A RECIPROCITY FORMULA
FOR WEIGHTED QUADRATIC PARTITIONS

L. CARLITZ

1. Introduction. Let \(q = p^n \), where \(p \) is an odd prime. For \(\alpha \in GF(q) \), put
\[
e(\alpha) = e^{2\pi i \frac{t(\alpha)}{p}},
\]
where \(t(\alpha) = \alpha + \alpha^p + \cdots + \alpha^{p^n-1} \);
also let
\[
S(\alpha, \lambda, Q) = \sum_{Q(\xi) = \alpha} e(2\lambda_1 \xi_1 + \cdots + 2\lambda_r \xi_r),
\]
where \(\alpha, \lambda_j \in GF(q) \),
\[
Q(u) = \sum_{1}^{r} \alpha_{kj} u_k u_j \quad (\alpha_{kj} \in GF(q), \delta = |\alpha_{kj}| \neq 0),
\]
and the summation in the right member of (1.2) is over all \(\xi_i \in GF(q) \) such that \(Q(\xi_1, \ldots, \xi_r) = \alpha \). It was shown incidentally in [2] that if
\[
\lambda_k = \sum_{j=1}^{r} \alpha_{kj} \lambda_j' \quad (k = 1, \ldots, r)
\]
then \(S(\alpha, \lambda, Q) \) satisfies the following reciprocity relation,
\[
S(\alpha, \lambda, Q) = S(\alpha, \lambda', Q'),
\]
where \(Q'(u) \) denotes the quadratic form inverse to \(Q(u) \). In this note we give a direct proof of (1.4) as well as of one or two extensions. We also consider the analogous formula when the coefficients are rational integers.

2. By a well-known theorem [1, p. 160, Theorem 3] the linear transformation
\[
\xi_k = \sum_{j=1}^{r} \alpha_{kj} \xi_j'
\]
carries \(Q \) into \(Q' \), that is
\[
Q(\xi') = Q'(\xi).
\]
We have also
\[
\sum_{j=1}^{r} \lambda_j \xi_j' = \sum_{j=1}^{r} \lambda_j' \xi_j .
\]

Received May 16, 1953
Now by (1.2),
\[S(x, \lambda, Q) = \sum_{Q(\xi) = x} e(2\lambda_1\xi_1' + \ldots + 2\lambda_r\xi_r'), \]
and by (2.2) and (2.3) this becomes
\[S(x, \lambda, Q) = \sum_{Q(\xi) = x} e(2\lambda_1'\xi_1 + \ldots + 2\lambda_r'\xi_r) = S(x, \lambda', Q'), \]
which evidently proves (1.4).

If \(f(u) = f(u_1, \ldots, u_r) \) denotes an arbitrary polynomial with coefficients in \(GF(q) \), we define
\[S(x, f, Q) = \sum_{Q(\xi) = x} e(f(\xi)), \]
which clearly generalizes (1.2). Now let (2.1) carry \(f \) into \(f' \), that is,
\[f(\xi') = f'(\xi), \]
thus generalizing (2.3). Then it is clear that the previous argument may be applied to yield the formula
\[S(x, f, Q) = S(x, f', Q'). \]
We have thus obtained a first generalization of (1.4). However this can be carried a bit further. Let \(g(u) = g(u_1, \ldots, u_r) \) denote another arbitrary polynomial with coefficients in \(GF(q) \) and let (2.1) carry \(g \) into \(g' \), that is,
\[g(\xi') = g'(\xi). \]
We define
\[S(x, f, g) = \sum_{g(\xi) = x} e(f(\xi)), \]
the summation extending over all \(\xi_i \in GF(q) \) such that \(g(\xi_1, \ldots, \xi_r) = x \). Then exactly as in the proof of (1.4) we have
\[S(x, f, g) = \sum_{g(\xi) = x} e(f(\xi')) = \sum_{g'(\xi) = x} e(f'(\xi')), \]
which implies
\[S(x, f, g) = S(x, f', g'). \]
Thus (2.9) together with (2.5) and (2.7) furnish a two-fold generalization of (1.4). Note that it is no longer necessary to assume \(p \) odd.

3. We now briefly consider an analog of (1.4) involving positive quadratic forms with rational integral coefficients. Let
\[Q(u) = \sum_{1}^{r} a_{kj}u_ku_j \quad (|a_{kj}| = 1), \]
where the a_{kj} are rational integers. We assume that $Q(u)$ is a positive definite form; thus the equation $Q(u) = m$, where m is an arbitrary positive integer, has at most a finite number of integral solutions. We define

$$S(m, \lambda, Q) = \sum_{Q(u) = m}^\prime \exp\left(2\pi i(\lambda_1 u_1 + \ldots + \lambda_r u_r)\right),$$

where the λ_j denote arbitrary complex numbers. If we put

$$u_k = \sum_j a_{kj}^\prime u_j^\prime,$$

then in view of the hypothesis $|a_{kj}| = 1$, the inverse of (3.3) also has integral coefficients; also, as in (2.2), we have now

$$Q(u') = Q'(u),$$

where again Q' denotes the quadratic form inverse to Q. If we define λ_k' by means of

$$\lambda_k = \sum_{1}^r a_{kj}^\prime \lambda_j^\prime,$$

then exactly as in § 2 we may prove the reciprocity formula

$$S(m, \lambda, Q) = S(m, \lambda', Q').$$

Clearly (3.6) can be generalized but we shall not take the space to do so.

The following remark may be of interest. Define

$$\vartheta(t, \lambda, Q) = \sum_{m=0}^\infty S(m, \lambda, Q)e^{-mt}$$

$$= \sum_{u_1, \ldots, u_r = -\infty}^\infty \exp\left(-tQ(u) + 2\pi i(\lambda_1 u_1 + \ldots + \lambda_r u_r)\right),$$

where $\text{Re}(t) > 0$. Applying (3.6), we see that (3.7) yields the formula

$$\vartheta(t, \lambda, Q) = \vartheta(t, \lambda', Q'),$$

subject to (3.4), (3.5) and the stated hypothesis for Q.

REFERENCES

2. L. Carlitz, Weighted quadratic partitions over a finite field, Canadian J. Math. 5 (1953), 317–323.

DUKE UNIVERSITY, DURHAM, N.C., U.S.A.