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ON TOTAL CURVATURES OF CLOSED SPACE CURVES

JOHN MILNOR

1. Introduction.

Let C be a closed curve of class 3 in euclidean 3-space, having curvature
%(s) > 0 and torsion z(s), where s denotes arc-length. Define

#(0) =\nerds,  w0)={1rw)as,
bs}
w(C) = .\(xz(s) + 72(s))2 ds.
C

These quantities measure the lengths of the spherical indicatrices of the
tangent vector, the binormal vector, and the principal normal vector,
respectively. They are related by the inequalities

2n = #(C) = 0(0) = #(0) + 7(0) = 2" w(0) .

(The first inequality was proved by Fenchel [4]. The remaining three are
obvious.)

The quantity »(C), known as the total curvature, has been studied
by several authors (see references [3]-[7]). This paper will attempt a simi-
lar study of the quantities »(C) 4 7(C) and w(C).

Two simple closed curves belong to the same isotopy type if there
exists an isotopy of euclidean space onto itself (not necessarily differenti-
able) which transforms one curve into the other. It will be proved that
the greatest lower bound of x%(C) + 7(C) over an isotopy class of closed
curves is a number of the form 2nn, n a positive integer, where n == 1
only for the class of unknotted curves, and where n = 2 only for cer-
tain especially simple knots (figure 1). On the other hand an example
is given to show that the greatest lower bound of w(C) over an isotopy
class is not necessarily 27 times an integer.

If C has linking number n with some straight line, it is proved that
%(C)+7(C) = 2an.

If the torsion 7(s) does not change sign and is not identically zero, it
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is proved that (C) = 4n. (This result answers a question raised by
Fenchel [5, p. 51]: Does the condition 7(s) > 0 imply a lower bound
greater than 2z for »(C)+4t(C)?)

2. The quantity »(C)+1(C).

For each plane P through the origin let Cp denote the image of C in P
under orthogonal projection. The following proposition has been proved
by I. Fary [3].

LemMmA 1. The total curvature x(C) is equal to the average over all planes
P through the origin of »(Cp).

(The word average is to be interpreted as follows. To each plane P
there corresponds a unique pair of unit vectors which are perpendicular
to P. Therefore the usual Lebesgue measure on the unit sphere induces
a measure on the set of all planes through the origin. The average may
now be interpreted as a Lebesgue integral.)

A similar assertion holds for 7(C). Let »(Cp) denote the number of
points of C' at which the osculating plane is perpendicular to P. This
can also be interpreted as the number of points of the plane curve Cp
which are either inflection points or cusps.

LemMma 2. 7(C) equals the average over all planes through the origin of
av(Cp). Furthermore v(Cp) is an even integer for almost all P.

The proof of lemma 2 will depend on the following proposition of
integral geometry.

LemmA 3. The length of a curve B on the unit sphere equals n times
the average over all great circles G of the number of times that B inter-
sects Q.

This is proved in [2], p. 81.

Now let B be the spherical indicatrix of the binormal vectors, with
length 7(C). Let P be the plane spanned by G. A binormal vector lies
in P if and only if the corresponding osculating plane is perpendicular
to P. Therefore »(Cp) equalsthe number of times that B intersects G.
Since this is an even number for almost all G (all but a set of measure
zero), lemma 2 follows from lemma 3.

Finally we will need a two dimensional analogue of lemma 1. Let
u(v, C) denote the number of points of C' at which the tangent vector
is perpendicular to the unit vector wv.

Lemma 4. The total curvature »(Cp) of a plane curve equals the average
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over the unit circle of mu(w, Cp). Furthermore u(v, Cp) is even for almost
all v.

The proof is easily supplied. (See [71.)

For each isotopy type € of closed space curves, let (x4 7)(€) denote
the greatest lower bound of »(C)+7(C) over all representative curves C,
which are of class 3 and satisfy x(s) > 0. Similarly define »(€) and

THEOREM 1. For every isotopy type & of closed curves the quantity
(x+7)(€) s an integral multiple of 2m.

(The corresponding assertion for x(€) was proved in [7]. Examples
given by R. H. Fox [6] show that x»(€) can be any positive integral
multiple of 2z. The same examples apply to (x+7)(€).)

Suppose that 2xn < (x+7)(€) < 2z (n+1). Then there exists a re-
presentative C with x»(C)+7(C) < 2x(n+1). We will construct iso-
topic curves €' with #x(C’)4t(C’) arbitrarily close to 2zn. This will
prove that (x4 7)(€) = 2nn.

By lemmas 1 and 2 there exists a plane projection Cp of C so that
%(Cp)+7mv(Cp) < %(C)+7(C), where »(Cp) is an even integer. Further-
more the plane P can be chosen so that it is not perpendicular to any
tangent of C. By lemma 4 there exists a unit vector » in P so that
au(©, Cp) < #(Cp), where p(v,Cp) is even. Since u(v, Cp) = u(v, C)
we have

a(u®, C)4v(Cp)) = #(Cp)+ar(Cp) < #(0)+(C) < 2a(nt1),

hence
(v, C)+v(Cp) < 2n.

Choose coordinates (x, «,, ;) so that v is in the direction of the
x;-axis, and so that P is the (zy, #,)-plane. Define the isotopy 4, by
hy(xy, 2y, 23) = (24, 12y, t22,). As ¢ 0, the tangent vector of the curve
C, = h,(C) approaches - v, except at the wu(v, C) points where the
tangent to C is perpendicular to v. In theneighborhood of each of these
points, the tangent to C, rotates through an angle which converges to
7w as t— 0. This proves that »(C,) - zu(v, C); and similarly one can
prove that ©(C,) - av(Cp). Consequently

#(C)+7(C) — z(u(v, C)+»(0p)) < 22n,
which completes the proof.

Since #(C) = 4x forany knot (see[3],[5],0r[7]), the case (x4 7)(€) = 2x
can occur only if € is the class of unknotted curves.

19*
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THEOREM 2. If (x+7)(€) = 4%, then € 4is represented by one of the
curves of figure 1.

In the language of braid theory
[1], these curves can be described
as closed braids with two strands.
The following converse to theorem
2 is evident: If € can be repre-
sented by a closed braid with n
strands, then (x+7)(€) < 2an.
These assertions remain valid if knots with several components (links) are
considered.

The proof follows. Choose a representative curve C' and a plane pro-
jection Op so that «»(Cp)+nv(Cp) < 6n, where »(Cp) is even. If
»(Cp) = 2, this would imply that x(Cp) < 4m, hence that C were
unknotted. Therefore »(Cp) = 0. Since Cp is a plane curve with no
inflection points, »(Cp) is a multiple of 27z, and therefore »(Cp) = 4.

YOGSOO0 .

Fig. 2.

Fig. 1.

Without loss of generality we may assume that Cp has only finitely
many crossing points.

A list of the possible types of plane curves having no inflection points,
having total curvature 4z, and having finitely many crossing points is
given in figure 2. It is not hard to show that this list is complete. Since a

knot having one of these curves as plane projection
is clearly isotopic to one of the curves of figure 1,
this completes the proof.

As an example to illustrate theorems 1 and 2,

consider the class € of the “figure eight” knot

(figure 3).Since »(Cp) = 2 for the given projection

Cp, and since u(v, C) =4 for a suitable vector

Fig. 3. v in P, itfollowsthat (x+7)(€) < (2-+4)n, hence
(#+7)(€) = 2x, 47, or 6x. But the Alexander po-

lynomial of € is #>—3¢+1, while the curves of figure 1 have Alex-
ander polynomials of the form X?* (—t)". (For definition of the Alexan-
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der polynomial, see for example Reidemeister 8, pp. 37-41].) Therefore
¢ can not be represented by any of these curves, and we must have
(x+7)(€) = 6n. (Note that x(€) = 4x for this example.)

As a final application of lemmas 1 and 2, the following theorem will
be proved.

THEOREM 3. If C has linking number n with the straight line L, then
%2(0)+1(C) = 2nn.

Let P be any plane not perpendicular to L, and let L, and Cp be
the projections of L and C on P. It will be shown that »(Cp)+
av(Cp) = 2an. By lemmas 1 and 2 this will imply that »(C)+t(C) =
2nn.

Since Cp must cross Lp at least 2n times, it follows that the tan-
gent to Cp must be parallel to Lp at least 2n times. Consider two
consecutive points of Cp for which the tangents are parallel. If the
tangents point in opposite directions, then the total curvature of the curve
segment between the two points is at least z. If the tangents point in
the same direction, then there must be some inflection point in between.
In either case there is a contribution of at least @ to x(Cp)+av(Cp).
Therefore »(Cp)+nv(Cp) = 2xn, which completes the proof.

3. The quantity w(C).

THEOREM 4. If t(s) = 0 for all s, but 7(s) is not identically 0, then
o(C) = 4n.

An example given by Fenchel [5] shows that «(C) can be arbitrarily
close to 4x.

It is first necessary to prove a lemma and to review some formulas
of differential geometry. Suppose that two antipodal points of the unit
sphere have been specified as north and south poles.

LemMmA 5. Let G and @ be oriented great circles, such that G does not
pass through the north and south poles. If the tangent vector to G', at the
point where G crosses south of @, lies north of the equator, then @' makes
a smaller angle with the equator than G.

Since the crossing point lies on the segment between the southernmost
point of @’ and the northernmost point, it follows that the southernmost
point of G’ lies north of G. Hence G’ makes a smaller angle with the
equator than G.
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Let T denote the spherical indicatrix of the tangent vectors of C.
The tangent, principal normal, and binormal vectors ¢, n, and b are
related by the Frenet formulas:

dt/ds = xn
dnfds = —xt “+b
(1) db/ds = —n.

In particular the tangent vector of the curve 7' is just m. Considered
as a spherical curve, T has geodesic curvature 7/x, where a positive
value indicates that 7' curves towards the binormal vector b.

The proof of theorem 4 follows. By lemma 3 it is sufficient to prove
that the principal normal vector m(s) intersects every great circle at least
four times. Suppose that it intersected some great circle £ only twice, at
n(s,) and n(s;). Taking F as equator, let —z/2 < @(v) < =/2 denote
the latitude (angle north of equator) of any point ». By proper choice
of s, 8,, and the direction north, we may assume that

(2) lp(b(s0))l = lop(b(sy))l
and
(3) p(n(s)) >0 for sy<s<s,.

Let G be the great circle which is tangent to 7' at #(s,). It will be
shown that 7' cannot cross G'; hence that 7' cannot be the tangent
indicatrix of a closed curve (see for example [5, p. 49]). By symmetry it
will be sufficient to restrict our attention to the interval s, < s < s, .

Formulas (1) and (3) imply that q)(b(s)) is a monotone decreasing
function of s; strictly decreasing whenever t(s) > 0. Together with (2)
this implies

(4) p(b(so))l = le(b(s))! -

If ¢(b(s,)) were equal to @(b(s;)), it would follow that z(s) were iden-
tically zero, not only for s, < s <s,, but also, by a similar argument,
for the remaining values of s. Since this is excluded, it follows that
@(b(s0)) > @(b(s,)); hence by (2):

(5) @(b(sy)) > 0.

Suppose that 7' crosses G at some point #(s') with s, < ¢’ < s,.
Let #(s’) be the first such crossing, and let G’ be the great circle which
is tangent to T' at ¥(s’). It will be proved that G and @’ satisfy the
hypothesis of lemma 5. First note that 7' cannot be tangent to G at
a crossing: this follows from the fact that the geodesic curvature z/x
of T' cannot change sign. Therefore the great circles G@ and G’ are
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distinct. According to (5), b(s,) lies north of the equator. Since b(s,)
is the pole of the great circle @, thisimplies that G' does not pass through
the north and south poles. Since the geodesic curvature of 7' is non-
negative, 7' must always either curve towards b(s) or else follow a
great circle. Therefore 7' either curves north of G at #(s,), or else fol-
lows the circle G for some interval and then curves north. In either
case 7', and therefore G’, must cross south of G at #(s’). The tangent
to G' at t(s’) is just m(s’), which lies north of the equator by (3).

Now by lemma 5, ¢’ makes a smaller angle with the equator than G.
But the poles of the great circles G’ and G are just the points b(s’)
and b(s,). Therefore

lp(b(s)] > le(Blsa))]

which contradicts (4), and completes the proof.

In conclusion an example will be given to show that «(€) is not nec-
essarily an integral multiple of 2z. In fact for the class € of the figure
eight knot (figure 3) it will be shown that

dn < w(€) < 67 .

For any representative curve C, the inequality »(C)47(C) = 6z im-
plies that

o(0) = (#(C)+(0)) 27 = 6x27 > 4 .

(Actually the slightly better result w(C) > 275'* may be obtained by
also using the inequalities «(C) = (x%(C)+7%C))"* and #(C) > 4x.)
It is now necessary to construct a representative curve C having
o(C) < 6.

Fig. 4.

Consider curves of the form illustrated in figure 4, composed of the arc
segment (' joining points 4 and B, and of three congruent arc seg-
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ments (one properly congruent, and two congruent with reversed orien-

tations). The tangent vectors ,, {5, and the displacement vector AB
are to be perpendicular to each other, up to an ¢ approximation. To
compute w(C’), it is convenient to go over to the spherical indicatrix 7'
of the tangent vectors. Since the curve 7' has tangent vector n(s), it
follows that «(C) = #(7") and (C') = »(T"). Thus it is necessary to
find a curve segment 7" joining £, and &z on the unit sphere, having to-

tal curvature as small as possible, subject to the condition § o b(s) ds = A_é.

This last condition may also be expressed as follows. The vector 4B
should be an interior point of the convex cone generated by the curve
segment 7. Take 7" to be a circle arc with £, and £; as end points,

>
and AB asinterior point. Letting the mid-point of this circle arc approach

A»j?, the total curvature x»(7’') can be brought arbitrarily close to
3+ 2n. Now piecing the arc 7’ together with three congruent arcs (two
of which have reversed orientations) we obtain a closed spherical curve
T, of class 1, with »(7T;) arbitrarily close to 4 - 3 - 2z. This curve 7,
can clearly be approximated by a curve 7' of class 2. If T is described
by the vector #(u), then, for a suitably chosen weight function w(u) > 0,
the vector a(u) = S: w(u) t(w) du will describe a closed space curve C,
of class 3 with x(s) > 0, belonging to the isotopy class ¢, and having
o(C) = »(T') arbitrarily close to $§-2n. Thus it has been proved that

<25 < w@) <% 27 < 6n.
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