MATH. SCAND. 1 (1953)

ON AN IMPROVEMENT OF A THEOREM OF T. NAGELL
CONCERNING THE DIOPHANTINE EQUATION
Ax*+By* = C

WILHELM LJUNGGREN

1. The Diophantine equation
(1) »+Dyt =1,

where D denotes a positive rational integer, which is not a cube, was
solved completely by B. Delaunay [1] who showed that it has at most one
solution in rational integers x and y when y 4 0. If = «,, ¥y = y, is an
integral solution, then

(= xl‘l‘le%

is the fundamental unit of the ring R(1, Dt, DY),

T. Nagell [5; 6; 7; 8] proved the same theorem independently of Delau-
nay and, moreover, a stronger form of the latter part of the theorem.

Nagell [7; 8] proved that { is the fundamental unit of the field K (D?),
except when D = 19, 20 and 28, in which cases ¢ is the square of the
fundamental unit. These values of D correspond to the solutions
r=—8,y=3; x=—19,y=17; and z= —3,y = 1.

Nagell [7] generalized these results, showing that the Diophantine
equation
(2) A3+ By = C (C=1o0r C=23),

where A and B are > 1 when C = 1 and where 4 B is not divisible by 3
when C' = 3, has at most one solution in rational integers x and y.

He also obtained the following result: Put A = ac? and B = bd?,
where a, b, ¢ and d are positive rational integers, relatively prime in pairs,
and possessing no squared factors. If x = x,, y = y, is a solution, then

{ = 02, A} + y, BY) = &7,

where & is the fundamental unit of the field K ((a c2b2d)§), 0<&<1,and
where 7 is a rational integer = 0.
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There is one exception to this theorem, viz. the equation 2a3-+4® = 3,
which has the two solutions x =y = 1 and « = 4, y = —5. This excep-
tion is not taken into consideration in the following.

Without knowing an upper limit for the integer r, Nagell succeeded in
constructing an algorithm to decide if (2) is solvable or not. In the former
case, this algorithm gives a method to determine the solution of the
equation (cf. [7, pp. 257 and 263]). This method, a sort of descente finie, is,
however, too cumbersome to be practical.

Nagell [7; 9; 10] has treated the question of determining an upper
limit of r. His investigations have been continued by P. Heggmark [2].
Several interesting results are obtained, but no complete solution of this
problem has hitherto been found. In this paper we prove that r < 1.
This is the best possible result, since Nagell [7, pp. 258 and 264] has
proved that r = 1 for an infinity of fields K((ac2b2d)?). This yields the fol-
lowing result:

TaEOREM: The Diophantine equation
Axr3+4By* = C,

where C = 1 or C = 3, where A and B are > 1 when C = 1, and where
A B is not divisible by 3 when C = 3, has at most one solution in rational
integers x and y. If x=uz,y=1y, is an integral solution, then
C-Y(xy At + y, BY) is either the fundamental unit in the field K ((A B?)Y)
or the square of this unit.

2. Let 7,0 <7 < 1, be a unit in K((4 BZ)*). Then we must have, if
r>1,

(3) C-1(wAt4yBY = o,
where
(4) P—pn*+qn—1=0,

p and ¢ denoting rational integers. This gives us
= 1 4 3012y (A2 B)Y + 30-1xy?(4 B2},
(8) 7't =1+ 30-1ayo(42B)} 4 30-1wyer (4 Y},
7"t =1+ 3C-'ayp?(A:B)} + 3C-lay2p(AB)t, P=1,0+1,
where 7’ and %'’ are the conjugates of 7. The equations (5) imply

(6) nt4n"t =3,
or
(7) (p*—2q)* — 2(¢>—2p) = 3,

q=p* + (p—1)(3(p*+2p+3))t,
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that is
(8) q=7p*+ (p—1)M,
9) M2 — 2(3(p+1))=1.

From (5) we further obtain
niton+oty"t = 90wy (A B2},
i+ 7"t = 90-1a%y (42 B)}.
By multiplication of these two equations we get
" — (") —(n')'—(n'n"")* = 810-2 4 Ba*y?,
(" 0" — 3((n")'+ (') + (")) = 8LC-2A Bady?,
(10) 9 — 3((¢*—2p)*—2(p*—2q)) = 810-2 A Bay? .

From (7) we find ¢>—2p = }((p>—2¢)* — 3); inserting this expression in
(10) we get the result

3 — (=20 + 6(p—2)* + 8(p*—2¢) = 108C2A By
Putting for brevity p*—2q = t, this equation can be written

(11) (t+1p(t—3) = —108C-2423(C—Aa3);
hence

6C-1Aa® = 3 + (t—2)(} (12 +44+6))},
that is,

1244t+6 = 3N?

or
(12) (P®—2¢+2)% + 2 = 3N?,
(13) 6C-1Aa3 = 3 + (p2—2¢—2)N .

Consequently, we have to solve the system (9) and (12). This can also be
written in the following form

(14) M2 —2(3(p+1)* =1,

(15) (p*42(p—1) M—2)* + 2 = 3Nz,

making use of (8). The corresponding values of ¢, 4, B and C are deter-
mined by (8) and (13).

In the following sections it will be shown that the only solutions of
the system (14) and (15) in rational integers p, M and N are

p=—1,M=1,N = +3; p=3, M= —3,N=+43;
p=3M=3N=+11,



300 WILHELM LJUNGGREN

with ¢q equal to —1, 3 and 15, respectively. In the first two cases we find
either 428 = C or By® = C, which is impossible. In the last case we get
the equation 2x%+y® = 3 with = (1—2%)2 and

1(4-28—5)p = (1—2hys .

Then our theorem is proved.

3. We have
(16) (P*+2(p—1)M—2)* + 2 = (p+2M+2)*(M—2)* + 2(}(p—1))?),
because the value of each side of (16) is found to be equal to

4(p*—p*—2p+2) M + 3p'—4p*—8p+12,

using that 2M? = p2+4-2p-+3. Instead of solving (14) and (15) we can solve
the system
(17) M2 —2(3(p+1)) =1,
(18)  (M—2)* + 2(3(p—1))* = 3N;2, N = N,(p+2M+2).

From (18) we deduce

(19)  M—2+ 3(p—1)(=2)} = e(1+e,(—2)}) (utv(-2)})2,
Hence e=+le==£l.
M =2+ e(u>—20%) — dee;uv, 3(p+1) =1+ ee; (u2—202) + 2euv.
Inserting these values in (17) we obtain

(2+e(u2—20%) —dee,uv)® — 2(1+ee, (uP—20%) +2euv)? =1,

or
(20) (u?—20v%+8e,uv)® — 2(6uv—e)? — 4e(l—e,) (u2—20?%)

+ l6e(e;—uv = —1.
In this equation we have ¢; = 1, because if we had ¢;, = —1 we would
get

(w+uv+v?)? 4 e(u*+tuv+4v?) =1 (mod 3),
that is, ¢ = 0 (mod 3), which is impossible. Then (20) reduces to
o (u2—20%+8uv)? — 2(6uv—e)2 = —1 ,
flu, v) = w4 16u3v—12u202—32uv®4 401+ 24euv—1 = 0 .

According to a theorem of C. L. Siegel [11] the equation f(u, v) = 0
has only a finite number of solutions in integers » and v, because the alge-
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braic curve f(u, v) = 0 is of genus 3, but the proof gives no method for
determining the possible solutions % and ». In the following sections we
will show that there are only the trivial solutions

u=+1,v=0; u=1lLv=1le=1; u=—lv=—1l,e=1,.

These values of u and v give precisely the solutions of p and M mentioned
in the first section.

4. From (17) we deduce
M = }e,(B*+E™),  }p+1) = pe,2H (B —E™),

where E = 1428 B' =1—2% e;=41 and n =0, +1, +2, 43, ....
Inserting these expressions in (19) we get

BA+HD)E™ + F(140)E™)e, — 2—i2F = e(1+12}) (ut-i210)2 .
Now we find

(21) F(140)E™ + J(A40)E™ = (—1)" 128 L F 92,
where
(22) 9 = y(E"+E™) — yiE'(E"—E'™).

This yields
(23) E9? — eey(14+12%) (utiv2h)2 = 2H((—1)" ¢, (142Y)) .
Putting

0= (B(1+i2h) = FEBH- 1)) + i(3B@BI—1)}
0= (B'(14i2h)t = —(AE B —1)t + i (4B 31+ 1))

we find

and

00, =i(14+42}) and 0,= —iE'0, 6 = —iE0,.

The algebraic number field K(0) is of the eighth degree, and
K(0) = K(0,). If ¢ is any number in K(0), we denote by &', &, &’ the
conjugates obtained by changing in & the sign of 0, the signs of ¢ and of
2}, the signs of ¢ and of 2% and of 0, respectively. The conjugates of 0,
obtained in this way, are —0, 0, and —0; and those of 0, are —0,, —0
and 6.

The algebraic number

(9B} 4 (eer) (14128} (ud-in2t))?
T () + el 2h)

is a unit in K(0) with relative norm 1 in the subfield k(i, 2). In fact, we
find
(25) ot = —2+ 9B (e +i((—1)"—e,2Y)) and o’ =1.

(24)
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Further we find
(-0’ +2) ((— 1) ey (i4-2})) = 22292 E,
(06"—‘—“"'—*—2)((——1)"—-82(’&'—'—2%)) —_ '—23/219”2E’ .

By addition of these two equations we get
(o' o/ o' 44) (—1)" + ey (i+2}) (at-o' —a''—a"") = 8(—1)",

using the fact that 92E—¢'"*E’ = 2%*(—1)", which follows easily from
(23). Consequently:

(26) (x4 +a" +&") + eo(—1)" (i +2}) (x o' —&' —a') = 4.

In the number field K (0) there are 3 independent units, and it is easily
shown that the group of units with relative norm 1 in the subfield
k(i, 2%) is generated by two independent units, say ¢, and &, (cf. Ljung-
gren [3, p. 8]). Then we must have

(27) = +&"&Y,
because 41 are the only roots of unity whose squares equal 1. Inserting
this in (26) we get two exponential equations to determine the exponents

x and y, and therefore we can make use of the p-adic method developed
by Th. Skolem in a series of papers [12; 13; 14; 15].

5. In the same way as in my paper [4, pp. 13-17] it can be shown that

EY i (140 2h)h)e R C
o= 21 (B11) P giemo-m)
and
,_L_ _ . . i é 2
o= ELZIUHDN B0+ E))

— 28 (B’ —3)

is a pair of fundamental units. Further we note the units

(B (—iB'+2}) + (1+i2h)iy
24 (B 4-1)

. (BYA4iE2Y) 4 i(14028) (140 2h)b)
o — 2 (B +1) '

-2 —
£1&y = 3

€1

For the sake of brevity we write

8(61””823’) — slmezy _l_ 811x821y __I_ slllxgzny + slulmezu/y ,

x J— @x " ’ nx 17 1" 117
d(e)"eY) = &,°e 4 €.,V — &,/""&)/"Y — &,""7&y)/""Y
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and e,(—1)" = t. Hence, from (26) and (27)
(28) s(e"e¥) + t(i+2h)d(e"e) = +4.

We first prove some lemmas:

LrmwMa 1: If (x, y) is a solution of (28), then (—x, —y) is also a solution.

This follows immediately from the equations ¢¢," = 1, ¢, ¢ = 1,
g8 = 1,8, ¢,/ = 1.

Lemma 2: If (x,y) is a solution of (28), then (—y, x) is a solution of

(29) s(e”esl) — t(i428)d(e,"e)) = +4.
Since ¢, =¢,", &y = &', &)/ = ¢&/', 6, = ¢, we have s(e%¢eV) =
s(e;Ye,") and d(e,"e,Y) = —d(e,Y&,"), and the lemma is proved.

Lemma 3: Equation (27) is not satisfied by (x, y) if * =y =0 (mod 2).

Proor: We find an’’ = p?/(4i2}), where u is an integer in K(0).
Putting « = 22, 1 being a unit in K(0), we obtain (A1) = u2/(4i2}),
whence 42} = p2(A’2""")2. Since 4i2} = ((242:)/21)* we conclude that
2% belongs to K(f). It is easily seen that this is impossible.

Lemma 4: Equation (27) is not satisfied by (x,y) if t =y =1 (mod 2).

Proor: Putting o e, = A2 we get (xge,) (v’ 6" e)) = aa' e,2 =
(A4”)2. From the preceding proof it follows that this is impossible.

LemMA 5: The system of equations (26) and (27) is not satisfied by (z, y)
either of x = 0 (mod 2), y = 1 (mod 2),t =1 orif x =1 (mod 2),y =
(mod 2), ¢ = —1.

Proor: In the first case we find xe, = u2/(4ie,2?) and in the second
one we, = u,%(4ie,2}). As before we see that these numbers are not
squares of any unit in K(0).

From these lemmas we conclude that it is sufficient to study the equation

(30) s(e,%eY) + ((+2hd(e,"e¥) = +4,  wxodd, y even.

6. Now we find

= 144B, B=4P+0Q, P = —7+4+5-2144(11-28—14),
Q = 54-28 —781i(2t—4),
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£ = 14+4B,, B, = 4P,+60,Q,, P, = —71—5-2t4i(11-2¥}14),
Q= —54-28 7802t +4).
Putting « = 8m,+r, y = 8n,+s, where r = 41 or +3 and s = 0,

+2 or 4, and applying the first lemma of Section 5, we see that it is suffi-
cient to treat the following eight cases:

1°r=1,8=0, 2°r=1,8= —2,
r=18=2, 4 r=1s8=14,
5°r=3,s=0, 6°r=368=—2,
7°r=3,5=2, 8 r=3s=+4¢.

Let B denote any integer in X (0). For the sake of brevity we introduce
the notation

s(Bee)’) + (1+28) d(Be)es’) = p(Bee’) .
Then p(fe,"¢,°) is an integer in k(i 2!). The equation (30) implies

m,

Bl)  pleSes) + 4( X )go(Be{e;) 1 4(";) p(ByeS &) 4. ..

a3 () () pBEB e+ = e

o \g—k
Now we have that ¢,2, ¢,¢, and ¢,% all belong to the ring
R(1, 2,4, 4028 0,028 04, 002%).

Hence it is obvious that p(BT*B,*e"¢,*) = 0 (mod 2).

The cases 3°, 4°, 6°, 7° and 8° can be excluded at once. In fact, we find
ple"ey’) = —12—1642%, —140, —44, 44 48i2% and 340 4 96 2%, respec-
tively, and further p(Be,"e,)’) = p(B,6,"¢,°) = 0 (mod 8) in all these
cases, which contradicts the validity of (31) mod 32. The remaining three
cases must be studied separately. ,

2°: We get p(e,6,7%) = 4, p(Be,e,2) = 8-223—8-1702%, p(B,e,6,72) =
—32-3+415-842 and p(B2e,e,72) = p(B,26,6,7%) = p(BB,e,6,72) =0
(mod 8).

Using that B = 02} (i42}+2N), B, = 0,2 (i+ 28 —2N""), where N
belongs to R, we find

(32) p(B*FB Fe "e)) = 29 (a4 by02Y)

ag, and by, denoting integers in k(1).
On the right-hand side of (31) we must have +4. Otherwise (31) could
not be valid mod 16. Dividing by 32 we then obtain
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(33) my(223—1702%) 4 n (—124+15i2}) + 2(f(my, ny) +glmy, ny)i28)

3

q
+ 22q+[q/2]—4kz/v (q”ilk) (7;01) (aqk_{_bqkigé)_‘_ .. =20,
=0

where f(m,, n,) and g(m,, n,) are polynomials in m, and n, with coeffi-
cients which are integers in k(1).

The exponent of the highest power of 2 which divides (g—k)! k! is
= g¢—1. The general term in (33) can thus be written in the form

20+laiR)=3 (fq (my, my) + gq(mp nl)i2%) )

where f (my, ny) and g (my, n,) are polynomials in m, and n, with coeffi-
cients which are integers in relation to 2 in k(1).
Now (33) yields the following 2-adic developments:

- 0=my  +2( )+23( )+2( )+...,
0= mytn+2( )23 )4+25( )+....

According to a theorem of Th. Skolem [13, p. 180], the equations (34) have
at most one solution m,, n,, because

10

= 1.
11

Obviously this solution is m, = n, = 0, corresponding to &« = ¢,£,72 On
account of Lemmas 1 and 2 the three other possibilities are ¢, 71¢,2, ;72,1
and
(1—iB'2}) Bt 4 (141 28)by?

—28(B'—i) ’

&2ey =

the two last units giving v = +1,v = 0,¢ = e, = 1 and n = 1. See (22)
and (24).
5°: Here we find p(e,?) = 4, p(Be?) = —23-21421-1654 23,
p(Bye?) = —21-33 — 21.1292¢

and p(B2¢3) = p(BB,&?) = p(B;?¢®) =0 (mod 8). As in the pre-
vious case we get the 2-adic developments:

0=my 420 )+2( HB( )F...,

0 = myFm42( )+22( )+2( )+....
The only solution m, = n, = 0 gives & = &3, &;73, &, or &,7%; and the first

Math. Scand. 1. 20
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two units yield u =v=1,e=1,¢,= —1,n=—landu=v= —1
with the same values of ¢, e, and n.
1°: If we proceed as in the two previous cases we find that there are
at most two solutions m,, n,. Since only one solution is known, namely
m, = n, = 0, we have to use other p-adic developments in order to prove
that no other solutions exist. At first we prove that m, =n, =0 (mod 8).
We get
pe) =4, p(Be)= —23-69 4 2¢-15¢2%,
p(Bye;) = 269 + 25-2142%,  p(B%e) = —23-909 — 21.778542%,
p(BB,e,) = —23-1355-4-23-679¢ 2%,
p(By2e,) = —23-3629726-3395 2%

Further we find that p(B**B*¢) =0 (mod16) for ¢ =3 and
k=1,2,3andforg=4and k=1, 2, 3, 4.
As in case 2° we obtain the equation

+ 22{(”;) (—909—2- 77857 2%) + myn, (— 135546794 2%)

+ ("‘) (—36297+ 23-339i2%)}

2
> 4
2 () (2) iz (1) () ewrduizn .
=0 -
+22q+[q/2]—41g:]w (q’ilk) (7;61) (aqk-}-bqkig%)_{_. =0,
=0

a, by, ¢, and d, being integers in k(1). From (35) it is easily seen that
my; == n, = 0 (mod 2). Neglecting the trivial solution m; = n, = 0, we
can put m; = 2¥m, and n; = 2¥n,, w = 1 and (m,y, n,) = 1. For ¢ = 5
the general term in (35) is divisible by 2¢"921+%=2" that is at least by
2¥+5 Then it is obvious that m, is even and n, is odd. Now we get the
congruence

my(—6943002%) 4 n,y(724-84021) 4 2my(29my—1) (—909—2- 77854 23)
+ 292,y (— 135546795 28) 4 2n, (290, —1) (— 36297 4-23- 3394 2%)
=0 (mod 32).

This gives the following two congruences mod 16:

—69my+72n,41818m,—2¥1 420, =0 (mod 16),
15my+42n,+2my—2" " 'myn,—8 =0  (mod 16) .
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Simplifying we obtain
5my+10m, = 2 (mod 16),
My+10n, = 2 myn,+8  (mod 16).

Hence 40n, = 2“1 (5m,n,—1) + 8 (mod 16), and thus w = 3. Now
we find &% =1 (mod (11—6¢2%)) and ¢¥2 =1 (mod193). In the
next section we will use 193-adic developments in order to prove that
m; = n, = 0 is the only solution of (31) in case 1°.

7. Cumbersome calculations give us

618 = — 174015 4 122176 2% 4 (212096 —149824 - 2%)
-+ 6{(128400—90448-2¥) 44 (296672 —210040- 2})} |
6% = —160194-7437-2} 4 (5320—11580- 2%)

+ 0{(23194-11264-2%) 1 §(141534-17228-2})}  (mod 1932) ,
% = —17537- 28 +-1930{(—11444-2%)+i(—86—86-2})} (mod 193?),
g9 =1 4 1930{(7—56-2})+i(—66—33-2!)}  (mod 1932) .
We have 192 = 14+-193C and ¢,'% = 1+193C,, where
C = (7—56-2%) 4 i(—66—33-2%) (mod 193),
0, = (7456-2}) — i(—66433-2}) (mod 193) .

If in (30) we insert x = 192m,+64r,-+1 and y = 192n,-+64s, we get
the 193-adic development

(36) P&, 1) 4 193( )4-1932( )H1933( )+... = 4.

Here is r, = —1,0 or 1 and s, = —1, 0 or 1. The first condition to be
tulfilled is

(37) P, e,) = 4 (mod 193).

This implies r, = s; = 0. In the remaining eight cases we find, in fact,
denoting for brevity the left-hand side of the congruence (37) by (r,, s):
(0, —1) = 60—13:2%;  (0,1) = —58—89i2}, (1, 0) = 49—7: 2},
(1,1) = 33—86:2%, (1, —1) = 65-+72i2}; (—1,0) = —47—95i2%,
(—1,1) = 83—8i2¢, (—1, —1) = 22—80i2},

the congruences being mod 193. In the calculations we make use of the
fact that

&% = —48 6102 + 0{(27—78-2%) + ¢(50+73-2%)}  (mod 193).

20*
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The equation (36) can now be written
myp(Cey) + nyp(Crey) + 193( ) + 1932 )+... =0.

Further we find p(Ce;) = 88—1442% (mod 193) and p(C,e,) =
80+60:2% (mod 193), and hence

0= 88my-+80my+193( )+1932( )+...,
0 = —14m;+60n,+193( )+1932( )+....

Since
I 88 80

L 60‘$0 (mod 193)

the only solution is mg3 = m; = 0, according to the theorem of Th. Skolem
mentioned in Section 6. Hence = 1,y = 0, that is, x = ¢,, &,71, &, or &, 1.
To &; corresponds the solution ¥ = 1, v =0,e= —1,¢, = 1 and n = 0;
to &1 corresponds the solution 4 = —1,v» = 0 with the same values

of e, e, and n.

Then it is shown that the only solutions of » and v are u = 41, v = 0;
=1, v=1; u= —1, v = —1. Hence our theorem in Section 1 is

proved.
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