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GENERALIZATION OF A THEOREM OF
BOGOLIOUBOFF TO TOPOLOGICAL ABELIAN GROUPS

WITH AN APPENDIX ON BANACH
MEAN VALUES IN NON-ABELIAN GROUPS

ERLING FOLNER

1. Introduction. In the simplest known proof of the main theorem on
ordinary almost periodic functions, given in 1939 by Bogoliouboff [2], a
theorem on relatively dense sets of numbers plays the decisive role. Using
the same principal idea as Bogoliouboff, the author [3], [4] gave a proof
of the main theorem on almost periodic functions in an arbitrary abelian
group. The decisive role was played here by a theorem on relatively
dense sets of elements in a denumerable abelian group (viz. a certain
subgroup of the original group). The proofs of these theorems on rela-
tively dense sets were based on the elementary ¢Fourier analysis” in
finite abelian groups.

In the present paper these theorems will be generalized to arbitrary
topological abelian groups, but the proof will no longer be elementary.
It will be based on a decomposition theorem of Godement for positive
definite functions in groups which generalizes a theorem of Bochner for
the usual positive definite functions. The existence of an invariant
Banach mean value for all bounded functions on an arbitrary abelian
group will be a tool in the proof. This existence was established by Banach
by way of an example.

In my efforts to generalize Bogolioliboff’s theorem on relatively dense
sets of numbers to a theorem on relatively dense class sets in a non-
abelian group (see [5]) I have found some results on Banach mean values
in non-abelian groups which may have an interest in themselves. They
are set forth in an appendix. However, I have not been able to decide

whether Bogolioliboff’s theorem may be generalized to arbitrary non-
abelian groups.

2. The generalized Bogoliouboff theorem and some related theorems.
We shall now state the generalization to an arbitrary topological abelian
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group G of Bogoliouboff’s theorem on relatively dense sets of numbers.
We recall that a subset E of G is called relatively dense with respect to
k elements ay, ...,a; if (E+4a,)U ... U (E+a,) = G. See [3, p. 360].
By ELE (respectively E+a) we understand the set of all -y (respec-
tively x+a) with xe B, y e E.

THEOREM 1. Let G be an arbitrary topological abelian group and E a
subset of G which is relatively dense with respect to k elements. Let further-
more V be an arbitrary neighbourhood of 0 in G. Then there exist q continu-
ous characters y,(x), ..., y,(x) on G where ¢ < k® such that every x which
satisfies the q inequalities

Rey(x) =0, ..., Rey,(®) =0

belongs to the set E—E-+E—E-+V.

If in particular G is a discrete group the word “continuous” and the
neighbourhood V can, of course, be omitted in the formulation, corre-
sponding to the fact that V can be taken equal to {0}.

Bogoliouboff [2] proved this theorem (with some changes in details)
for the case where G is the discrete additive group of all integers. From
this case he passed to the case where (I is the additive group of all real
numbers with the usual topology. In [3], [4] I proved the theorem for
the case where (f is an arbitrary denumerable discrete abelian group, but
I had to replace the E—F -+ E—FE in the theorem by £ —E-+E—E-+E—
—FE+E—FE (and = in the inequalities by >).

From Theorem 1 we shall deduce in a simple way two corollaries. We
recall first that a topological abelian group G is called maximally almost
periodic if to any two different elements @ and b from G there exists a
continuous almost periodic function f(x) on G with f(a) == f(b) or, equiv-
alently, there exists to any a 4= 0 in G’ a continuous character y(z) on G
such that y(a) == 1. Further, ¢ is called minimally almost periodic if
the constants are the only continuous almost periodic functions on G or,
equivalently, the principal character is the only continuous character on
G. The closure of a subset £ of @ is denoted by E.

CoroLLARY 1. A mnecessary and sufficient condition that a topolo-
gical abelian group G be maximally almost periodic is that there exists to
every a + 0 in G a relatively dense set E in G such that a ¢ E —E +FE —E.

CoroLLARY 2. A mnecessary and sufficient condition that a topo-
logical abelian group G be minimally almost periodic is that for any
relatively dense set E in G the relation E—E + E —E = G is valid.
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Next we shall state two theorems which are related to Theorem 1.
With regard to the first of these theorems we make the following remark.
An almost periodic function f(x) on an abelian group G may be defined
as a function which for every ¢ > 0 has a relatively dense set of transla-
tion elements belonging to e, that is, elements = with |f(x+7) —f(z)| Z e
for all z. If f(x) is also continuous, it is easily seen to be uniformly con-
tinuous. Consequently, for any ¢ > 0 the set of ¢-translation elements of
f(x) contains a set of the form E+-V, where E is a relatively dense set and
V, is a neighbourhood of 0.

The first of the following theorems is a partial converse of the simple
fact that if a complex function f(x) can be ¢,-approximated by a continu-
ous almost periodic function g(x), that is, | f(x) — g(x)| < ¢, for all z, then
for every ¢ > O the set of (2¢,+¢)-translation elements of f(x) contains
a set of the form £+ V,,.

THEOREM 2. Let f(x) be a complex function on a topological abelian
group G and let for a given ¢, > 0 the set of translation elements of f(x)
belonging to &, contain a set of the form E+V , where E is a relatively dense
set and V, is a neighbourhood of 0. Then there exists a continuous almost
pertodic function g(x) on G such that |f(x) — g(x)| < 2¢, for all .

In the next theorem the notion of upper mean measure m#& of a set £
in @ occurs. It is defined as {Mf(x)} where f(x) is the characteristic
function of £, and M{f(x)} is defined in Section 3, (1), below.

TurorREM 3. Let E be a relatively dense set in the topological abelian
group G and V an arbitrary neighbourhood of 0. Then there exists a finite
number of continuous characters y,(x), ... , y.(x) such that all the x which
satisfy the inequalities Rey (x) 2 0, ..., Rey,(x) = 0, with exception of
a set with upper mean measure zero, belong to the set E—E+V.

3. Banach mean values in an abelian group. The introduction of a
translation invariant mean value for all bounded real functions on an
abelian group is indicated by Banach [1, pp. 30-32] by way of an example,
viz. the group of real numbers modulo 1. We shall repeat only those
parts of Banach’s proof which will be directly needed for the discussion
of the non-abelian case in the appendix.

Let f(x) be a bounded real function on the abelian group @. (In this
section the topology is of no interest.) We define the upper mean value

1) Mf = M{f(2)} = inf sup X, f (v+a,)
x g =

where 0 = {x;, ..., an58y, ..., a5}, 0, > 0, X, = 1,0, G It sat-
isfies the relations
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(2) inf f(z) = Mf = sup f ()

(3) Jif{f(x%—a)} = M{f(x)}

(4) M{Ofy =aMf  (2z0)

(5) M{f+g} = Mf+ My

(6) M{f@)—fla+a)} = 0.

For a non-abelian group

(1%) M, [ = intsup X', f(xa,y)
4 ey

satisfies (2), (4), (5), and the analogue of (3), but in general not the ana-
logue of (6). (Without the y in the expression (1*) the fundamental
relation (5) would not be valid in general.)

Banach now obtains a mean value Mf with the desired properties by
using the following theorem (cf. [1, pp. 27-28]), the proof of which is
based on transfinite induction.

Banace’s THEOREM. Let Mf be a real functional defined on a real linear
space L and satisfying (4) and (5). Then there exists a linear functional
Mf on L for which Mf < Mf.

This theorem is applied to the space L of all bounded real functions
on G and the functional Mf defined in (1). The resulting Mf satisfies the
following relations

@ int f(2) = Mf < Mf < Hf = sup (@)
(b) M) = ye)

() M{f} = AMf (A real)

(d) M{f+g} = Mf+ Mg

where Mf= — M (—f). Onlyinff < Mf < Mfand (b) need proofs. From (c)
and Mf<Mf<supf follows Mf= —M{—f}=—M{—f} = —sup(—f)
= inff. As to (b) we have M{f(x)} < M{f(x+a)} since from (d), (a),
and (6) it follows that

M{f(@)} — M{f(x+a)} = M{f(2)—f@+a)} = M{f(x)—f(z+a)} = 0.
Replacing f(x) by f(x+a) and a by —a we get also M{f(x)} = M{f(x+a)}.



GENERALIZATION OF A THEOREM OF BOGOLIOUBOFF 9

We extend the functional Mf to all bounded complex functions on G
by putting M {u(x) + iv(x)}, where u(x) and v(2) are bounded real func-
tions, equal to M {u(x)}+ ¢ M{v(x)}. Obviously (b), (c), (d) are still valid,
(¢) also for complex 1. Furthermore [Mf| < M{|f|}. The proof is known:
For a certain real 6 we have

|Mf| = € Mf = M{e"f} = M{Re(e”f)} = M{|e"f|} = M{fl}.

Remarg. If f(z) is almost periodic or positive definite we have nec-
essarily Mf = Wf where Mf denotes the usual mean value of f(x). See
[8, p. 451] and [6, p. 59].

4. Proofs of Theorem 1 and Corollaries 1 and 2. In the following Mf
denotes a Banach mean value defined as indicated in Section 3 on all
bounded complex functions on G. If f is almost periodic or positive
definite we may write it IRf.

Proor or TurorEmM 1. Let V, be a neighbourhood of 0 chosen so
that Vy—Vo+V,—Vy < V (see [9], p. 11). There exists a uniformly
continuous non-negative function hy(z) < 1 on G which is equal to 1 at
the point 0 and equal to 0 outside of V,, (see [9, pp. 13-14]). The function

Jj(x) = sup hy(—y+z)
ye l
is easily seen to be a uniformly continuous, non-negative function not
exceeding 1 which is positive only in E-+V,; furthermore j(z) = c¢(x)
where c(x) is the characteristic function of X.
Next, we form the function

wx) = Jif{j(t)j(Hx)} .

Obviously u(x) is a non-negative, uniformly continuous function. Fur-
thermore u(x) can be positive only if x € E—E+V,—V,; for p(x) > 0
implies the existence of a ¢ such that j(t) > 0, j(t-Fx) > 0, that is,
te E4+V,, t+xec B4V,

We shail show now that u(x) is a positive definite function (cf. Khint-
chine [7, p. 568]), that is,

N N
27 ‘z’dndm/"(xn‘—xm) =0
n=1lm=1

for arbitrary complex numbers d and elements x. Indeed, we have
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N N _ N N
) gldnd plea—zn) = 3 § GO+, —)}
N N N N S
:M{ dnj(t——xn)Z}gO.

Next, we shall obtain a lower estimate for MMu. From the relation
(E+4+a)U ... U(E+a,) =G we get
k

Sula—a,) = 3 U{GOj+a—a,))

p=1 p=11
k
= Vﬂ{h (t—a)jlt—a,)} =z X' M{j(t—z)c(t—a,)}
p=1 p=1t

k
= M jt—a) Z’C(t—%)E z M{j(t—a)} = Mj,
p=1 i

t

since c(t—a,) is the characteristic function of £-a,. Hence

ple—a)+ ... +ul@e—a,) = Mj

and by taking mean values on both sides of the inequality we obtain
the desired estimate
(1) WMu = k- Mj .

Here Mj > 0, for from (E+4a,)VU ... U (E+a;) = G we get kMc = 1, so
that Mj = Mc = k' > 0. For u(0) we shall later use the simple estimate
(2) m(0) = M{j(t)*} = Mj ,

which follows from 0 < j(¢) £ 1.

Since Godement has only formulated the result to be used, in thespe-
cial case of a locally compact group, we consider for a moment ¢ with the
discrete topology instead of the given one. Then G is a locally compact
group and u(x) a continuous positive definite function on G. Hence, in
consequence of Godement’s theorem [6, p. 64],

3) p(@) = ale) + ()

where a(z) is a positive definite, almost periodic function,
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A4,=0, YA, < +oo, and z(x) is a positive definite function with
M{|z|2} = 0. For any » with 4, > 0 we consider the known relation

the last sign of equality being valid since

0 = |z ga(@)] = [M(t) gul—t4-2)}] = (M{22)t=0.

When we reconsider the given topology in ¢ for which, as we have men-
tioned, u(z) is a uniformly continuous function, we see from (5) that
2n(2) 18 also a continuous function. Since u(x) is real, it follows also from
5) that _ _ _
) A 7(®) = p*7 (@) = ax}y()

so that 7,(x) appears in (4) with the same coefficient A4, as y,(x). Thus
a(x) and z(x) are real continuous functions.

Let y,(x) be the principal character. It follows from (1) that

(6) Ag=Mu = k1 Mj (>0).
For n = 1 we have 4, < 4, since
= M{u(x)Rey, (z)} = Miu(@)} = 4

We now arrange all of the positive 4, in a descending sequence 4, =
A4,=z4, =... =24, = ... (this sequence may be finite). Since z(x) is
a p031’01ve definite function we have z(0) = 0. Hence from (2) and (3)
we get a(0) < Mj and this together with (4) implies that

ZAV, =

and hence
(7) A4, = (141)tMy.
Finally, we form the function

(8)  m@) = prpu@) = M{p(t) p(—t+x)} = axa(x) = l‘jszxw(w)-

Obviously u,(x) is non-negative. Furthermore y,(z) can be positive only
if te H—E+E—E+7V; in fact p,(x) > 0 implies the existence of a ¢
such that u(t) > 0 and u(—t-+z) > 0, that is, ¢, —t-+x lie both in
E—E+4V,—V,, and V, is chosen so that V,—V,+V,—V, = V. From
(8) we get

lul(x) Avo2 + SAVA 2R’exW(x) + ‘%I_IA 2Rer1(x)

We shall show that u;(x) > 0 for every @ which satisfies the q inequali-
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ties Rey,(x) =20, l =1,2, ..., q, when only ¢ is chosen = k% From (6)
and (7) we have
Mjy)? 1 1 M My
@z gy () 2 E OO
k? (@+2)* (¢+3) k g+1

which, since Mj > 0, is positive for every ¢ = k2. Hence in Theorem 1
we can actually use a number ¢ < k2. This finishes the proof of Theorem 1.

Proor or CororrLarYy 1. We shall first show that the condition is
necessary. Let y(x) be a continuous character such that y(a) = 1. By E
we denote the set of x for which |Argy(x)| < $|Argy(a)|. Asis well known
(see for instance [4, p. 568]), this is a relatively dense set. For every
xe B —E+E—F we have |Arg y(x)| =< $|Argy(a)|. Since the set of x for
which this last inequality is satisfied, is a closed set which does not con-
tain a, the set £ —E+ K —E does not contain a either.

That the condition is sufficient is a simple consequence of Theorem 1.
Given an a # 0 we shall find a continuous character y(x) with y(a) = 1.
We choose a relatively dense set E such that H—E-+E—E does not
contain a. Then there exists a neighbourhood V¥ of 0 such that
E—FE-+E—E-V does not contain a. It follows from Theorem 1 that
there exist g continuous characters y,(x), ..., x,(®) such that every x
which satisfies the inequalities Rey,(x) = 0, ..., Rey,(z) = 0 belongs to
E—E+E—E+V. Since a does not belong to the latter set, at least one
of the characters y,(x), ..., y,(x) must be different from 1 at a.

Proor or CoroLLARY 2. Analogously.

5. Proof of Theorem 2. We shall now let the previous £ and V, in-

dicate the £ and V, appearing in Theorem 2. From (4) and (6) in Section
4 we have A = sup a(zx) = a(0) > 0.
We consider the non-identically vanishing, continuous, almost periodic
function a,(x) which is equal to a(x) — 4/2 for a(x) = 4/2 and ‘equal to 0
elsewhere (it has obviously the same translatlon elements as a(z)). Then
all « for which the non-negative function a,(x) is positive will be 2¢,-
translation elements of f(x) with the exception of the x in a set Z with
mZ = 0. In fact, a,(x) > 0 implies a(x) > A/2 and hence by (3) we get
u(x) > 0 with the exception of the x in a set Z where z(x) < —A4/2; but
M{z2} = 0 and hence mZ = 0. To complete the reasoning we have only
to remark that an « with u(z) > 0 belongs to (E+V,) — (E+V,) and is
therefore a 2¢y-translation element of f(x)
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We now form the kernel
K(z) = a,(x)/Ma,

which has the following properties. K(x) is continuous and almost peri-
odic, K(x) = 0, MK = 1, and the set of  where K(x) > 0 has the form
T U Z where 7' and Z are disjoint sets and 7' consists of 2¢y-translation
elements of f(x) while mZ = 0.

Let E be relatively dense with respect to the elements a;, ..., a,. Since
all elements in K are gy -translation elements of f(x) we get

[f (@) = & + max{|f(a)l, ..., (@)}

so that f(x) is bounded. Hence we can form the function
= Zif{f(ter)K(t)} = {W{f(t)K(t-x)} .
It is continuous and almost periodic since
lg(x+7) —g(@)| = lli[{f(t)(K(t—x—T) —K(t—a))}l = e M{f()]}
when 7 is any e-translation element of K (z). Finally, we have

. If (@) —g(@)| = 2¢
since

If (@) —g(z)] = lltf{(f(x —ft+a) K1)} =< M{!f ft4-2) K(t)}
- M-{—M+ M =2e+040.

teT teZ te[K=0]
This completes the proof of Theorem 2.

6. Proof of Theorem 3. This time we choose the previous V, as a
neighbourhood of 0 with Vo—V, = V. Since 4, > 0 in consequence of
(6) in Section 4, we can choose m so large that

DA, < 4,.

m-1
When z satisfies the inequalities Rey,(x) = 0, ..., Rey,(z) = 0, we get
from (4) in Section 4
) 4, ez, (w) = Ay — N A, > 0

m—+1

and sinee M{z%} = 0 we get from (3) in Section 4 that u(z) > 0 for all
such z with the exception of a set Z of « with mZ = 0. When u(z) > 0
we have xe E—E+V,—V, « E—E+V. This proves Theorem 3.

a(x) =

i[vg
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Appendix. Banach mean values in non-abelian groups.

THEOREM 4. Let L be any right-translation invariant linear space of
bounded real functions on a group G. A necessary and sufficient condition
that there exist a real functional Mf on L with the properties

(a) inf f(x) = Mf < sup f(x)
(b) M{f(@a)} = M{f(x)}

(c) M{f} = AMf (A real)
(d) M{f+g} = Mf+ My

18 that sup H(x) = 0 for every function H(x) of the form
H(x) = hy(x) — hy(way) + ... + k() — by (2ay)

where hy, . . ., h, are arbitrary functions from L and a,, . . .,a, arbitrary ele-
ments from Q. If L is bi-translation invariant and the property (b) is re-
placed by the stronger property

(b) M{f(bxa); = M{f(2)},
wn the above condition one has to consider functions H(x) of the form
H(z) = by(@) — hy(byway) + ... + by (@) — by (byay,) .

In the two cases the functional Mf is called a right-invariant Banach
mean value or a bi-invariant Banach mean value on L, respectively.
Of course, if there exists a bi-invariant mean value Mf, the functional

M*f = Y M{f(x)}+M{f(xz-')}) will have all the above properties and
furthermore the property

() M*{f (@)} = M*{f(@)} .

Proor. It is plain that in both cases the condition supmH (x) = 0 is
necessary, for if there exists an M with the properties mentioned above

we must have
sup Hx) = MH = 0.
x

In order to show that the condition (in the two different cases) is suffi-
cient we introduce the functional

(1) Mf = inf sup (f(2)+H(z) .
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We have  gup(f(x)+H(x)) = inf f(x) + supH(z) = inf f ()

since sup H(x) = 0 and hence

(2) sup f(x) = Mf z inf f(z),

the first sign of inequality being due to the fact that the constant 0
is an H(x). In the first of our two cases we have

(3) M{f(za)} = Mf

because, together with H(x) every H(xa) is also an H(x) (and conversely).
Analogously we have in the second case
®) JE{(f (b)) = -

Similarly we get M{Af} = AMf for A > 0. This is true also for 1 = 0
since M0 = infgysup,H(x) = 0 = 0 Mf. Thus we have proved

(4) M{f} = 2AMf for 2z=0.
Next, we shall prove
(5) M{f+g} = Mf+ Mg .

For any ¢ > 0 we can find H,(x) and H,(z) such that
Mf+ezfx)+Hyx) and Mg+e=g()+ Hyx)
for all z. This gives
Mf+ Mg+ 2e = f(2) +g(=) + Hy(x) + Hy()
for all x. Since H,(x)-+H,(x) is also an H(x) we see that
Mf+ Mg+ 2¢ = M{f+g} .

This proves (5). Finally we shall prove that in our first case

(6) M{f(x)—f(za)} =0
and in the second case
(6) M{f(z)—f (baa)} = 0.

Let us prove (6), for example. On the one hand we have from (5) and (3)
M{f(@)—f(@a)} = M{f(x)} — M{f(za)} = 0;
on the other hand, since f(xa) —f(x) is an H(x), we have

Mif (@) —f (@a)} = sup {f@) —[(za) +f(wa) —f @)} = 0.
This proves (8).
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We now proceed as in Section 3 by applying Banach’s Theorem to the
above L and M and prove as in Section 3 that the Mf obtained satisfies
(@), (b) or (b’) respectively, (c), (d).

This completes the proof of Theorem 4.

THEOREM 5. Besides the finite non-abelian groups, there exist also in-
Sfinite non-abelian groups G with a bi-invariant Banach mean value defined
on all bounded real functions on G.

Proor. This is shown by the following example. We consider as our
group G the group of all those permutations of the numbers 1, 2,3, ...
each of which involves only a finite set of these numbers and leaves the
remaining numbers fixed. The reason that this group possesses an Mf
with the properties mentioned is that it can be exhausted by finite groups,
viz. the groups ¢, where (¢, denotes the subgroup of ¢ consisting of all
permutations of the numbers 1, 2, ..., n. In the proof we may, for in-
stance, use Theorem 4. On account of Theorem 4 it is sufficient to prove
that sup,H(x) = 0 for every function of the form

H(x) = hy(x) — hy(byas) + . .. +hy(x) — by (by2ay) -
Let F be a finite subgroup of G which contains aq, ..., a,; by, ..., b,.
Then we have by Theorem 4

supH(x) = supH(z) = 0
rel zeF

since there exists a bi-invariant mean value in 7.

TaEOREM 6. There exists a non-abelian group G and a subset E of G
such that there does mot exist a right-invariant Banach mean value on the
right-translation invariant linear space which ts spanned by the charac-
teristic function f(x) of E and its right-translates.

Proor. We choose as our group G the free group with the two gener-
ators ¢ and b. Except for the unit element, every element in G may in
one and only one way be written as a product of powers alternatingly
of @ and b (with integral exponents == 0). As the set £ we consider the
set of all elements which end on a power of a. In consequence of (the
trivial part of) Theorem 4 our theorem will be proved when we have
shown that sup,H(z) < 0 for the function

H(x) = f(za*b)—f (va)+f (xa®0%)—f (%) .
The four functions on the right-hand side are the characteristic functions
of the four sets

E,=Eb'la2? KE,=Fa', HE,=ZEb2? and F,
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respectively. The set E, consists partly of all elements which end on
@ (r==0 and &= —1), partly of all elements which end on b% (s 3= 0), and
finally of the unit element. Thus B U E, = G. Further £ n E, consists
of all elements which end on a” (r == 0 and & —1). Since all elements in
E, end on b-a~2 and all elements in E, end on b-2a~% we see that both
E, and E, are contained in E n E, and that E, and Ej are disjoint sets.
The figure illustrates the situation. The
value of H(z) can immediately be found
in any of the five subsets into which G is
divided by the sets E,, E,, E;, and E. The
values are indicated on the figure ; they are
either —1 or —2. Thus sup,H(x) is not
= 0, as was to be proved.

Finally, we shall prove the following
theorem which goes in ‘positive” di-
rection. By a class function on G we -2
understand a function f(x) which satisfies
flxy) = f(yx) for all x and y.

THEOREM 7. On the bi-tnvariant linear
space which consists of all functions which
can be uniformly approximated by linear EUE,: G
combinations of the bi-translates of a given

(real) class function f(x) it is possible to introduce a bi-invariant Banach
mean value.

Proor. We apply Theorem 4 and have to show that if f,(z), ..., f.()
are arbitrary functions from the linear space in question and ¢y, .

s Cps
dy, ..., d, are arbitrary elements, then

(M) sup [f1(x) —fildyze)) + ... +fu(@) —fuldnc,)] 2 0.
Evidently it suffices to prove (7) for functions f,, ..., f, from the linear

space which is spanned by the bi-translates of f(x). And in order to show
(7) for such functions it is clear that we need only show

(8) sup [, (f (@) — f(xby)) +. . . 4 o, (f (¥a,) —f (2by))] = 0

for arbitrary ay, ....a,; by, ..., b, and all x, > 0 (the translations to the

left are made to disappear by using f(xy) = f(yx)). For convenience we
may assume that X«, = 1.

In order to prove (8) indirectly we assume that with an & > 0 we have
(9) o f(way) + ...+, f(xa,) < o f(@b) 4. .. +«,f(@b,) — ¢
for all z. We replace z in this inequality by xa, and multiply by «, which

Math. Scand. 2. 2
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gives

ERLING FOLNER

o‘rZ“sf(xaras) é “rz‘xsf(xarbs) - “1‘8

Summing over r we obtain

Zo‘r“sf(xaras) = 2 “r’xsf(xarbs) — €.

Since f(z) is a class function we may write the right-hand side of this

inequality as

and

n

Z“r“sf(bsxar) — &= 2 o‘szo‘rf bgxa,) — &

8=1 r=1

applying (9) with « replaced successively by b,z, s=1,2, ..., n,

we see that this quantity is

g

nMS

2 o, f(bsab,) — 26 = X o, f(2b,b,) — 2¢.

Thus we have arrived at the inequality

(9)

Zo‘r‘xsf(xa'ras) g‘20‘1‘Ocsf(xbrbs) —2

This is an inequality of the same type as (9) since X a,a, =1 and

Kplg

> 0, but on the right-hand side we have 2¢ in place of . The process

may now be repeated as long as necessary and we obtain finally a con-
tradiction since all sums occurring in our chain of inequalities lie between
the infimum and the supremum of f(x) while 2™¢ — oo for m — co. This
completes the proof of Theorem 7.

1. S.
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