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ON CONVEX CONES

LENNART SANDGREN

Introduction. In two well-known theorems concerning convex sets in
euclidean n-space, viz. Carathéodory’s theorem (stating that every point
of the convex hull of a point set M is a non-negative linear combination
of n41 points of M) and Helly’s theorem (stating that arbitrarily many
compact convex sets have a common point if any n+-1 of them have a
common point) the dimension of the space enters in a manner which
suggests searching for a reciprocity between these theorems. In this
paper, by means of the notion of the dual or polar of a convex cone, such
a reciprocity is shown to exist. Also, it turns out to be suitable to deduce
certain other theorems of the Helly type from theorems of the Carathéo-
dory type.

In the first three sections definitions and basic properties of convex
cones and their duals are given. Most of these properties are well known
(cf. Steinitz [3]). In Section 4, as a simple application, an expression due
to F. Riesz for the support function of the intersection of convex bodies
is derived. The above mentioned proof of Helly’s theorem is given in
Section 5. In connection with this proof the question arises: Given a set
of closed convex cones; which assumptions guarantee the existence of a
hyperplane such that each of the cones is contained in one of the closed
half spaces bounded by this hyperplane. In Section 6 this question is
answered, a sufficient condition being that the convex hull of any n of
the cones is not the whole space. In Section 7 the dual of this theorem
is stated. It turns out to be essentially equivalent to a generalization

of Helly’s theorem due to A. Horn [2]. Thus, the latter theorem is pro-
ved in a new manner.

1. Definitions and notations. Let E™ denote the n-dimensional euclid-
ean space with points

0=(0,...,0), X=(2,..,%,), Y=, ¥ -
and the inner product
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(X, Y) =2+ .. 2 -

For the sake of brevity, an (n—1)-dimensional subspace or hyper-
plane, that is the set of points X satisfying an equation of the form
(X, Y) = const. with Y = O fixed, is called a plane. The set of points
X satisfying (X, Y) < const. ((X » Y) < const.) is called a closed (open)
half space and Y its outer normal.

A plane is said to divide a point set M if each of the open half spaces
bounded by the plane contains points of M. A plane is said to separate
two point sets if each of the two closed half spaces bounded by the plane
contains one of the sets. Observe that a subset of a plane is not divided
by this plane, and that two subsets of a plane are separated by this
plane.

Let M be an arbitrary point set. The intersection of all convex sets
which contain M is called the convex hull of M and is denoted by F M.
The closed convex hull or convex closure of M, denoted by ‘G M, is the
intersection of all closed convex sets containing M. It is well known
that if M is contained in some closed half space, then ‘G M is the inter-
section of all such half spaces. If M is contained in no half space, then
CM = FEM = En.

A set M is called a cone with vertex O if X € M implies AX =
(Axy, ..., Az,) e M for every A = 0. Note that the point O is a cone.
In this paper all cones will have O as vertex. As usual, the opposite of a
cone M, that is, the set of all points — X, X € M, will be denoted by —M.
A ray OX where X = O, that is, the set of points AX, A = 0, is an example
of a cone. Every cone except O is a union of rays. A cone M is convex
if and only if X e M,Y e M imply X+Y = (@,+ ¥, ---» Tp+¥Yn) € M.

We are dealing mainly with closed convex cones. According to our
definition both O and E™ are closed convex cones. In some of the follow-
ing theorems these degenerate cones play an important role. A closed
convex cone is either the whole space E” or it is contained in some
closed half space (X, Y) =< 0 and is then the intersection of all such half
spaces. In the latter case there exist supporting planes, namely the
planes bounding these half spaces.

Let C be a convex cone and denote by d the maximum number of
linearly independent vectors OX contained in C. Then C and the smallest
subspace containing C have dimension d. Considered as a subset of this
subspace, C has interior points, and if C is not identical with the sub-
space, it has boundary points also. These will be called the relative inte-
rior points and the relative boundary points of C, respectively. If X == O
isa relative boundary point of C, theray OX is called a relative boundary ray.
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We recall the well-known separation theorem:

TuroreM 1.1. If the relative interiors of two convex cones have no points
in common, then there exists a plane which separates the cones.

Obviously there are convex cones containing entire subspaces through
0. The largest subspace through O contained in a convex cone C is called
the lineality space and its dimension ! is called the lineality of C. We
shall apply the following theorem concerning these notions.

TaEOREM 1.2. If a convex cone C contains points X, ..., X, satisfying
a linear relation
/ule—{— “ e —-I—-,uka - 0

with positive coefficients p,, then the lineality space of C contains the sub-
space spanned by the points O, X4, ..., X, and hence, the lineality of C is
greater than or equal to the maximal number of linearly independent points
among X4, ..., X;.

This is seen in the following way. Let X = 4,X,;+4 ... 4+, X, be an
arbitrary point of this subspace. Choose a number ¢ > 0 such that
A+op,=0forx=1,..., k. Then

X = MN+ou)Xs + ... + (At om) Xy

is a representation of X as a sum of points belonging to C' and, hence,
Xel.

2. Dual cones. Let C be a closed convex cone. The set
C*={X|(X,Y)=0forall YeC}

is also a closed convex cone called the dual or polar cone of C. If C =+ O,
the dual cone C* is the intersection of all half spaces (X, Y) < 0, the
outer normals of which are rays in C. In other words, C* is the set of
rays making an angle = }n» with all rays belonging to C. Further,
O* = E™ and E™* = O. From the fact that the cone C is the intersec-
tion of all half spaces containing it, it follows easily that

C** = (.

Between the dimension of a convex cone and the lineality of its dual
cone we have the following relation.

A closed convex cone C has lineality ! if and only if the dual cone C*
is (n—I)-dimensional.

From the definition of the dual cone it follows immediately that if C,
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and C, are closed convex cones and C; < C,, then C,* 2 C,*. Using this,
we can easily prove the following Theorem 2, which gives the relation
between the intersection of convex cones and the convex hull of the
corresponding dual cones.

Throughout this paper {C,} will denote a set of convex cones, the
index A running through any finite or infinite set.

THEOREM 2. If {C 4} is a set of closed convex cones, then

(NCH* =CUO*.

Proor. Evidently, NC, < Cp and thus, (NC,)* = Oz* holds for
every B. Hence, (NC,)* 2 UCg* and since (NC,)* is closed and con-
vex, we have (NC,)* = GUC *. Conversely, Cz* < GUC* and thus,
Op 2 (€UC*)*. Hence, NCy 2 (6UC *)*. Forming dual cones we
obtain (NC)* < GUC *.

From this theorem we have the important

CoroLLARY. If {C,} is a set of closed convex comes, then NC, = O if
and only if HUC * = En.

3. Sum representation of the convex hull of a cone. The following
proposition is well known.

TaEOREM 3.1. Let M be an arbitrary cone. Then every pvint X € FHM
has a representation X = X,+ ... +X, where X;e M and X,, ..., X,
are linearly independent, hence, r < n.

We formulate an immediate consequence, which will be used in the
sequel.

CorOLLARY. Let {M ,} be a set of cones. Suppose that there exists a ray
OX such that the convex hull of any n of the cones M 4 does not contain
OX. Then the convex hull of all of the cones M 4 does not contain OX. Hence,
there is a half space contavning all of the cones M ,. '

For, if X e UM, there would exist a representation of X of the
above form with each X; contained in some M ,. Consequently, X would
belong to the convex hull of at most » < = of the cones M 4.

Another consequence of Theorem 3.1 to be used in the sequel is

THEOREM 3.2. Let M be an arbitrary cone. Further, let X be a point
of FE M, and let Z be a point which is not interior to FEM. Then there exists,
on the closed segment XZ, a point Y having a representation Y =
Y, +...4+ Y, where Y;e M and s < n—1.
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Proor. Let X = X,+ ... +X, be a representation of X according
to Theorem 3.1 with X,, ..., X, linearly independent. If r < n—1, we
may choose ¥ = X. If r = n, the point X is an interior point of the
convex hull of the rays OX,, ..., 0X,. This convex hull is a polyhedral
convex cone P of dimension n, the interior points of which are interior
points of F M. Hence, Z cannot be interior to P and consequently, the
segment XZ contains a boundary point ¥ of P. Obviously, Y has a re-
presentation with the desired property.

4. The support function of the intersection of convex bodies. Let m
be an arbitrary set of a »-dimensional euclidean space E’. Put n =v+41
and consider E* as the plane z, = —1 of E”. To the set m < E” asso-
ciate the cone M < E™ consisting of all rays OX, X € m.

Now consider a convex body K < E’, that is, a closed bounded con-
vex set. There is a simple relationship between the dual cone C* of the
cone C associated with K and the support function of K. When a point
X=(x, ..., 2, —1)e E" is considered only in E’ we denote it by
x = (2, ..., 2,). Obviously, the definition

C*={Y | (X,Y)<0 for XeC}
is equivalent to

0*= {Y|x1y1+ ce +xvyv§yn fOI’ xEK}‘
Now

H(y) = su}f{’(xl%‘i" e F2y,)

is the support function of K. Thus, C* consists of the points ¥ =
(Y .., y,) satisfying y, = H(y) and hence, the boundary of C* has
the equation y, = H(y); in other words, C* represents the support
function of K.

Let {K ,} be a set of convex bodies in £’, and let C, < E™ denote the
cone associated with K ,. Then the cone associated with the intersec-
tion NK, is NC,. From Theorem 2 it follows therefore that the sup-
port function of MK , is represented by the cone ‘GUC *, this cone
being the whole space E™ if and only if NC, = O, that is, if and only if
NK , is empty. This together with Theorem 3.1 applied to M = UC 4F
yields the following (unpublished) theorem of F. Riesz.

TurEOREM 4. Let {K 4} be a set of convex bodies in E’, and let H ,(x)
denote the support function of K 4. Define for x € E

H(z) = inf (H 4, (@) + ... 4+ H @),

where the infimum is taken over all sets of points &V, ..., 2"V in B for
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which a4 . ..+ = x and for all combinations A,, ..., A,,,. Then
H(x) 1s the support function of N K , if this intersection is not empty, and
H(z) = —oo for all x if this intersection is empty.

5. A proof of Helly’s theorem. By means of Theorem 2 and the corol-

lary to Theorem 3.1, we now give a simple proof of Helly’s well-known
theorem:

THEOREM 5. Let {K 4} be a set of closed convex sets in E” with the prop-
erties that any v-+1 of the sets K, have a common point and that some of

the sets have a bounded (non-empty) intersection. Then all of the sets K , have
a common point.

Proor. As in the preceding section, let E” be the plane z, = —1 of
E™, n = v+1, and associate with each set K , the convex cone projecting
it from O. This cone is closed if K , is bounded. Denote by C, this cone

or its closure in case K, is unbounded. Let C4, ..., O, be n of these
cones. According to the assumption there is a point X of E” for which
XelC4yn...n04. With the notation N = (0, ..., 0, —1) we have

(X, N) =1> 0. Thus, the definition of the dual cone and Theorem 2
give
N¢(Cqyn...nC4)*=C6C(C Fu ... uC,*).

Now, the corollary to Theorem 3.1 applied to the cones M, = C *
shows that N ¢ FEUC *. Consequently, F UC ,* is not the whole space
E* and, by the corollary to Theorem 2, NC, is not O. Since there are
sets K, having a bounded intersection, M C, must have points in com-
mon with E” that is, all K, have a common point.

6. A separation theorem for convex cones. In the corollary to Theorem
3.1 it was assumed that the convex hull of any n of the cones does not
contain a fixed ray, and the conclusion was that there exists a plane
having all of the cones on the same side. Now consider a set of closed con-
vex cones C, and weaken the assumption to this: the convex hull of
any n of the cones is not the entire space E”. In general it is then not
true that all of the cones are in the same half space. As an example in £?
take three rays forming equal angles with each other. However, we are
going to show that there exists a plane which divides no C,. In other
words, we shall prove the following

THEOREM 6. Let {C ,} be a set of closed convex cones in E™ with the prop-
erty that the convex hull of any n of the cones C 4 is not the whole space E™.
Then there exists a plane which divides no cone C 4.
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If all of the cones C 4 are n-dimensional, this plane may be chosen such
as to have n preassigned cones C 4 on the same side.

Observe that the second statement does not necessarily hold if not
all of the O are n-dimensional. As an example in E? choose for C; the
quadrant z, = 0, , = 0, for C, the negative z;-axis, and for C, the entire
x,-axis. Then the latter is the only line satisfying the requirement of
the theorem. Nevertheless it has not C; and C, on the same side.

Proor. First assume that the number of cones C, is finite.

Choose n arbitrary cones C', and denote them by C,, ..., C,. To these
cones add a maximal number of the cones C,, say C,.4, ..., Cy, such
that F£(C,u ... uC,) is not the whole space and thus, contained in some
half space. Define

I'=Cu...uC,).

Let C;, j > k, be one of the remaining cones, if any. Then —I" and C}
cannot be separated by a plane; for, a plane separating —I" and C;
*would have the k-1 cones 0, ..., Cy, C; on the same side, in contra-
diction to the maximum property of k. From Theorem 1.1 it therefore
follows that C; and —I" have points in common which are relative
interior to both cones. Since I"and —I" are separated by every supporting
plane of I', it is sufficient to show that C; is contained in the closure
—1I" of —I'for all j > k.
There is thus a point, call it X, which is relative interior to both C;
and —I". Suppose C; is not contained in —I". Then there is a point Z
relative interior to C; but not contained in —I. Let Y be that point,

or one of those points, of the segment XZ which belongs to —I" and
has a representation

1) Y= —(Y;+...+7), Y,eCu...uC,,

with minimum s. Then Y,, ..., Y, are linearly independent. Apply-
ing Theorem 3.2 to M = —(C,u ... uC}), we obtain s <n—1. This holds
also in case ¥ = O provided that we define s = 0 and the void sum in
(1) to mean O. It follows further that Z does not belong to the subspace
Es spanned by the points O, Y,, ..., Y,. For, if Z € Es, Theorem 3.2
could be applied to the cone M' < E° consisting of the rays
0Y,, ...,0Y, and with X replaced by Y. Hence, there would be a
point on the segment YZ representable as a sum of less than s points
of M’ = M, in contradiction to the minimum property of s.

On the other hand, Y is relative interior to C; since X and Z are so.
Hence, Y has also a representation
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—Y/+...4+Y/, Y eC,

where Y,’, ..., Y, are linearly independent and d is the dimension of
C;. Consequently, (1) yields

(2) Y+ ...4+Y, +Y/'+...4+Y,;/=0.

Each Y, 0 =1, ..., s, belongs to one (or more) of the cones C,, ..., C;;

denote this cone (or one of them) by C; . Applying Theorem 1.2 to the
cone
(3) M”—:C’ilU...UOiSUCj,

we see that the lineality ! of the convex hull of this cone M is greater than
or equal to the maximum number of linearly independent points among
the s+4d points occurring in (2). Hence, we have on the one hand I = d
since Y,’, ..., Y, are linearly independent, and on the other hand
! = s+1 which may be seen in the following way. Since the point Z
belongs to C;, it is a linear combination of the points Y,’, ..., ¥;';
but as shown above, it is not a linear combination of the linearly inde-
pendent points Y, ..., Y . Consequently, there are at least s+ 1 linearly
independent points among Y, Y. .

Now assume that all of the cones €, are n-dimensional. Then we have
d = n and hence, ] = n. This means that the convex hull of the cone
(3) is the whole space E*. However, because of s < n—1 this contradicts
the assumption of the theorem, and therefore all cones C;, j > k, must
be contained in —I". This proves the theorem in this case.

If not all of the cones C, are n-dimensional, we distinguish between
two cases.

1° Suppose first that the lineality of the convex hull of any r of the
cones is less than r, for every positive integer » < n. Then the above
inequality I = s+1 leads to a contradiction; for it expresses that the
s+1 cones C;, ..., 0,;,C; have a convex hull with lineality greater
than or equal to s41. The conclusion is again that the cones C;, j > £k,
are contained in —I". This proves the theorem in the present case.

2° Now suppose that for some r, 1 <r < n, there are r cones, say
C,, ..., C,, whose convex hull has lineality [ = . Let E" be an r-dimen-
sional subspace of the lineality space of this convex hull, and let
Er-7 = E* be the (n—r)-dimensional subspace orthogonal to E”. Pro-
ject all of the cones €, orthogonally on E*-7. The projection of C, is a
closed convex cone ¢, in £7-*. With respect to this subspace the cones
¢4 satisfy the assumption of the theorem. Indeed, suppose there were
n—7r CONeS C4, 8aY C,yy, ..., C,, Whose convex hull is the entire space
Er-r. Then the convex hull of the cones Cy, ..., C,, C,,y, ..., C, would
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be the entire space E*. The theorem being obviously valid for » = 1,
we may proceed by induction. Thus, we assume that the statement is
true in E»-7, that is, there exists an (n—7r—1)-dimensional plane
En-r-1 through O which divides no ¢,. Then the plane E"-! spanned
by this E»-7-1 and E7 divides no C .

It remains to be shown that the validity of the theorem for any finite
number of cones C, implies its validity for an arbitrary infinite set
{C,}. This can be done by an argument similar to that used by F. Riesz
in a proof of Helly’s theorem (cf. Helly [1] and also Horn [2]).

In case all of the cones C, are n-dimensional, define C =
‘G(C,u ...uC,) where C,, ..., C, are n preassigned cones C,. In the
general case let C denote one fixed of the cones C',. Let = be a plane
which supports C, and let the ray g, be its outer normal. All such rays
make up the dual cone C* of C. Proceeding indirectly, we assume that
every plane & supporting C divides some cone C,. Then the normal
planes through O of all rays belonging to a certain neighbourhood of ¢,
divide the same cone C',. By the Heine-Borel theorem, the compact set
of rays C* can be covered by finitely many of such neighbourhoods.
Consequently, there are finitely many cones C, such that every sup-
porting plane of C divides at least one of these cones. However, this
contradicts Theorem 6 for a finite number of cones.

7. The dual theorem and a theorem of Horn. Consider a set {C,} of
closed convex cones whose dual cones O * satisfy the assumption of
Theorem 6. Because of Theorem 2, this means that any n of the cones
(4 have a common ray. The existence of a plane which divides no C ,*
is equivalent to the existence of a straight line through O, namely the
normal of that plane, with the property that every cone C, contains
at least one of the two rays making up this line. Observing finally that
C 4 has lineality 0 if O * is n-dimensional (see Section 1), we have:

TuroreEM 7.1. Let {C 4} be a set of closed convex comes in E™ with the
property that any n of the cones C 4 have a common ray. Then there exists
a straight line through O such that every cone C, contains one of the two
rays making up this line.

If all of the cones C, have lineality 0, this line can be chosen so that one
of s rays is contained in the intersection of n preassigned cones C 4.

Except for the second statement concerning cones with lineality 0,
this is equivalent to Theorem 3 of Horn’s paper [2]. (Actually Horn’s
theorem is slightly more general since his notion of convex subset of a
sphere would correspond to a notion of convex cone which comprises
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the complementary cones of cones convex in the usual sense.) From his
Theorem 3 Horn deduces very easily, in addition to his more general
Theorem 2, a generalization of Helly’s theorem. In the same way this
is obtained from the above Theorem 7.1 in the slightly stronger version:

THEOREM 7.2. Let {K ,} be a set of convex bodies in E™ with the property
that any n of the bodies K 4 have a common point. Further,let K,, ..., K,
be n arbitrary bodies K ,. Then through every point P of E™ there exists a
straight line which intersects both the intersection K, n ... n K, and all of
the other bodies K ,.
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