,2, k=12 ....

For n odd the maxima and minima cannot be found explicitly except
in the case of Favard, where M, = M,, and in the case where 7 is so small
that we can solve the equation %,_,(x) = 0. Thus, for n = 1 we easily
find from a figure:

@ =y = M’
2(M,+M,)

that is, one fourth of the harmonic mean of M, and M,.

An inequality of Kolmogoroff. There exists a strong connection be-
tween the inequality of Bohr and an inequality of Kolmogoroff (Kol-
mogoroff [4], Bang [1]), and we therefore outline a generalization of
the latter, too.

Let f(x) be a real function on (—oo, -+ o0) with n continuous derivatives.
Put
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M® = — inf fo-Rg), M,H= sup [fOP(x).
—o<r <o —o<r<< o0
Suppose that M,™, M,™ and at least one of M, and M,© are finite.
It follows at once that M, and M,® are non negative. The following
generalization of Kolmogoroff’s inequality is valid:

Mo 1/k M,™ 4+ M 1/n
<;¢3’6(M 9 M 2(0))> = (ﬂl(n)(M 19 M,©®) + p (MO, M 2(0))> .

There is equality for the function
P hy(; M©, M,®) 4+ B (x> 0),

where « and § are chosen so that the maximum and minimum of this
function are M,™ and — M, respectively. However, we shall not give
a detailed proof, because the ideas of [1] and [4] are sufficient in this
more general case.
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