MATH. SCAND. 1 (1953)

ON THE FLUCTUATIONS OF SUMS OF
RANDOM VARITABLES

ERIK SPARRE ANDERSEN

1. The problems treated here are connected with certain random
variables defined in terms of the sums S, = X ;4 ... +X, of a sequence
of random variables X,, X,, .... These random variables are:

1° the index L, at which S; for the first time attains the maximum
value max (8, =10,8,, ..., 8,),

2° the index M, at which §; for the last time attains the minimum
value min (S, Sy, ..., S,),

3° the number N, of sums S, ..., S,, which are > 0.

In papers by K. L. Chung and W. Feller [3] and by M. Lipschutz [7]
the distribution of N, has been treated under the assumption S, = 0.
Chung and Feller consider the special case where Pr{X; =1} =
Pr{X;,=—1}=14,i=1,2, ..., and show that if we let N,’ denote the
number of sums S;, i =1, 2, ..., n, for which either 8, > 0,0r S, =0
and S,_; > 0, then

Pr{Ny,' = 2r|8,y, = 0}=(r+1)(n+1)".

Pr {4 | B} denotes the conditional probability of A under the hypothesis
B. In the paper of Lipschutz this result is generalized to independent
identically distributed random variables, which assume only integer
values (lattice distributions). M. Lipschutz shows that if the distribution
of the random variables has mean zero, variance 1, and finite fourth
moment, and the minimum distance between the jumps is one unit, then

(1.1) Pr{N, < an |8, =0} = ([an]+1)(n+1)14g(n), O0=a=1,

where
g(n) = O (n"* logn)

if the random variables have third moment zero and
g(n) = O (n"logn)
if the random variables have a third moment differing form zero.
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2. In this paper the conditional distributions of L,, M, and N, are
treated under the hypothesis §,,,, = 0. First some results are proved for
finite n. Thereafter it is shown that the conditional distributions of L,
M, and N, are asymptotically uniform under the hypothesis S, , = 0,
if only certain rather weak conditions are satisfied by X,, X,,....

The method used in the proofs is completely different from the method
used by Lipschutz and is based on the idea of symmetrically dependent
random variables. This concept is a generalization of the concept of
independent and identically distributed random variables. From the
paper [1] we shall quote the definitions and results which we need in the
present paper.

We consider a finite or infinite sequence X,;, X,, ... of real-valued
random variables. As sample space E, we denote the product set
(R, R, ...), where R is the set of real numbers. By [...], where ... in-
dicates a number of relations involving X,, X,, ..., we denote the event
in E, at which the relations are satisfied.

The joint distribution function of X, ..., X, is denoted by

F.(x,...,2,)=Pr {ﬁ X; = xi]}.

If F,(x,, ...,%,) is a symmetric function of z,, ..., x,, we shall say that
the variables X,,..., X, are symmetrically dependent. If the sequence
X, X,,... is infinite and the variables X,,..., X, are symmetrically
dependent forn = 2, 3,. . ., we shall say that the variables X;, X,, ... are
symmetrically dependent.

If an event C is invariant under permutations of the variables z,, . .., z,
or x,, %,, ... we shall say that the event is symmetric with respect to
X, ..., X, or X;, X,, ... respectively.

For symmetrically dependent random variables we have the following
lemma and theorem (see the paper [1]).

Lemma 1. Let X;, X,, ... be symmetrically dependent random variables.
Let A and B be events, both defined by relations in X, ..., X, such that
the relations defining A are transformed into the relations defining B by a
permutation of the variables X, ..., X,. Let C be an event which is sym-
metric with respect to X,, ..., X,. Then Pr {AC} = Pr {BC}.

THEOREM 1. Let X,, X,, ... be symmetrically dependent random vari-
ables. Let C, be an event, which is symmetric with respect to X,, ..., X,.
Then

(3.3) Pr {{N, =m]C,} = Pr{L, =m]C,} =Pr{M, =n—m]C,},

m=20,1,...,n.
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Beside the variables X;, X,,... and 8,=0,8;, = X, 8, = X;+X,, .
we shall also study the variables

.oy

X" =X,—n+1)18,,, +=1...,n+1,
and
S = X"+ . 4+XM=8;—in+1)18,,, i=1,...,n+1.

n+1(n) = 0.

The variables X" evidently satisfy the relation S

3. We shall first prove the following simple theorem:

TarOREM 2. Let X, X,, ... be symmetrically dependent random vari-
ables and let C be an event which is symmetric with respect to X, ..., X, ;.
Let K, be one of the variables L,, M, or N,. Then, under the assumption

Pr {[S,,; = 0]C} >0,

3.1) Pr{K,=m|[S,,,=0]C}= (n+1)"Y, m=0,1,...,n,
if and only if

(3.2) Pr {[S; = 0][S,,, = 0]C} =0, i=1,2 ...,n.

REMARK: Since we have, when S, ,, = 0, the relations L, = L, ,,
and N, = N, ., and furthermore M, = M, ,, except when M, = 0, in
which case M, , = n+1, it actually does not matter whether we con-
sider the distribution of K, under the assumption S, = 0 or under the
assumption §,,, = 0. When we consider K, under the assumption
S,.1 = 0, we may, however, state the result in the following way: under
the assumptions of the theorem there is uniform distribution among
the possible values 0, 1, ..., » of the three variables:

1° the index L,, of the maximum sum,

2° the index M,, of the minimum sum,

3° the number N,, of positive sums.

Proor or THEOREM 2: It follows from Theorem 1 that it is sufficient
to prove (3.1) for K,, = L,. Let m denote one of the numbers 0, 1, ..., n.
We transform the event 4,, = [L, = m][S,,; = 0] by the permutation

X,,:">Xi+1, ’I;=1,2,...,n,
X~ X
This permutation carries §;, ¢+ = 1,2, ..., n, into §; ,—X, and leaves

8,1 unchanged. From the definition of L, it follows that!

x
1IfC,¢=1,2,..., are events in the sample space E, and k < j, then N C; = E.

i=j
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m—1

[L,, = m][S,,, = 0] = n [S; < 8,1 n [8; < 8,1[8,, = 0]

t=m+1

The event 4,, = [L, = m][8,,,, = 0] is therefore carried into the event

m—1
= n [Sin—X; < 8pn— 1] nl[Szu —X; = 8pu—X 1 [80= 0]
'l« m+

n Sz+1 < Sm+l] n [Su-l = Sm+1] [Sn+1 - O]

=0 t=m+1

m n+1l

n [S; < Sm+1] nz[S = 8001) (S = 01

i=1 T=m+

Since 8y = §,,,in [S,,, = O] it follows that
=[Sy = Sl n [8; < Syl n [8; = 8, 1][Spsy = 0] .

T=m+2

We therefore obtain

([S < Sl n 1S, < Syl (V155 = Spal[Spys = 0])

t=m+2

U (18 = S ﬂ[S < 8] (VIS: = S (S = 0])

T=m+2

— (L = 1[5 = ) U ({80 = 0] ms <0 n [8; < 0[Sy, = 0])

= ([Ly = m+1][8,, = 0)) U ([Ln = 0][S)1 = 0] 01 [8; < 0][Spyy = 0]) ,

where the two components are non-overlapping. If m = =, the first com-
ponent is empty. From Lemma 1 applied to 4,,, B,,, and C it now follows
that form = 0,1, ..., n

= Pr {[L, = m+1][8S,,, = 0]C}

+ Pr i, = 018, = 0 () 05 < 00 = O 0}.

In the proof of (3.3) we have only used that the variables X,, ..., X, ,
are symmetrically dependent; this we shall use later in the proof of
Theorem 4 below.

We shall now use the fact that (3.2) implies, for m =0, 1, ..., n—1,

(34) Pr {[L,, — O[S = 01 [ IS < 0118, = 0] 0} ~0,
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since

(3.5)

267

[L, = 0][S,,1 = 0] n [8; < 01[S,,1 = 01C < [,y = 01[S,,,, = 0]C..

From (3.3) and (3.4) follows

Pr {[Ln = 0] [Sn+1 = 0] C} =

We therefore obtain, since

va Pr {[Ln = m] [Sn+1 = 0] O} =

that

(3.6)

m = 0,

Pr {[L, = m][8,,, = 0]C} =

Pr {[Ln = 1] [Sn+1 = 0] 0}

. = Pr{{L, = n][S,,, = 0]C}.

Pr {(S,,, = 0]C},

(n+1)='Pr {[S, ,= 0]C},
l1...,n

From (3.6) follows (3.1) for K, = L, immediately when

Pr {[S,,, = 0]C} > 0.

It remains to be shown that (3.1) can hold only if (3.2) holds. We
assume that (3.1) holds and shall show that the events [S; = 0][S,,,, = 0]C

have probability zero for i =1, ..

., n. Since we have

[S; = 0][S,,, = 0]C

.
-

n[S = max (S,

J
=1

I
=3
=

J

ey 8 )][8g = max (S,

Sn)][Sz = O][Sn+1 = O]C,

ooy

we need only show that the event AC, where

NS, = max (S,, ...,

has probability zero for 0 < j < ¢ =< k = n. If we transform 4 by the

A - [S] = maXx (SO’ .. "Si—l
permutation
Xy — Xh+i—j
Xh - Xh—-—j

Xy~ Xh+n+1—k
Xy~ Xh+i—lc

we obtain the new event

for h=1,...,7,

,»  h=j41,...,1,

»  h=141, ...k,

» h=k+1,...,0+1,
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B = ’['] [8, = 01[S; = 0][8,,, = 0]
=1

= [L, = 0][S,,.. = 0] hol [84 < 01[8,,1 = 01,

for some non-negative integer m less than 7. From Lemma 1 follows that
Pr {AC} = Pr {BC}, so that we only have to show that Pr {BC} = 0.
We now use (3.3) and obtain

Pr {BC} = Pr {[L, = m][S,,, = 0]C} — Pr {[L, = m+1][S,,, = 0]C}
= (n+1)"1Pr {{8,,, = 0]C} — (n+1)"'Pr {[S,,, = 0]C} =0,

since we have assumed that (3.1) holds. This completes the proof of
Theorem 2.

In most cases Theorem 2 is not directly applicable since (3.2) is seldom
satisfied. We may, however, apply Theorem 2 to the variables
X®, .., X, ,", when X,,...,X,,, are symmetrically dependent,
since we have:

Lemma 2. If X, ..., X, ., are symmetrically dependent random vari-
ables, then the variables X,™, ..., X,.™ are also symmetrically dependent
fJorm=2,...,n41.

Proor: We have to show that if j,, ..., 7, is a permutation of the
numbers 1, ..., m then
m m
(8.7) Pr {n [X;™ < xi]} = Pr {ﬂ [X®» < xi]}.
i=1 i=1

From the definition of z,™, it follows that

N X® = @)= [ [Xi— (1) 8 = 2.
1=1 =1
We transform this event by the permutation

X;>X;, o=1,...,m,

Xi‘-)Xi, i—-:m—}—l,...,n—{—l.

This permutation carries the event into the event

r"i n+1>lsn+1--x]—mx<"><x1

Relation (3.7) now follows from Lemma 1, with C = K.
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If m>n+41 and X, ..., X,, are symmetrically dependent random
variables, then X,™, ..., X, ™ are not symmetrically dependent, as can
easily be seen.

From Theorem 2 and Lemma 2 we obtain the following:

TrEOREM 3. Let X, ..., X, be symmetrically dependent random vari-
ables and let C be an event, which is symmetric with respect to X,, ..., X, ;.
Let N, * be the number of points (j, Sj), 7 =1, ..., n, which lie above the

stratght line from (0, 0) to (n+1, 8,,.,). Then, for Pr {C} > 0,
(3.8) Pr{N,*=m|(C} = (n+1)1, m=0,1,...,n,
if and only if

3.9)  Pr{e1S;, = n+1)"S,,]0}=0, =12, ...,n.

REMARK: N,* may be replaced by L,*, the first index for which
Si_i(n‘l"l)——lsrﬁl = max (Si_i(n—l_l)—lsrwl) 5

=0, ..., M

or M, *, the last index for which
Simi (A1) Sy = min (S—3 (1)1, -

=0, ..., 7
Proor oF THEOREM 3: Apply Theorem 1 to X,™, ...., X,,", with
K,=N,; then N,*=K,. We have Pr {[S,.,™ = 0]C}> 0, since
[S,:,™ = 0] = E; and

[0 = 0][8S0i® = 01C = [S;—i (1+1) 5,y = 010
= [¢718; = (n+41)"18,41C

so that (3.2) is satisfied for X,*, ..., X, ., if and ounly if (3.9) is satis-
fied for X, ..., X, ;-

CoroLLARY 1. If the random variables X, ..., X, ., are independent
and each has a continuous distribution, or if the random wvariables are
symmetrically dependent and the joint distribution function s absolutely
continuous, then for any C which s symmetric with respect to X,, ..., X, 4,
and has Pr {C} > 0 (as, for example, C = [S,,, > 0] if Pr {X; > 0} > 0),
we have

Pri{N,*=m|C}= (n41)7, m=0,1,...,n.

CoROLLARY 2. If the random variables X,, ..., X, ., are symmetrically
dependent and assume only integer values and Cc[8S,,; = 1], then, if
Pr {C} > 0, we have
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(3.10) Pr{K,=m|C}= (n+1)1, m=0,1,...,n,
where K, stands for one of the variables L,, M, or N .

Corollary 1 is an almost immediate consequence of Theorem 2.

Corollary 2, however, may need a proof. We first observe that when
§; is an integer and §,,, = 1, we cannot have §; = ¢(n+1)-18,,,. We
therefore have (3.10) with K, replaced by N,*. But from S,,, =1 it
follows for 2 =1, ..., n, that

[8; > i (1) 18] = [8; > i (n+1)71] = [ > 0],

since §; is an integer. We therefore obtain (3.10) with K, = N,,. From
Theorem 1 then follows (3.10) also for K, = L, or M,

4. If condition (3.9) is not satisfied, the situation is much more com-
plicated. We shall therefore consider only independent and identically
distributed random variables. Furthermore we shall assume C = E. We
shall first prove:

THEOREM 4. Let X, X,, ... be independent and identically distributed
random variables. Let K, be one of the variables L,, M,, or N,. Then, for
n=12...andm=20,1, ...,n,

(4.1) Pr {{K, = m][S,; = 0]}
n k
= 3 e ()8 < 006k = 01} Pr (s = 01,4 = 01

=1

Proor: By repeated use of equation (3.3), which was proved without
use of condition (3.2), we obtain, with C = F ,

(4.2) Pr {[Ln = m] [Sn+1 = O]}

n k
= 2 Pr {[Ln = 0][Slc+1 = 0] n [Sz < 0][Sn+1 = 0]} s

k=m

form = 0,1, ..., n. For each k the event

k
A, = [Ly, = 0][Sg4 = 0] Q [S; < 01[Spq = 0]

k n
= Q [S; < 0][Sy4, = 0] n [8; = Spul[Spes = Spadl

1=k+2

is the intersection of the events
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k n
= q [8; < 0][Sgr = 0] and C,; = ﬂ [S; = Spad [Sper = Syl -
i=

1=k+2

The event B depends only on X, ..., X}, and the event C, ; depends

only on X;,,, ..., X,,;. Since the variables X, ..., X,,, are indepen-
dent we obtain
(4'3) Pr {An,k} = Pr {Bk} Pr {Cn,k} .

We now transform the event C, ; by the permutation
X;—> Xiinis t=1,...,k+1,
X=X, 51, t=k+2,...,n41.
This permutation carries

nk—ﬂ[Xm+ AX S 0 Xyt A+ Xy = 0]

i=k+2
into

Dy p=NIX+.. . +X 4, < 0[X;+...+X, = 0]

i=k+2

n—k—1
=NEXA+... +X, 20X, +...+X, ;= 0]
i=1
= [Ln—k = 0][Sn—k = 0].
Lemma 1 then gives
(4.4) Pr{C, :} = Pr{D, ;}.
From (4.2), (4.3), (4.4), and Theorem 1 we immediately obtain (4.1).
We now introduce the symbol 2X'*. This symbol shall indicate
that the summation is restricted to those values of the summation
variables «,, ..., «,, which are non-negative and satisfy the relation
& +2054 . . . +nx,, = n. We are then able to give explicit formulae for

Pr {B,} and Pr{D,} in terms of Pr{S, =0}, n =1,2,.... We state
the results in:

TaEOREM 5. Let X,, X,, ... be independent and identically distributed
random variables. Let ¢, = Pr {S, = 0},n = 1,2, .... Let

~Pr{n[s < 0][S, _0]} n=12 ...,

and
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u, = Pr{L,=0][8,=0]}, =»n=012 ... (ug=1).
Then
n
(4.5) un Zl;fkun_k, n = ]., 2, ey
=1
n
(4.6) Cn ZZ kfkun_k, n —= 1, 2, “eey
k=1
n
(4.7) fo=— 2" I @) (—=c)*v™, n=12,...,
a1y oo.y0p =1
and
n
(4.8) u, = I [« )7e v, n=1,2,....
Klyoo.y0p v=1

Furthermore the generating functions

C(s) =2°j’ ¢, 8", F(s) =S’fn8", U(s) =Zoo' u,, "
satisfy, for |s| < 1, the relations
(4.9) U(s)—1 = F(s)U(s),
(4.10) C(s) =sF'(s)U(s),
(4.11) F(s) =1 — exp (—gt‘lC(t)dt> ,
and '
(4.12) U(s) = exp ( St‘%’(t)dt) .

Throughout the following we assume, as in Theorem 5, that [s| < 1.

ProoF oF THEOREM 5: Equations (4.5) and (4.9) follow from the fact
that the events [L, = 0][S,, = 0] are recurrent events, see for example
Feller [4, Chapter 12]. We may, however, deduce (4.5) directly from (4.1)
with m = 0 and » replaced by n—1, since we have, forn = 1,2, ...,

Uy, = Pr {[L, = 0][S, = 0]} = Pr {(L,_, = 0][S, = 0]}

n-1 k
Zk%: Pr {n [8; < 0][Spsy = 0]} Pr {[Ly, 1= 0][S, 4, = O]}

=0
n-1

n

\ 7 Rl

=.)./ Sior1 %t =2, SiWn -
k=0 k=1
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Equation (4.9) follows from (4.5), since

06 =1 =2 0 =3 S
=§§ (Fus®) (10,8 F) = (éf”8n> (gunm)
= F(s)Ul(s) .

The series for C(s) and F(s) converge for |s| < 1, since the coefficients,
being probabilities, are bounded.

Next we shall prove (4.6) and (4.10). We sum (4.1) form = 0,1, ..., n
and obtain, forn = 0,1, 2, ...,

n

(4.13) 2 Pr {[Kn = m] [Sn+1 = 0]}

m=0

l! 13

<

n k
kZ Prif)[8; < 0[Sy = 0]} Pr{[L, ;= 0][S, = 0}

=m =1 .
In (4.13) we replace n by n—1 and introduce f; and u,_;. We then obtain,
forn=1,2, ...

-1 n-1 n—1
v

(4.14) 2, Pr {{K,_,= m][8, = 0]} = 21 Svfk+1un~k—1

m= m=0 k=m

O
..n

X k+1)fk+1un k-1 —2{ kfytp -

Since UMY [K,_; = m] = K and the events [K, ; = m] are non-over-
lapping, we obtain

k -

(4.15) E} Pr{K, ,=m][S,=0}=Pr{S,=0}=c¢,.

From (4.14) and (4.15) follows (4.6). We now obtain (4.10) from (4.6) in
almost the same way, in which (4.9) was obtained from (4.5). We have

oo 0o n
=2 08" =2"s" ) Eftn =83 3 (6f") (1 8"
n=1 n=1 Ic n=1 k‘l

=s (gnfns"“l) (5 uns"> =sF'(s)U(s) .

=1 n=0
If we eliminate U(s) from (4.9) and (4.10), we obtain
(4.16) C(s)(1—F(s)) = sF'(s) .

The events N}—} [S; < 0][S, = 0],n = 1, 2, ..., are non-overlapping. We
therefore obtain

Math. Scand. 1. 18
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[F(s)] = é: <2fn!8]"<21'fn ZPr{n[S < 0[S, —0]}<1

We may therefore for s == 0 divide by s(1—F(s)) in (4.16) and obtain
(4.17) s10(s) = (1—F(s)2F'(s), O<|s|<1.

Integration of (4.17) gives (4.11). The equation (4.12) is derived from
(4.9) and (4.17).

We still need to establish equations (4.7) and (4.8). They are derived
from (4.11) and (4.12) respectively. In (4.11) we introduce C(t) =
2%, ¢t and obtain

v=1 "y

8

F(s) = 1 — exp <— Srloa)dt) — 1 — exp (_ Sé? cvt”“dt)

0

oo
=1 — exp (—2 cvv—ls”)
v=1

=1 [I exp (—c,v's") ﬁf’ (o, ) (—c, vty

v=1 v=1 op=0
00 n
=135 I I ) e
n=0 ,op v=1

These formal operations are valid for |s| < 1. First, the series used are
absolutely convergent when |s| < 1, since 0 < ¢, < 1. Furthermore, the
infinite products are absolutely convergent since

2, ) (—eye)r — 1| = |exp (—ec,v718") — 1] = 2¢,07 s < 2]s]”.

ay=0

In the last operation we have collected terms where the exponent of s
is n = o;+20,+. .. +nx,. The definition of F(s) now gives (4.7). Rela-
tion (4.8) is proved analogously.

From Theorems 4 and 5 it follows that we may calculate

Pr {{K, = m][S,s, = 0]}, m=20,1,...,m,

when ¢; = Pr {S; = 0} is known fori =1, ..., n+1. We have
s n=20,1,...,
(418) Pr {[Kn = m][Sn+1 = 0]} Zk;%«nfk+1un—k’ m = 0, oLn,

and
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(419)  Pr{K, < m][S,, = 0]} =,

m
1=0

n
g Je1%nk

k=i n=20,1,...
m—1 n
=I§ (k+1) froapp + (m+1)kg7fk+1un»-k )

It may at first seem surprising that the conditional distribution of the
number of positive sums §; is independent of the probabilities Pr {S; > 0}
and Pr {§; < 0}. We have, however, in a certain sense symmetrized the
distribution by the assumptions S,,, = 0.

5. We shall now consider the special case where the independent and
identically distributed random variables X;, X,, ... represent Bernoulli
trials. We have then forv =1, 2,...

Pri{X;=1}=p
(5.1) where p+qg=1.
Pr{X,=—1}=g¢
The sums S; = X,+...+X, have binomial distributions and
CZn—l = PI' {SZn—l = 0} = O
2ny , n=12,....
)

Since (?) = (——4)”(;%), we obtain

cznzPr{Sw:O}:(n

(5.2) e = () (—sp0r
and

. {.3 '_% - n2n ___ . 2\-%
(5.3) O =37 (7,F) (—pays = (1—past) ™ — 1.

If we introduce this expression in (4.11) we obtain

S

(54)  F(s)=1 — exp (_ St-l((1~4pqt2)—*~1)dt)

o /1
=31 — (1—dpgs)’) = —3 3 (;) (—4pg)"s™ .
From (4.9) we now obtain

(5.5) U(s) = (2pgs?)~1(1 — (1—4pgs?)t)

— —pest) 3 (1) (—aparen.

18+
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The equations (5.4) and (5.5) yield
(5.8)  fop_y = Uy, = 0, n=12 ...
1
G fu= =1 (}) (—4p0" = cldn—21,  m=12, .,
3
n—+1
From Theorem 4 follows, when we introduce these expressions,

(5‘9) PI‘ {[Kzn—l = 2m+11[82n = O]} = PI‘ {[Kzn—l = zm] [Szn = 0]}’

(5.8)  u,, =2 ( ) (—4pg)" = ¢y, (n+1)"1, n=1,2, ...,

m=20,...,n—1,
and
(6.10) Pr{[K,, , = 2m][S,, = 0]} =k 2 Sok Yan—an
=m-+1

k=m+1

=2 () o) o

- _cm(;%)_:}i@) (n_iH), m=0,1,...,n—1.

We now apply the formula
k

e () () =" (T (S

n=213..., k=0,1,...,n—1,

which may easily be proved by induction. (For a detailed proof see [2].)
Using @ = } and applying the formula with n+41 in place of n and for
k = m and n we obtain

2

2 (O htn) == 20 ()« 20 ()
() G (2

= s (o ) Fares G (b )

When we use this we get from (5.9) and (5.10) the results
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(5.12) Pr{K,, , = 2m][S,, = 0]} = Pr {[K,, , = 2m+1][S,, = 0]}

e (1 oz () (L))

and

(6.13) Pr{K,, ,=2m|8,,=0}="Pr{K,, , =2m+1|S8,, =0}

—we (o () () ()

We shall also derive formulae for Pr {{K,, , < 2m+-1][S,, = 0]} and
Pr{K,, , <2m-+1|8,, = 0}. These formulae mlght be derived from
(5.12) and (5.13), but then we should have to sum the unpleasant ex-

pression
o)),

We shall therefore use formula (4.19)

PI‘ {[K2n 1 = 2m+ 1][Szn = O]}
2n—1
_2 (k+1) frr1%on-1-1 + 2(m~+1) 2fk+1u2n—1 k-

k=2m+1

Since f,,1; = U,y = 0 in the case of Bernoulli trials, this formula
reduces to

(6.14) Pr{K,, , < 2m+1][S,, = 0]}

m m
= 22 kfor %on—or + 2(m—+-1) 27 SorYon—o
k=1 k=m+1

= 2102 kef o ton—op + 2(m~+1) Pr {K,, ; = 2m+1][8,, = 0]}.
=1

In the sum X7, kf,, %y, o We introduce the expressions

Jon = —1 (fb) (—4pq)* and  u, = 2(nj_1) (—4pg)"

and obtain
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¢ o %) k 3 ) ke
= —1 f— i e

- ~(—4W)",§ (,c__%l) (n—i“)'

We now apply the formula
k

> a) —a)&n—k a——l) ——a) k—l—l a —a—1
im0 (i (n—i T on ( k (n—k n (k—{—l)(n——k—l)’
n=12..., k=01,...,n,

which may be proved by induction. (For a detailed proof see [2].) We
shall use ¢ = —} and obtain, when we apply the formula for £ = m—1,

oo SN == GHGT)

From (5.15) and 5.16) we obtain

S v— T

n—m

_ VA AW A WA A

= O (m)(n—m)( n ) '
When we use this and (5.12) in (5.14), we obtain
(5.16) Pr {{K,,_, < 2m+1][8,, = 0]}

= C,,mn"! (:n%) (n:fn) (—7—@1})—1
+ 2(m+1)c,, 3(n41)- (1 + (n—2m)n= (;z%> ( )

— 1 -1
= Cy, (1)1 (m +1 + (n-m)(2m+l)n—1( m%) ( 2 )
When we change to conditional probabilities, we obtain, for m = 0, 1,
n—1,
(5.17) Pr{K,, ; < 2m-+1|8,, = 0}

= (et wememton () () (C))

n—m

If we use that (—1)" (—n%) ~ (nn)~* for n — oo, then we obtain from
(5.13) and (5.17) the formulae
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(56.18) Pr{K,, ; = [2n«] | S,, = 0} = (2n)' 4+ R(n,«), O<a<l,

where R(n, «) ~ (1—2«)(mo(1—a)) in™2 if « & } and R(n, }) =0(n"?),
and

(5.19) Pr{K,, , <[2nx]]|8S,, = 0} = a+T(n, &), 0<a<l,

where T'(n, x) ~ 24t (1—a)¥ (nn)"%. The computations, which lead to
(5.18) and (5.19), are rather trivial and are omitted here.

6. Under the condition S, ,, = 0 the limiting uniform distribution of
L,, M, and N, found above in the case of Bernoulli trials is also the
limiting distribution in case of more general random variables. Before
we can show this we need some preparation.

LemMA 3. If F(s) is the generating function defined in Theorem 5, then
2 fhn=F1)<1land X3 ,u,= U(l) < oo, unless Pr {X, = 0} = 1.

Proor: We have either Pr{X,>0}>0 or Pr{X,> 0}=0 and
Pr{X, <0}> 0. If Pr{X, > 0}> 0, then we have, since the events
[X,> 0] and N?25[S; < 0][S,, = 0], » =1, 2, ..., are non-overlapping,
that

1>=Pr{X, >0} —|—5Pr{ﬁ[8i < 0][8S,, = O]}
= Pr{X, > 0} + Zw’f” = Pr{X, > 0}+F(1);

hence F(1) < 1. If Pr {X, > 0} = 0 and Pr {X, < 0} > 0, then we have
forn =2,3,...

Jn= Pr{ﬁ[Si < 0][8, = O]} =Pr{X,> 0} =0,

and f; = Pr {X, = 0} < 1, so that F(1) < L.
Since we have U(s) = (1—F(s))™%, it follows that 25, u,, = U(1)<oo,
unless Pr {X, = 0} = 1.

Lemma 4. If X, X,, ... are independent and identically distributed
random variables, such that Pr {X, = 0} < 1, and if there exist positive
constants K and a such that

(6.1) fo<Kn*', n=12,...,
then there exists a positive constant M such that

(6.2) u, < Mn~*?, n=1,2,....
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Proor: We choose x such that 0 <« <1 and F(1)(1—«)* ' < 1;
this is possible since, from Lemma 3, F(1) < 1. We shall show that if
we choose M, such that

M =KUMs (1= F()(1—w))

or

(6.3) M=KUQ1)x "'+ MFQ)(1—a)*",

then u, < Mn™® "' forn =1, 2,.... We first observe that (6.2) holds for
n = 1 since f, = u, and M > K. We then proceed by induction and
assume that w, < Mn®* for n=1,2,..., N—1, where N > 1, and

shall show that uy < M N~*'. We use equation (4.5) and get
[N«]

(6.4) Uy = kauN IS kauN—k ‘|‘ 2 Srtun_ -

=[N«l]+1
We estimate the first term on the right-hand side using
Uy_p < M(N—k) ' < M(N—[N(x])—“—l < MN-1(1—a),
k=1,2,...,[Na]< N.
We then obtain
[No]

(6.5) 2 fkuN_k < 2 fiMN 1 (1—a)y < FQ) M N (1—a)™ 2,

In the second term we use

fo< Kk* < K(Na]+1) ! < KN'6*",  k=[Na]+1,..., N,

and obtain
N N
(6.6) 27 fkuN—k < 2 KN_a_lzx"“-luN_k < .KN—a_IOC—a—l U(l) .
k=[Na]+1 k=[Na«]+1
From (6.4), (6.5) and (6.6) we now obtain
(6.7) uy < FO) M N (1—a)* ! + KN* 51 U(1)

= (F)M (1—x) " + Ko U(1)) N-* = U N,

since we have (6.3). The proof is finished by complete induction.
We are now able to prove the following:

THEOREM 6. Let X,, X,, ... be independent and identically distributed
random variables. Let there exist positive constants A, B (< A) and a so that

(6.8) ¢, =Pr{S,=0<d4An™® n=12,...,

(6.9) Cpy1 > B(n,4-1)""  for a subsequence n,, ny, . ..
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Let the function f,(x) be defined in the following way:

—Q

z Jor 0 <a<1,
(6.10) fo(x) = qx~tloge  for a =1,
xt for a > 1.

Let K,, be one of the variables L,, M,,, or N,. Then there exist two constants
K and K' depending on the distribution of the variables X,, X,, ... such that

(6.11)  Pr{K, =m|S, .= 0}=(m+1)(n+1)"+ @),

m=0,1,...,nv,

where

(6.12) 0 < Cn,) < Kfy(n,+1),

and

(6.13)  Pr{K, =m|S,, = 0}= (n,+1)+D(n,, m),
m=1,..., n—I1,

where

(6.14) —K'(n,~+1)"f,(n,—m) < D(n,, m) < K'(n,41)~1f,(m) .

Proor: We use the relations (4.19) and (4.6), the last one with n41
in place of n, and obtain

(6.15) Pr{[K, = m][S,,, = 0]} — (m+1)(n+1)~* Pr {S,,, = 0}

m—1 n

:k;: (k+1) frp1%pp + (m+l)k;fk+lun—k

= ) (41 3 (1) ot
m—1
= (n—m)(n+ 1)“1k2 (b+1)f 2 %n

D) (1) S (0o 2 0.

Since f; = 0 and u; = 0 for ¢ = 1, 2, ..., we obtain from (4.6) the ine-
quality ¢, = nf,u, = nf,. Therefore, from the assumption ¢, < An™*
we obtain f, < An~*' for n = 1, 2, .. .. The existence of a positive con-

stant M, such that w, < Mn *! then follows from Lemma 4. If we use
these inequalities we get



282 ERIK SPARRE ANDERSEN

(6.16) 0 < Pr {[K, < m][S,,, = 0}} — (m+1)(n41)- Pr {§,,, = 0}

=< (n—m)(n+1)- ZA Ic—{—l)“’M(n k)=t
+ (m+1) n-41) 12A(k—|—1)““ M(n—k)™®
Mn+1)- 1((n—m) 2(k+1>*“(n oyt
+ (m+1) 3 (k1) )

< AM(n+1)" 12 (k+1)*(n—k)~
< AM(nt-1)7 2" (n-1) [f(wl

If we consider only the sequence n,, n,, ... we obtain, when we change
to conditional probabilities and use ¢, ., > B(n,+ 1) the relation
(6.17) 0<Pr{K, <m|8,,, =0} — (m+1)(n+1)"
iyl
=< Cpppr TAM(n,41)71 21 (0, 4-1)7 X (k+1)"
k=0

< AM B (n,+1) 2”"2 (k+1 e,

We now have to consider the three different cases 0 <a <1, a =1
and e > 1.
1° In case 0 < a < 1 we have X7, k™ < (1—a) 'm!™%, since

(L—a) mi= + (m+-1)

= (1—a)(m+1)"*((1—(m<+1)")""* + (1—a) (m+1)7")
< (1—a)(m4-1),

Hence
(6.18) 0=Pr{K, =m|8, ;= 0}— (m+1)(n,+1)"
< AM B (n,41)72" (1 —a) ™ ([$n,]4-1)"°
< AMB™ 21+“(1—a)“1(n +1)"% = K (n,+1)*.
2° In case @ = 1 we have X7, k™ < (7" ¢7'dt = log(2m+-1). Hence

(6.19) 0 <= Pr{K, =m|8, =0} — (m+1)(n,+1)7"
< AM B-14(n,+1)1og(n,+1) = K (n,+1)"'log (n,+1) .
3°In case @ > 1 we have 27" k™ < X k™ = C, < co. Hence
(6.20) 0=Pr{K, =m|8,,, =0} — (m+1)(nt+1)-*
< AMB1'2"*C,(n,+1)" = K(n,+1)7 .
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The relations (6.18) — (6.20) just found prove the statements of Theorem
6 about® Pr {K, =m |8, ,, = 0}.

We now pass to the proof of the rest of the theorem. It is evident from
equation (4.18) that

(6.21) Pr{K, =08, = 0}
=Pr{K, =1[8,,=0=...=Pr{K, =n,|S,,,=0=0.
We therefore have
Pr{KnvzmlSn+1=O}<(m+l‘1Pr{K =m|8S, =0}
= (m41)"Y((m+1) (n,4-1)"* + Kf,(n,+1))
= (n,+1)"t + K (m+1)"1f,(n,+1) .
If m = [in,], we have
Pr{K, =m|8,,, =0} = (n+1)" + K(n,+3)"'f,(n,+1)
= (n,+1)"' + 2K (n,+1)-1f,(n,+1)
< (n,+1)"' + 2K (n,+1)-1f,(m) .
If m < [$n,], we obtain
Pr {K,, —m| S, — 0}
[$ny]-1

=Pr {Kn,, = [%nv] I Sn,,+1 = 0} + cn,,+1_1k_2—(1 fk+1un,,—k

[3ny]-1
g (nv+l)—1 + 2‘K (nv+l)fa(m) + cn,,+1_1 2{1 fk+1un,,—k'
Since k=m
g N o
Cp1 k; fk+1un,,—k = B7(n,+1)" = ) A (k+1)""""M (n,— k)™
- e
= AM B (n,+1)" (n,~[in,]+ 1) 37 (k41)™
k=m
[3m]

< AM B 2% (n 4 1) 5 o dy

< AMB2"%q Y(n,+ I;ib;lm_“ < AM B '2""q (n,+ 1) f,(m
we obtain form =1, ..., n,,
Pri{K,, =m|8, =0}
< (1) + 2K (0,4 1), (m) + AM B125967 (n,+ 1), (m)
= (n,+ 1)+ K'(n,+ 1) f,(m) ,
if we let K' = 2K + AM B™12%q™1,
2 I follow,; from the proof of Lemma 4 and the arguments above that an upper bound

for the constant K in Theorem 6 may be calculated explicitly if the distribution of the
variables X; is known.
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The other half of (6.14) is proved analogously. First we obtain from
(6.21)
Pr{K, =m|8, ,,=0}=mn—m+1)1Pr{K, =m|8,,, =0}
= (n,+1)"t — K(n,—m+1)""f,(n,+1) .
If m < [in,], we have
Pr{K,, = m |8, = 0} = (1)t — 2K (n,+1)"1f,(n,—m) .
If m > [4n,], we obtain
Pr{K, =m|8, = 0}
= Pr {Kn,, =[] 8 n = 0} — [ 2 fk+1un,,—k

k=[$n,)

= (n,+1)7 — 2K (n,+1)7f,(n,—m) — AM B™'2""a” (n,4-1)7"f,(n,—m) .
We therefore have for m = 0,1, ...,n,—1,
Pr{K,, =m|8,,,;=0}=@m+1)" — K'(n+1)""f,(n,—m) .
This completes the proof of Theorem 6.

7. Applications of Theorem 6. Let the variables X,, X,, ... be indepen-
dent and have a common distribution, which is a lattice distribution,
that is, X, assumes only integer values. Let us furthermore assume that
Pr {X; = 0} < 1. It then follows from results of Gnedenko [5] that if

(7.1) EX,))=0, EX? <o

and furthermore the greatest common divisior of the values which X;
assume with positive probability is one, then Pr {S, = 0} ~ An~? for
n — oo and some positive constant 4. We may therefore apply Theorem
6 and obtain, for m = 0,1, ..., n,

(m4+1)(n4+1)"1<Pr{N, <m|S,,,;= 0} < (m+1)(n+1)"1 + K(n+1),

for some positive constant K depending on the common distribution of
the random variables X,.

It is easy to see that if we consider IV, ' (see Section 1), then we obtain,
form=20,1, ..., n,

(m+1)(n+1)71 — K(n+1)t <Pr (N, <m|8,, = 0}
<W+MWHY+KM+W*

where K is the same constant as above. This result evidently contains
the theorem of M. Lipschutz in [7].
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From the results in another paper [6] of Gnedenko it follows that if
(7.1) is replaced by the condition that X, belongs to the domain of at-
traction of a symmetric stable law with exponent o < 2, then Pr {S, = 0}
~ An7"* for n — oo, so that Theorem 6 may be applied with a = «x~1.

Theorem 6 may, however, also be used for distributions which are
not lattice distributions. As a simple example, we shall consider the
following distribution:

Pr{X,=—1}=1/4, Pr{X,= —b}=1/4,
Pr{X,=+1}=1/4, Pr{X,= +b}=1/4,

where b is an irrational number. It is easy to see that in this case
Pr {8, = 0} equals the probability of return to the origin after n steps
in a random walk with unit steps parallel to the z-axis and y-axis in a
plane. This probability is ~ Kn—! for » even and n — oo, see for example
Feller [4, pp. 297-8]. We may therefore apply Theorem 6 with @ = 1, and
the sequence n = 2, 4, .. ..

Finally it may be noted that application of Theorem 6 to Bernoulli
trials shows that, for @ = }, the order of magnitude in the remainder
terms cannot be improved.
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