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ON THE DIOPHANTINE EQUATION |[4a"—By"l=1,n=5

YNGVE DOMAR

In a recently published thesis by Héiggmark [1], it is shown that the
Diophantine equation 2>— My® = 1, where M is an integer, has at most
two integral solutions apart from the trivial solution x = 1, y = 0. Ac-
tually a considerably stronger theorem is true. It seems to have been
overlooked that the Thue-Siegel method can give much more information
about the maximum number of integral solutions. In fact, the following
theorems are easily obtainable after simple modifications in the final
phase of the proof of a theorem by Siegel [2]:

THEOREM 1. The equation
(1) |Azr— By™| =1,

where A and B are positive integers and n = b, has at most two solutions
i positive integers (x, y).

THEOREM 2. The equation
lar—My™| =1,

where M is a positive integer and n = 5, has at most one solution in positive
integers (x, y) except possibly for M = 2 and if n = 5 or 6 for M '= 2741,

Siegel considers the inequality |4z"— By®| < C, n = 3, where the
variables and the constants are positive integers, and he assumes that
two different solutions exist. By means of an approximation to the func-
tion (1—=z)'/" in the interval (0, 1) by rational functions with integral
coefficients, and with the help of some simple inequalities, he shows
that if certain conditions are imposed on the coefficients A4, B, C, the
above assumption involves a contradiction, so that two solutions cannot
exist.

Let us suppose that (1) has two different solutions (z, y) and (x,, y,)
in positive integers and let < x,. It is easily seen that x < x; implies
Yy = y,. It is convenient to introduce w = Aa®, wy, = Ax," if Az > By,
otherwise w = By®, w; = By,". In both cases we obtain w, = w = 2.
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In the following we disregard the trivial case 4 = B = 1.
Siegel introduces the constants

27‘ r r T 1 1
Sp = q,n", L, =4q,n H(l—'m- n71),
r m=1

where r is a positive integer and g, denotes the product of all factors of
the prime number decomposition of » which divide n.

If we take C = 1 in Siegel’s proof, it is easy to see that the two as-
sumed solutions of (1) cannot exist if two inequalities

(2) 6(n, 2)n2w? < n—lMl/nw—llnwl(n—l)/n ,
(3) Mursnen-=2 2 g 15, ,n(l—1n)t"

where M = A B, are simultaneously true, the latter for every positive 7.
(Siegel’s inequalities (40) and (47).)

Supposing that n = 5, we can obtain the following inequalities, which
are stronger than the corresponding relations (26) and (36) in Siegel’s
proof:

(4) 1,2V, on(l— 1/n)i=n < A 7+1-10=D  p =1,
where
A, = 4nn [T p~@®-D  pprime,
and pin
(5) w; > Mn®(w—1)""1,

The proof of inequality (4) involves only simple refinements of Sie-
gel’s equations, which are possible since n» = 5. Inequality (5) can be
proved in the following way:

We may suppose that w = Aa®, that is, By® = w—1, Ax," = w,,
By,® = w;+1.

Since Ax"— By™ = 1, we have

(AVng— Biny)-1 = (Agr)-Dinf 4 (Byr)®-Din
dh > n(Azn)®-D/@n)(Byn)®-1/@n)
and hence

1 — (BA-Y)Vnyg=1| < n-1(Azgr)~n+Dien) (Byn)~a=D/@n) — ] ,
In a similar way

[ — (BA=) ;7] < =t (Aaym)=o0en (Byym)=n-en) — D

Since w; = 2, n = 5, it follows that D; < w,~!; and from the two above

inequalities we obtain
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(@) {(BA-1)Un < |(ya,—xy,) (xz,) " (BA-1)"] < D4D,,
which implies
(6) 1 < wlllnn—lM—l/nw—(n—l)/(Zn)(w__]_)—(’n—l)/(2’n) -+ wl/nM-lmwl—(n_l)/n_

The right-hand member of (6) is a convex function of w,*/”, and the
inequality does not hold for w, = w, since w = 2, M = 2. If it does not
hold for w, = Mn"(w—1)"1 either, inequality (5) must be true. Put-
ting this value of w, into the right-hand member of (6) we obtain:

(1— l/w)(”“l)/m + wl/nM—ln—(n—l)(w_1)—(n—1)2m
< (1— l/w)(n—l)/(zn) + n1 w—n—2)
<1 — (n—1)(2n)w?! 4+ n-lw -
< 1.

Hence (5) is true.
Inequality (3) holds because of (4) if for every r = 1

(7) Mypt+dn--2 > lnr+1~1/(n—2) ,
that is, if
(8) w = Anl/(n-z) + 1/(2(n—2)(n-3))

It is easy to see that (7) is also valid if
(9) max (4, B) = A,V/®-2 |

Consider for instance the case when the maximum equals 4 so that
4 =z 2,Y™-2, Since w = Ax" or w = Ax"4-1 > Ax™ inequality (7) is
implied by

Bxrr+)m-2) ~2n > 1

2

which is obviously true. The case max (A4, B) = B can be treated sim-
ilarly.
According to (5), inequality (2) is valid if

(10) 60" (n, 2) < Mw-2~1n(w—1)n-1*m

From (8) or (9) it follows that w»~2 = 4,. Now 1, is obviously > n» and
n = 5; thus w > 5. The right-hand side of (10) can be written

M {(w—1 )w—3/4}(2 +1M)4/3 (yp— 1) —14/3-1/(3n) |

which is = 2 since M = 2 and the two last factors are = 1 for w > 5.
tl‘he left-hand side of (10) is < §. Thus (10) is proved and from this
mequality it follows that (2) is true if (8) or (9) holds. Hence (8) and (9)



32 YNGVE DOMAR

are alternative sufficient conditions for the non-existence of the two
assumed solutions of (1).

We are now in a position to prove theorem 1. If three solutions exist,
at least two of them should correspond to values of w exceeding »n®
because of (5). But this implies that (8) is valid, which yields the theorem.

To prove theorem 2, we put 4 = 1, whence B = M. In this case w
has to be of the type a® or a®}1, where ¢ = 1. A comparison with (8)
shows that the only possibilities are ¢ = 1 and, if » = 5 or 6, a = 2.
(If the right hand side of (8) is denoted by k™ simple calculations show
that 2 < k < 3 whenn = 5,6 and 1 < k£ < 2 when » = 7. By the help
of the inequality 4, < 22+2/7p37/2 it follows that 1 <k < 2 for n > 7.)
Theorem 2 follows.

Consider equation (1), and suppose that 4 = B. By application of
(8) and (9) it is easy to specify the cases where two solutions could pos-
sibly exist. Simple calculations show that the number of such equations
is for every n = 5 less than n-clogn, where ¢ is a constant, independent
of n.
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