CONGRUOUS AND
INCONGRUOUS ONE-TO-ONE CORRESPONDENCES

FREDERICK BAGEMIHl

In this note we first prove a general theorem concerning one-to-one correspondences between a set and itself, relative to decompositions of the set into subsets, and then obtain some related results dealing with more special correspondences involving real or rational numbers.

Let \(I \) be a one-to-one correspondence defined between the elements of the (not necessarily distinct) sets \(M \) and \(N \), or a one-to-one transformation defined on \(M \) and mapping \(M \) onto \(N \), and let \(m \in M \) and \(n \in N \) be (not necessarily distinct) corresponding elements under \(I \). If \(m \neq n \), we call \(m \) a free element of \(M \), under \(I \). There are obviously the same number of free elements, under \(I \), in \(M \) as in \(N \). We say that \(I \) has \(F \) free elements, if the cardinal number of the set of free elements in \(M \), under \(I \), is \(F \). Let \(\mathcal{F} \) be an arbitrary class of mutually exclusive sets, with \(|\mathcal{F}| \geq 2 \), and let \(p \geq 1 \). If \(m \) and \(n \) belong to the same element of \(\mathcal{F} \), we call them a congruous pair of elements relative to \(\mathcal{F} \); if they belong to distinct element of \(\mathcal{F} \), we call them an incongruous pair of elements relative to \(\mathcal{F} \). We say that \(I \) is

(a) congruous,
(b) \(p \)-congruous,
(c) at least \(p \)-incongruous,
(d) \(p \)-incongruous,

relative to \(\mathcal{F} \), according as the following conditions are satisfied:

(a) all pairs of corresponding elements are congruous relative to \(\mathcal{F} \);
(b) \(I \) is congruous relative to \(\mathcal{F} \), and every element of \(\mathcal{F} \) contains exactly \(p \) pairs of corresponding elements;
(c) if \(X \in \mathcal{F} \), \(Y \in \mathcal{F} \), \(X \neq Y \), then there are at least \(p \) incongruous pairs of corresponding elements relative to the class \(\{ X, Y \} \);
(d) if \(X \in \mathcal{F} \), \(Y \in \mathcal{F} \), \(X \neq Y \), then there are exactly \(p \) incongruous pairs of corresponding elements relative to the class \(\{ X, Y \} \).

Received May 4, 1953.
A \mathfrak{p}-decomposition ($\mathfrak{p} \geq 1$) of a set E is a class, \mathfrak{B}, of \mathfrak{p} nonempty mutually exclusive sets whose union is E.

C denotes an ordered set whose order type is that of the real numbers in their natural order. R denotes an ordered set whose order type is that of the rational numbers in their natural order, except in Theorem 5, where R stands for the set of rational points on a straight line.

By an interval of an ordered set S we mean either S itself, or the subset of S preceding some element of S, or the subset of S succeeding some element of S, or the subset of S between two distinct elements of S. A subset, S', of S is dense in S provided that every interval of S contains an element of S'.

Theorem 1. Let \mathcal{G} be a class of \aleph_α one-to-one correspondences each of which has at least \aleph_α free elements, E be the union of the sets between which the elements of \mathcal{G} are defined, and \mathfrak{p} be a cardinal number with $2 \leq \mathfrak{p} \leq \aleph_\alpha$. Then there exists a \mathfrak{p}-decomposition, \mathfrak{B}, of E such that every element of \mathcal{G} is at least \aleph_α-incongruous relative to \mathfrak{B}.

Proof: Consider \aleph_α replicas of every element of \mathcal{G}, well-order the resulting complex of $\aleph_\alpha^2 = \aleph_\alpha$ one-to-one correspondences to form a sequence

$$G_0, G_1, \ldots, G_\xi, \ldots \quad (\xi < \omega_\alpha),$$

and denote by M_ξ, N_ξ the (not necessarily distinct) sets between which $G_\xi (\xi < \omega_\alpha)$ is defined. Let ϱ be the smallest ordinal number such that $|\varrho| = \mathfrak{p}$. The power of the set of all ordered pairs, (γ, δ), of ordinal numbers with $\gamma < \delta < \varrho$, is not greater than \aleph_α. Consider \aleph_α replicas of each of these ordered pairs, and well-order the resulting complex of \aleph_α ordered pairs to form a sequence

$$p_0, p_1, \ldots, p_\xi, \ldots \quad (\xi < \omega_\alpha).$$

Let $m_0 \in M_0, n_0 \in N_0$ be free corresponding elements under G_0. Suppose that $0 < \xi < \omega_\alpha$, and that elements $m_\sigma \in M_\sigma, n_\sigma \in N_\sigma$ have been defined for every $\sigma < \xi$. If we put $V_\xi = \{m_\sigma\}_{\sigma < \xi} \cup \{n_\sigma\}_{\sigma < \xi}$, then $|V_\xi| < \aleph_\alpha$. Let $m_\xi \in M_\xi - V_\xi, n_\xi \in N_\xi - V_\xi$ be free corresponding elements under G_ξ; they exist because G_ξ, by hypothesis, has at least \aleph_α free elements. The set $V_{\omega_\alpha} = \{m_\xi\}_{\xi < \omega_\alpha} \cup \{n_\xi\}_{\xi < \omega_\alpha}$ is thus defined by transfinite induction.

We express V_{ω_α} as the union of \mathfrak{p} mutually exclusive sets $B_\pi (\pi < \varrho)$, as follows: Suppose that $\xi < \omega_\alpha$. The terms of (1) which are identical with G_ξ but whose subscripts are less than ξ, form a subsequence, of some order type $\tau_\xi < \omega_\alpha$, of (1). If $p_\tau_\xi = (\gamma, \delta)$, assign m_ξ to B_γ and n_ξ to B_δ.

Math. Seand. 1. 17
Express $E - (\{m_\xi\}_{\xi < \omega_\alpha} \cup \{n_\xi\}_{\xi < \omega_\alpha})$ in an arbitrary manner as the union of φ mutually exclusive sets $B_{\pi'} (\pi < \varphi)$, and put $A_\pi = B_\pi \cup B_{\pi'} (\pi < \varphi)$. The class $\mathfrak{P} = \{A_\pi\}_{\pi < \varphi}$ is a φ-decomposition of E.

Now let $\Gamma \in \mathfrak{G}$, and suppose that A_γ and $A_\delta (\gamma < \delta < \varphi)$ are any two distinct elements of \mathfrak{P}. This Γ appears κ_α times in (1); let

$$\Gamma_{\mu_\xi}, \Gamma_{\nu_\xi}, \ldots, \Gamma_{\mu_\xi'}, \ldots \quad (\xi < \omega_\alpha)$$

be the subsequence of (1), whose terms are identical with Γ. The ordered pair (γ, δ) appears κ_α times in (2); let

$$p_{\mu_\xi}, p_{\nu_\xi}, \ldots, p_{\mu_\xi'}, \ldots \quad (\xi < \omega_\alpha)$$

be the subsequence of (2), whose terms are identical with (γ, δ). According to the definition of the sets $B_\pi (\pi < \varphi)$, we have $m_{\mu_\xi} \in B_\gamma$, $n_{\nu_\xi} \in B_\delta$ ($\xi < \omega_\alpha$), which means that Γ is at least κ_α-incongruous relative to the class $\{A_\gamma, A_\delta\}$. This completes the proof of Theorem 1.

Theorem 2. Let $2 \leq \varphi \leq 2^{\kappa_\alpha}$. Then there exists a φ-decomposition, \mathfrak{P}, of C, such that every antisimilarity or nonidentical similarity between two (not necessarily distinct) intervals of C is 2^{κ_α}-incongruous relative to \mathfrak{P}.

Proof: Let \mathfrak{G} be the class of all antisimilarities and nonidentical similarities between all pairs of (not necessarily distinct) intervals of C. There are 2^{κ_α} intervals of C, and 2^{κ_α} antisimilarities and nonidentical similarities defined between every pair of these intervals. It follows that $|\mathfrak{G}| = 2^{\kappa_\alpha}$. Every element of \mathfrak{G}, since it is not the identity, has a whole interval of free elements. If we now put $\kappa_\alpha = 2^{\kappa_\alpha}$ and $E = C$, then the hypotheses of Theorem 1 are satisfied, and Theorem 2 is an immediate consequence of the conclusion of Theorem 1.

Let R' be a set which is similar to R, R be the union of the mutually exclusive sets $A_\nu (\nu < \varphi, 1 \leq \varphi \leq \omega)$ each of which is dense in R, and R' be the union of the mutually exclusive sets $A_\nu' (\nu < \varphi)$ each of which is dense in R'. According to Skolem [1, pp. 30–36], there exists a similarity mapping, Γ, of R onto R', such that $\Gamma(A_\nu) = A_\nu'$ for every $\nu < \varphi$. Let B_φ be a subset of A_φ which is cofinal with A_φ and has order type ω. One can obtain 2^{κ_α} subsets of A_φ' each of which is cofinal with A_φ' and has order type ω. Let B_φ' denote one of these subsets of A_φ'. Then it is not difficult to see that the Γ in Skolem's theorem can be chosen so as to have the additional property that $\Gamma(B_\varphi) = B_\varphi'$. Furthermore, each choice of B_φ' leads to a different Γ. Thus, as an immediate consequence of Skolem's theorem, we have
Theorem 3. Let \mathfrak{B} be a p-decomposition of R, where $1 \leq p \leq \aleph_0$, such that every element of \mathfrak{B} is dense in R. Then, between any two (not necessarily distinct) intervals of R, there exist 2^{\aleph_0} similarities which are \aleph_0-congruous relative to \mathfrak{B}.

Theorem 3 may no longer hold if we drop the condition that every element of \mathfrak{B} be dense in R. To see this, it suffices to well-order the elements of R to form a sequence, $r_0, r_1, \ldots, r_v, \ldots$ ($v < \omega$), put $A_v = \{r_v\}$ for every $v < \omega$, and take $\mathfrak{B} = \{A_v\}_{v < \omega}$. Then every similarity (except the identity) defined on any interval of R is 1-incongruous relative to some infinite subclass (depending on the similarity) of \mathfrak{B}. If, however, p is finite, then it is possible to obtain the following result:

Theorem 4. Let \mathfrak{B} be a p-decomposition of R, where $1 \leq p < \aleph_0$. Then, between every interval of R and itself, there exist 2^{\aleph_0} similarities which are congruous relative to \mathfrak{B}.

Proof: Let I be an arbitrary interval of R. Since R is the union of the finitely many elements of \mathfrak{B}, there exists an interval, I_1, of I such that, for some element, say A_1, of \mathfrak{B}, $A_1 \cap I_1$ is dense in I_1. Let A_2, A_3, \ldots, A_q, where $|q| = p$, be the remaining elements of \mathfrak{B}, in case $p > 1$. We define an interval I_q, by induction, as follows: Suppose that $1 \leq v < q$ and that the intervals $I_1 \supseteq I_2 \supseteq \ldots \supseteq I_v$ have been defined so that, if $1 \leq r \leq v$, $A_r \cap I_v$ is either dense in I_v or empty. If there exists an interval, J, of I_v such that $A_{v+1} \cap J = 0$, we define I_{v+1} to be J; otherwise, we put $I_{v+1} = I_v$, in which case $A_{v+1} \cap I_{v+1}$ is dense in I_{v+1}. Let $B_v = A_v \cap I_q (1 \leq v \leq q)$; evidently B_v is either dense in I_q or empty, and B_1, certainly, is dense in I_q. According to Theorem 3, there exist 2^{\aleph_0} similarities between I_q and itself, which are congruous relative to that subclass of \mathfrak{B} consisting of those elements A_v for which the corresponding set B_v is not empty. Each of these similarities when extended to I so as to be the identity on $I - I_q$, is congruous relative to \mathfrak{B}, and hence the proof of the theorem is complete.

Let R be the set of rational points on a straight line. There are \aleph_0 displacements between R and itself, and at most 2 displacements between two (not necessarily distinct) congruent intervals of R if these intervals are different from R. If such a displacement is not the identity, it has \aleph_0 free elements. A simple application of Theorem 1 yields

Theorem 5. If $2 \leq p \leq \aleph_0$, then there exists a p-decomposition, \mathfrak{B}, of R, such that every nonidentical displacement between two (not necessarily distinct) congruent intervals of R is \aleph_0-incongruous relative to \mathfrak{B}.
REFERENCE

INSTITUTE FOR ADVANCED STUDY PRINCETON, N.J., U.S.A.