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ON THE ASYMPTOTIC DISTRIBUTION
OF THE EIGENVALUES AND EIGENFUNCTIONS
OF ELLIPTIC DIFFERENTIAL OPERATORS

LARS GARDING

Introduction. Let a = a(x, D) be a differential operator of the form
alx, D) = 2 a,(@)D* (m=1),
x| < 2m
where * = (x4, ..., %,) is a point in real n-space, x = (x4, ..., «,) is a
differentiation index, |«| = ;4 ...4«,, and

olel

& ap®
0z, %1, . . 0x, ™™

(0.1) D* = D,* =i

The coefficients a,(x) are supposed to be infinitely differentiable in an
open region 7', and the operator a is supposed to be elliptic so that
(0.2) ao(x, &) = ) a (x)€* (8= §™.. &™)
|a] =2m
is a positive definite polynomial in & for all x in 7'.
Let H = H(S) be the set of all infinitely differentiable functions vanish-

ing outside compact subsets of an open bounded set S whose closure is
contained! in 7T'. Put

() =\ 3 f@e@de, =L  f.=DY,

l6] = m

and

(0 =\f@y@ de, 7P = (51
8
Closing H(S) in the norm || f|| we get a Hilbert space $ = $(S) which may
be described roughly as the set of all functions in § having square inte-
grable derivatives of any order = m, those of order < m vanishing at
the boundary of S.

Received August 3, 1953.

1 The assumptions on the differential operator ¢ may be weakened by considering it
only in S and by letting the coefficients be only sufficiently differentiable, but we do not
go into the details.
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Consider (af, g) where f and g are in H(S). By integrations by parts
it may be written in the form

alf,9) =\ La, @) @) gy@) do (Ix| Zm, 18] = m),
8
and hence it is obviously a bounded function of f and g in §. As shown
by the author [3], the form a(f, g) is also bounded from below in the
following sense. Let ¢ be a large positive number and put

at(f’ g) = a(f, g)+t(f’ g)

and

((f 9))s = ((f; ) +UJ, 9) -

Then there exist a number ¢, and a number ¢ > 0 so that?

(0.3) (LN =lalf, N =c () E>1)
for all fin §. Hence the bounded linear operator N, from $ to § defined
& W f) = (NS0 LI Nfes,

has a bounded inverse N,™. Let §, = Do(S) be the set of all square
integrable functions defined in S. As is easily seen, the equation

(L) = (BLLS ) fE€De Mfif €D,

defines a completely continuous linear operator from $, to . Hence

(f>f,):a’t(th’f’)’ feg’o’ f’e'i)y

where G, = N,'M,, defines a completely continuous linear operator G,
from §, to $ which will be called Green’s transformation corresponding
to the differential operator a, = a-}-¢ and the linear subset $ of $,. The
reason is that G, transforms $,into  and that G,~! is an extension of the
differential operator a, whose graph is the set of all pairs {f, a,f} where
fe 9 is 2m times continuously differentiable and a, f is in $,. In fact,
if h is in H we have a,(G, a,f, b) = (a,f, h) = a,(f, k) so that G,a,f = f.

Let % be an integer > 0. We shall prove that G,* has a kernel g®(x, y)
so that

@1,7) =\ 02 9) 1) F ) dw dy

— Sx8

2 In [3] the operator a is denoted by g. Introducing the operator R, defined in the proof
of Lemma 4.1 (I. ¢. p. 69), we may write q,(f, f) as p,(f+ R, f, f). Hence we geot

pt(f,f)(l_ le]¢) = |qt(f’f)| = pz(fyf)(1+|RL|z) 5

the norm |R,|, being defined in I.c. p. 69. Now |R,|, tends to zero with 1/¢, and hence
Theorem 2.2 of I. ¢. proves that the formula (0.3) above is true.
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when f, f’ € H(S). The kernel is infinitely differentiable when x == y and
has the singularity to be expected when |x—y| is small. If 2km > »n it is
continuous and satisfies

(0.4) lim £ g0z, y) = 8, (22)™" S (aole, &)+ 1)* de

t—>00

where d,, = 0 when =+ y and J,, = 1 and v = n/(2m). If a is formally
self-adjoint, that is, if (af, f) is real for all fin H, then G, is also self-adjoint,

tr Gf = ggt(’”)(x, x) dx < oo
$
if 2mk > n, and

(0.5) lim 5 tr G = (27)™ g dzx S (aolx, &)-+1)Fde .
S
Moreover, if a is self-adjoint, there exists a set ¢, ¢,, ... of eigen-
functions of every G, with eigenvalues
(Ar-H8)7% (Ap+28)72, . =i =00

The eigenfunctions form a complete orthonormal system in ,. If 2mk > n
we have

9P, y) = 2 @) oyy) (407"
and

tr Gf =2 (A;+t)"

We can now apply the method of Carleman [2] to deduce some asymp-
totic formulas for the eigenfunctions and eigenvalues. Our last two
formulas combined with (0.4) and (0.5) and a Tauberian theorem of
Hardy and Littlewood [4] in the formulation of Pleijel [9] show in fact
that

(0.6) N@t) = 31 = (2m)™" w,(S) "™ (1+o0(1))
A;gt
and
N
(0.7) th N 3'99]( ) 9 (Y) = O,y wa(2)/wy(S)
where

w,(x) = S d¢  and w,(S) = Swa(x) dx
S

a(®, &) <1

These formulas are well known in various special cases. They were stated
by the author [3] with indications of a proof® which works when 2m > .

3 Hssentially this proof has been published in detail by Browder [1].
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In this paper we shall follow another line of attack to obtain the key
formulas (0.4) and (0.5).

— Our results combined with those announced by Keldych [7] prove
that the asymptotic formula (0.6) is true also when a is not self-adjoint,
provided that we replace 4; by R4,.

1. Two lemmas. We shall use the theory of generalized Fourier trans-
forms (Schwartz [10]). Let F = F(x) = F(x,, ..., ,) be an infinitely
differentiable function on real n-space vanishing outside a compact set.
It has a Fourier transform f given by

1 =\ e F do,
where xf = &+ .... It is well known that f(£) = O((14|&)™™) for
every N (& = (&2+.. .)‘}). The inverse formula reads
F(z) = (2)" S =t 1(8) dE .
Let a(£) be a locally integrable function which is O(1+4|£|Y) for some
N > 0. Then
AF) = (27 a6) 1) ds

defines an antilinear functional 4 of F called the generalized inverse
Fourier transform of a. If (2n)‘”S |a(&)| d¢ = ¢ < oo, the function

Ax) = (2)™ S % (&) de

is continuous and defined for all «, and |4(z)] =< c¢. In this case

A(F) = SA(x) F(z)ds .

More generally, we say that 4 is a function A(x) in a region R if there
exists a locally integrable function A(x) in R for which this equation
holds when F vanishes outside a compact set in R.

Returning to the general case, let D* be defined by (0.1). The deriva-
tive D*4 of 4 is defined by

DA (F) = (2n)—"S £ a(£) f(E) dE ,

where £* is defined in (0.2). The product 24 of 4 and a polynomial i(z)
is defined by

2A(F) = (22)™{a(®) ADFE) de
where A(D,) = A(i0[0&,, . . ., 10/2E,).
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Among the results of Schwartz we quote the following ones. If the
product of 4 and a polynomial 2 which is not zero in a region R is a fune-
tion B(x) in B, then A is the function B(z)/A(x) in R. If all the derivatives
of A are functions in a region R, then 4 is infinitely differentiable there
and its ordinary derivatives D*4(x) are related to D*4 (F) by the formula

DrA(F) — SD"‘A(x) F@)de  (FeH(R).
We are now in a position to prove the following lemma.

Lemma 1. Let p(&) be a polynomial of degree u whose coefficients are
magjorized by a number c,, and suppose that |p(&)| = c,(1+|&"). Then the
generalized inverse Fourier transform of 1/p(£&) is an infinitely differentiable*
Sfunction P(x) in the region x == 0 satisfying

e @) =1 when u—|x|—n > 0,
D*P(z)| < C 1)1, 1
D) = O e (@) (1+1al7) {elal(x) = |21 when u—|a|—n < 0.

Here N = 0 and 1 > & > 0 are arbitrary, and the number C depends on
€y, Co, ||, N, amd &, but is otherwise independent of the polynomrial p.

Proor. Let A be a polynomial. Then
I PE) = (22 \ €576 ADISE) d
By virtue of the properties of p, we may integrate by parts and get
ADP(F) = (22" 7 M—Do(£p7(®) de .

Let 2 be homogeneous of degree k =< N and let its coefficients be < 1
in absolute value. Let C denote a suitable number, not always the same,
but depending only on |«|, ¢, ¢;, N, and later also on e. It is clear that

M—D)(Ep™(®)] < C(1-+]g)rE.

Hence, if |x|—p < —n and A has the properties stated, it follows that A.D*P
is a function majorized by C. This proves the first half of the lemma.
Next consider the case |a|—u = -—n. Supposing that the coefficients
of 2 are <1 in absolute value, we let 1 be homogeneous of degree
k+n+|o|—u where 1 <k = N + 1. Then
|M—D)(E (&) = C(L+[E)™F,
and if AD*P is the function

(2m)™ S ¢ 2(—D,)(Ep~\(&)) dE .

4 Actually, it is analytic (Schwartz [10], F. John [6]).

Math. Scand. 1. 16
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This function vanishes when z = 0, the integrand being a sum of
exact differentials, and hence we may replace e ™** by ¢ ™**—1 whose
absolute value is less than C|z|'°|&[*™%, so that A D*P is majorized by
C |,

Hence, if 1 is a polynomial with the properties stated above, then
ADP is a function bounded by C|x|*™°. The second half of the lemma
follows.

The function P(x) is a fundamental solution of the differential operator
p(—D,) in the sense that

\Pe—y) 2D F@) dy = F@).

We shall express the connection between P and p by the symbolic notation

P(a)~ (27)™" S 7 p1(E) dE

It is clear that linear coordinate transformations preserve the sense of
this formula.

Obviously, e, (z) is majorized by e, (%) if |x| = |«'| and & is bounded.
For large |z|, |D*P(x)| < C|x|™ for arbitrary N, and hence we obtain
from Lemma 1 the supplementary

LemMaA 2. Under the hypotheses of Lemma 1, the following esttmates hold :

[D*P(x)| = Cla ™ (1+1a™)" (o] < )
and
|D*P(2)] < Cla| (1412 (la] S p).

Here N Z 0 and 1> &> 0 are arbitrary, and the number C depends on
1, €3, N, and &, but is otherwise independent of the polynomial p.

2. Estimates of certain fundamental solutions. Let 7 be a large positive
real parameter and consider a differential operator of order u

b=b(r,2,D,) = 3 b(r,z) v D2,
lof s

where b,(t, z) is a polynomial in 7! whose coefficients are infinitely
differentiable functions in an open region 7'. It is assumed that the follow-
ing polynomial in &

bo(t, @, &) = b(z, @, 1&) = X b (7, )&

has the property that
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(2.1) bo ™' (o0, @, £) = O(1) (1+]&1),

uniformly on compaect subsets of 7'.
The algebraic adjoint b* of b is defined by the identity

(or@r@a =\ orwd,  (1renm).
It is readily seen to have the same form as b itself,

b*(r,z,D,) = X b *(v,x)v71* D>,

lelsu

where b, *(7, z) is a polynomial in 7-! and b,*(co, z, &) satisfies (2.1)
since, in fact, we have

(2'2) bo*(oo, Zz, E) = bo(oo, €, _E) .

Let U be an arbitrary open subset of 7' whose closure U is contained
in 7. When 7 is large enough we are going to construct a fundamental
solution I of the differential operator b, that is, a function I'(t, x, z)
defined on U x U and having the property that

(re 20 o D)@ de =) (FeHW)).
The point z is called the pole of I'. We shall establish the estimates
(2.3) I'(z, 2z, @) = O(1)7" e(t(@—2)) (14 [v(x—2)|N)!
(where ey(y) = |y when u—n < 0, and ey(y) = 1 otherwise) and
(24) D, I(v,2,2) = O(1) ™" lg—2 " (14-[v(@—2)¥) " (lo] < @) .

In these formulas N = 0 and 1 > ¢ > 0 are arbitrary, and the estimate
0(1) for large v is uniform in U x U. We shall also prove that, if u > n,
then

(2.5) lim v I(7, , ©) = (27)™" S d&fby(o, 7, &) ,

T—>00

uniformly on the diagonal A(U xU) of UxU. Precisely the same esti-
mates hold for a similarly constructed fundamental solution I™(z, z, 2)
with pole in z defined in U x U for large v and satisfying®

(2,2 b(x, 2 D)@ d = 1)
when f is in H(U). For future reference we write them down:
(2.6) I'*(r,z,2) = O(1) " eo(t(x—z)) (I—Hr(x—z)lN)"l ,

5 It is convenient to change the parts played by the last two variables in I" and I'*.

16*
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(2.7) DT (7, @,2) = O(1) T |z—2|" (14 |2(@—2)|V) " (Ia] < p),

(2.8) lim 7" I (7, @, x) — (2n)“"gd5/bo*(oo, z, &)

T—>00
By virtue of (2.2), the right sides of (2.5) and (2.8) are the same.
We shall use the current parametrix method of Hilbert [5] and E. E.
Levi [8]. The parametrix is a fundamental solution B(z, 2, «) of the dif-
ferential operator b(t, 2, —D,) with its pole at z. Put

(2.9) B(1,2,x) ~ (2n)-"Se~i<x*Z>f b™(1,2,&)dE ~ " (2n)"”§e“im’5 b7 (7, 2, 7€) dé&

where «' = 7(x—z). By virtue of (2.1) the polynomial b(t, 2, t£) never
vanishes if 7 is large enough, so that

\Bv 2 ) b5, 2 —Dof@) de = fa) (£ HD)).

Also, by virtue of (2.1), the polynomial b(z, 2, 7&) satisfies the require-
ments of Lemma 1 on compact subsets of 7. Hence by Lemma 2,

D, B(t, z, @) = O(1) " |'|'" " (142 [¥) " (laf < @),
so that
(2.10) D,*B(z, 2, @) = O(L) " o —2| 7" (14 |rl@—2)|V) 7 (la] < po) -
Similarly
(2.11) D,*B(z, 2 2) = O(1) 7"~ jz—2| " (1+[r@—2)| ") (] = po) .
Both of these estimates are valid for arbitrary ¥ = 0 and 1> &> 0,

uniformly for sufficiently large 7, all  and all z on any compact part of
T. Let us put

B(z, z, ) = (b(z, 2z, D,)—b(z, =, D,))B(7, 2, x)

and let u(t, z, ) be a solution of the integral equation

212)  u(r iz ) —\u(r 2 9) fle, g, @) dy = flr, 2 0).
Then Y
(2.13) I'(z, 2, x) = B(r, 2, x)—}—\u(r z,y) B(r,y, x) dy

is a fundamental solution in U x U (see F. John [6]). We shall investigate
the possibility of solving (2.12). Writing f(z, 2, ) more explicitly as

2 (b,(r, 2)—=b,(7, x)) v D,*B(z, 2, x)
and using (2.10) and (2.11), we get
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B, 2 2) = Q) T o= (14 Iee— )

for arbitrary N and ¢, uniformly when 7 is large and x, z belongs to a
compact part of 7' x7T. Hence the Neumann series of (2.12), namely

B(z, 2, z) +Sﬂ(r, 2 y)B(r, o, 2)dy + ...,
U
is majorized by

(1+|r(x—~z)|N)‘1{Cr"eIx——zll“e‘" + (07’5)2§ lz—y|" " fy—x) "y .. } ,
U

where ' is a constant. We have here used the simple inequality

(A1t A+ ey —2)Y) ™ = (-] ez—2) V)

Hence, if 7 is large enough, the integral equation may be solved by its
Neumann series, and we get

(2.14) w(r, 2, 2) = O(1) T™°|w—2|"(1+|r(@—2)|¥)

for large 7, uniformly on U x U. This estimate together with (2.13) proves
the desired estimate (2.7), because, as it stands, we may clearly differen-
tiate (2.13) with respect to « less than x times. From (2.9) and Lemma 1
follows

(2.15) B(z,z,7) = 0(1)t”eo(r(x—z)) (l—}—[r(x—z)[N)_l ,

which together with (2.12) and (2.13) gives (2.6).
It remains to prove (2.8). From (2.9) and the properties of b it follows
that

lim 7" B(z, z, ) — (27)" S d& by (oo, @, £) ,

T—>00

uniformly on any compact subset of A(T x7T'). Now if y > n, (2.15) reads
B(t, z, x) = 0(1)7" (14| z(@—2) V).

Combining this with the estimate (2.14) of u, we see that ™" times the
integral in (2.13) is uniformly small on U x U if 7 is large enough. Hence
(2.8) follows. For I the construction and the proofs are the same.

At last we remark that according to the results of F. John, I'(z, z, x)
is infinitely differentiable in U x U if x & 2, and if f is in H(U) then

(2.16) If(z) = Sr(r, 2, ) () d
is infinitely differentiable in U. Moreover,

(2.17) b(t,x, D) (7,2, ) = 0 (x==2),
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and

(2.18) b(r, z, D) 'f(x) = f(x) .
Analogous results hold for I'™(z, z, z) and

I f(x) = SI’*(r, z, z) f(z)dz .

3. Estimates of a certain kernel. Let us use the notations of the preceding
section, and let ¢(7") be the set of all square integrable functions on 7.
Assume that a bilinear form

C(f: g) = C(T’fa 9)

is given on H¢x H, and that it is uniformly bounded for large v and satis-
fies the identity

(3.1) Cf, ) = O(f, b*g) = \f@)g@) do
on H(T)x H(T'). Then we shall prove that C' has a kernel ¢(z, z, y),

ot 9) = \ e(r.o ) f@ o) dedy  (f,g e HD)),
I'xT
which is infinitely differentiable when z =+ y and satisfies

(3.2) o(7, z, y) = O(1) "eg(v(x—y)) 1+ r@@—y)¥) ",

where as usual

lﬂ—n—s

eo(z) = |z when uy—n <0,

ep(2) =1 when y—n > 0.

The estimate O(1) is uniform for large v and compact subsets of 7'x T,
but it depends on the numbers N and ¢ which may be chosen except for
the conditions N =0 and 1 > ¢ > 0. When y—n > 0,

(3.3) lim v"¢(7, @, y) = (22)"6,, S dé[by (oo, @, &),

T—>00
uniformly on compact subsets of 7'x T, the symbol J,, denoting 0 when
x + y and 1 otherwise.

Let V be an arbitrary open subset of 7' whose closure ¥ is contained
in 7', and choose three larger telescoping open subsets V,, V, and V; such
that Ve Ve V,cV,cVy,c V,< V<V, = T. Construct funda-
mental solutions I" and I'™* in U = V, satisfying (2.3) to (2.8). Let y be
in H(V,) and let it be 1 on V,. We want to prove that

(3.4) o(r,x, x*) = I (v, 2, 2*)—1I'(v, x, )

= S I'(t, z,2) b*(7, 2, D,)(p(2) I'* (7, 2, ®))dz .
V-V
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when x and z* are in V,. This formula in another form is due to F. John [6],
but for the convenience of the reader we give a proof.

First let x =+ 2* and choose three open telescoping neighborhoods
W, W, and W, of 2* such that W <« W, « W, <« W, < W, < V, and
W, does not contain z (see the figure).

The shaded rings are those where the corresponding functions are 5= 0
and == 1. Each function equals 1 inside its ring and 0 outside it.

Let pe H(W,) be 1 on W and ¢, € H(W,) be 1 on W,. Put f(z) =
I'(z, 2, 2) and f*(z) = I'*(z, 2, *). Then, by the properties of I" and I™,

o (=] =1@ ([ 9) = \f@g@ ).
Since b* f* = 0 except at the point z = =z, the left side can be written as

Lf, 0 (wf*)]+[f, 0" (1—o)f*].
But
Uf, 0" (1—@)f*] = [g1 f, 0" (1—)f*]1 = [bgs [, (1—@)f*] = [by f, f*] = f(=&*),
and hence

@) —=f@*) = [f, o*(wf*)],

which is the formula (3.4). By continuity, the formula just proved is
valid also when x = z*. This shows that ¢ is infinitely differentiable on
Vox V, Put

(v, f,9) — SF'(:, x, 2*)f (@) g(e* ) da du*
and
C'(f,9)=Cf,g)—T"(7, [, 9) .

By virtue of (2.4) with |x| = 0, the norm
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|C"] = sup |C'(f, Q) If 1719 (If12 = S If@)2de;  f, g€ Do(Vs))
Vs
of the bilinear form C’ is O(1)t'™*. Moreover, by the properties of I™,

C'of,9) =1f.91—1f,9]1=0,
and if I'(z, f, g) and o(z, f, g) are defined in analogy to the above definition
of I'(v, f, 9),

C'(f, b*9) = C(f, b%9) = I'(z, f, b*g) —o(7, f, b*9) = —o(7, f, b*9)
on H(V,)xH(V,). Put

(35) p(x, Z) = b(T, 2, Dz)('r'(ra €, 2) (1——(]9(2)))
and
(3.6) p*(z ") = b{r, 2, D,)(I" (7, 2, 2*) (1—¢(2))) ,

where ¢ € H(V,) and equals 1 on V,. For given = and z* in V,, the func-
tions p(x, z) and p*(z, *) vanish except on the ring V,—V,. Put further

(3.7) (v, %, %) = C'(p(x,.), p*(,, ")) .
By the continuity of p, p* and C’,

c(t, f,9) = Sc’(r, z, ") f(x)g(x*)dedx* = C'(f—bplf, g—b*pl™g) ,
where f and ¢ are in H(V),

I'fz) =\I(z, z, 2)f(x)dx ,
and

I*g(z) =\ I"*(z,z, a*)g(x*)dz* .

C oy

By the properties of (”,

CI(T’f7 g) = C,(fa 9)+Q(T»f: b*(PF*g) .
Now
b*el*g(z) = b*(z, 2, Dz)(qo(z)g]“(r, 2, x*)g(x*)dx*)

= g(z)—{—Sb*(r, z, D) (p(2)* (7, 2, x*)) g(x*)dx*,
where the kernel
(3.8) oz, 2, &%) = b*(7, 2, D,) (P (2, 2, =)
is different from zero only when z is in V,—V,. Hence

O(f: g) = I’*(Taf: g)+cl(r7f’ g)+Q(T,f, g)-f—l(r,f, g) ’
where
(3.9) Mr,z, 2*) = g o(t, &, 2)o(7, 2, x*)dz .
VeV
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Consider now the functions p(z, z) and p*(z, *). Since

b(r,2, D) (v, 2z,2) = 0
when x % 2z, and
b*(t,2, D)™ (7,2,2*) = 0

when z* = 2, only derivatives of orders < u of I"and I'* really enter into
p and p*, respectively. Hence by (2.4)

p(x, 2) = O() T r="(14|or| ),
where r is the distance from « to V,, and analogously,
Pz, ) = O(1) T~ r* (14 |er* M),

where r* is the distance from z* to V,. Hence

(3.10) plx, z) = O(1) 7
and
(3.11) pH(z, x*) = 0()r =V

uniformly on Vx(V,—V,) and (V,—V;)x V, respectively. In a similar
fashion we infer from (3.4) that

(3.12) o(t, z,z) = O(1)73¢—-¥
uniformly on V,x V,, and
(3.13) o(z, x, a*) = O(1)7*4—*M
uniformly on V,x V,. Further,

o(t, 2, ) = O(1)z**¥
uniformly on V,x V,. Hence by (3.9),
(3.14) Mz, x, x*) = O(1)7%-9-2N

uniformly on V,xV,. Combining (3.10) and (3.11) with the estimate
O(1)7"¢ of |C'], we get

(3.15) ¢'(7, 2, x*) = O(1)7*d-92N

uniformly on ¥ x V. Combining (3.13), (3.14), and (3.15) it follows that
C(f, g) has a kernel

o(t, @, x*) = I'*(1, &, x*) + 0(1).’:3(1—3)_21\7 ’

O(1) being uniform on ¥V x V. Hence the desired formulas (3.2) and (3.3)
follow from (2.6) and (2.8), respectively.
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4. Estimates of Green’s function. In the introduction, Green’s transfor-
mation G, was defined for sufficiently large ¢ by

(4.1) (f}f’) = at(th’f,) s

where f e D,(S) and G, f, f' € H(8). It is clear that ||f||,2 = ¢|f|2 and hence
by (0.3),
te G [P = TGS = lalGof, G = If1IGSI

G f| = et f].
Considering @, as an operator from §, to §, we therefore have

G, < ct-1.

so that

We have already shown that if fis in H(S) then
(4.2) G f=f.
Let a,* be the complex conjugate adjoint of a, defined by
(@f.f) = (f,a*f)  (ff eHS).
If fe (S) and f' € H(S), we then have
(4.3) (Gofs a* ') = a(G f, [') = (}.[) -
Let k be a positive integer and put
CUff) = (@ f I
and b = t*a*. Then C(f, f’) is bilinear and bounded,

IO ) = elf11f]
and by virtue of (4.1),

Cef.f) = Glalf, )= (£1)  (ff eHE).
If b* is the algebraic adjoint of b, it follows from (4.3) that -
O, 6*f) = (GFf,a*f) = (£ ) (f.f €HS)).
Moreover, putting 7" = t, it is clear that
= b(t, 2, D,) = 2 b (v, x) 7 D>
has the property (2.1). Hence, applying the results of the preceding sec-
tion we see that G,* has a continuous kernel g% (z, ) with the property

(4.4) lim ¢+ ®(x, y) = 8, (2m)™ S (ayle, £)+1)*de,

t—>00

provided that 2mk > n (v = n/(2m)).
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If a,is self-adjoint, that is, if a,* = a,, then a,(f, f) = (a,f, f) = (f, &,*f)
is real when f € H(S). Hence a,(f, f) is real when f € $(S) and consequently
(Gof.f) = a,)(G,f,G,f) is real when fe§,. By virtue of (0.3) also (@, f, f)=0
when ¢ is large enough, and hence G, is a self-adjoint positive transfor-
mation. But then ¢ (z, ) = 0, and Fatou’s theorem gives

45)  lim tk‘"Sgtk(x, v)de = (2n)—"§ de(aO z, &)+ 1)*dE |
8 $

It remains to prove the converse inequality.

Let S be an open set in 7' containing the closure of S, and let G, be
Green’s transformation corresponding to §. By virtue of (4.1) we have

(@, ) = a(Gof, G f) = sup |(f, 9)I*a,(g,9) (g€ DH(S)

Since @(S.) contains §(S) this means that

Gof. ) < (Guf. f) = (BG.f,f)  (fe9HulS)),

where E is the projection of §,(S) upon $(S). Hence all the eigenvalues
of G, taken in descending order are less than or equal to the corresponding
eigenvalues of the restriction I, = EG.E of G, to H,(S). Hence

tr GF < tr I'F

for all k. We want to obtain an estimate for the right side.

To begin with, it is clear that the bilinear forms (G/*f,f’)¢* and

IFf, f)t* both satisfy the requirements of the preceding section with
respect to the differential operator b= * and the regions § and S,
respectively. In particular, I,* has a kernel y,(’”)(x y) which is continuous
when 2mk > n and satisfies

(4.6) lim 7y ®(x, ©) = (27)™" S (ay(x, &)+1)7*dk .

The kernel y,(z,y) of I, is the restriction of the kernel g,(z, y) of @, to
S, and hence from (3.2) we get the estimate

v, y) = 710(1) e(v(@—y)) (1+|r(@—y)|N) "

with arbitrary N = 0 and 1 > ¢ > 0, uniformly on §x§ for large ¢
(v*™ =t). Here e(x) = 1 if 2m—n > 0, and e(x) = |z|*”"° otherwise.
By virtue of this estimate and Fubini’s theorem, the kernel of I')* is

7P, y) = g 4@ Y1) W Yo) - VW1 Y)Yy - Yy
Sk—1
Putting y = x and y; = x+77'2; we get
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0 < tF79,B(a, 2)

< O(I)Se(zl)e(zl——zz). e(z) (L) (12— )
(1+ lzk_llN)—l dzl e dzk_l .
If 2mk > n, we can make the right side finite by choosing N large enough

and ¢ so small that 2mk—ek > n. Combining this formula with (4.7) and
applying Lebesgue’s theorem it follows that

lim ¢ { 7O, o)t = @) | da{ (aqle, &) + 1) 4z
£ 5
Since y,®(x, y) is a continuous and positive kernel, the integral on the

left side is the trace of I, and hence

m 5~ tr F < (27) ™"\ da\ (a,(x, &)+1)7*dE .
0

5
It follows form this formula and (4.5) that
(4.7) lim £~ tr G} = (27)" g dz S (ag(a, &)+1)*de
t—>00 :S’

when 2mk > n .

Since G, is self-adjoint and positive, there exists a complete system
@1, P, - .. of eigenfunctions of G, (¢t fixed) with positive eigenvalues
(A48t = (A,+1t)"t = .. .. In view of the properties of G,, a necessary
and sufficient condition that ¢ € , and G,p = (A+¢)~'¢ is that p €
and that (A4t)(p,f) = a,(p, f) for all f in . Hence G,p = (A+1)"1p
implies G,p = (A+5)~'@ and conversely if ¢ and s are large enough. Hence

Gp; = (4i+8) g,

for all t. Moreover, (1;+1)(¢;, f) = a,(¢;, f) means that (g;, (4;—a)f) = 0
when f is in H(S), and consequently by Schwartz’s theorem on weak
solutions of elliptic differential equations [10] and John’s construction of
a fundamental solution, g; is infinitely differentiable and

ap; = A;@; .
Suppose now for a moment that we have shown that
(4.8) 9P, y) = X (A1) ;@) (y)
when 2mk > n. Then
(4.9) Sg;’c)(x, x)dw = X (A4t = tr GF.

8
Let us consider the integral
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w,® (@) = (2m)™ S (ap@, &)+ 1)*de .

Introducing polar coordinates in the integral by the formula dé = dg"dw,
where 0*™ = a,(z, £), we get, since dw(£) is homogeneous of order zero,

w, (@) = g dg:id@nde=de,

. o/
ap(x, <1 0

and consequently
0D (@) = w,(@) @) (@ 1) g =

= w,(x) (2m) " (v+1) I'(k—v) (k).
Hence, by (4.4) and (4.8)

(4.10) 2 (A4t @)e;(y)
— (28, wa(@) T v+ 1) (k—) (I (k)¢ (140(1)) .

Putting = y and integrating, we obtain by virtue of (4.9) and (4.7),

X (A1) = (27) " w,(8) Lo+ D) (ke —) (I'(k)) ¢~ (14-0(1)),

where w,(S) = {w,(x)dz.

By application of a Tauberian theorem of Hardy and Littlewood [4]
in the formulation of Pleijel [9], we arrive at the desired formula (0.6)
of the introduction. Applying the same theorem to (4.4) with x = y we get

(4.11) g, = 2w )t (1o(1),
and applying it to
2 (0* |%~(x)+0¢, )l
= (27)"(w,(x)+w,(y)) I (v+1)I( )(L(k)) ™ #7F (140(1))

(6] = 1), which when z = y follows from (4.4), we obtain
(4.12) 3 |g; (@) + 0p;(y)* = (27) " (wa(@)+w,(y) ' (1+o(1)) (6] =1).
pst

The validity of the formulas (4.11), (4.12) and (0.5) prove the desired for-
mula (0.7).

It remains to prove that (4.8) holds. Consider the kernel gP(x, ).
Locally it is O(1) in 8x 8 if 2mk > n and O (1) lx—y|?™*-"=¢ if 2mk < n.
Hence, if 2mk—n—e > —3in, that is, if 2mk > {n--¢, the integral

{196 y)edy
14
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is finite provided that V is contained in §. We want to prove that also

(4.13) ﬂlg"‘)(x y)Pdy < oo
K

Let us put C(f, g) = t*(G,*f, 7) and b = t*a*, and apply the methods of
the preceding section. Let U be an open subset of S whose closure U is con-
tained in S and choose another open set U, such that U < U, < U, < S.
Let e H(U,) be 1 on U and put with large 7 = ¢/@™

q(x, z) = b(T’ 2y Dz)(F(T: z ,Z)(l—ﬂ(z))), zeU,
and

=C(q=,.),9), U,

where g € H(S—U,). If fe H(U), it follows from the properties of C' and
I" that

\r@f@de = 0(a(s.), ) = U L) 1—n0)), )
= C(fs g)—(F(T,.f’-)ﬂ(-), g) = C(f’ g) -

Now the bilinear form C has a kernel ¢(, z, z) so that the last result
can be written in the form

Sr(x)f(x)dx = Sc(r, z, 2) f(x)g(z)dxdz .

Since f is arbitrary in H(U), r is continuous and ¢ continuous when
x == z, we get

C(atw.), 9) = \e(r 2, 2)g2) 22
when z € U and g € H(S—U,). This proves that

{letr, 2, 2)2dz < 0P lg(a
s2u,
when z is in U. Because ¢, (x, y) = t *¢(7, z, y), the formula (4.13) follows
and we also see that g,® (x,.) considered as an element of §, is uniformly
continuous in # on compact subsets of §. Now by Fubini’s theorem and
the properties of G,,

G 0) = G4, 9) = [ 0%@ 21/ @) de} G122
= ({00 e ae) s
when f e H(S). This means that

Sg’(k)(x’ Z)W dz = (1j+t)—k(p]_'(i5 ’
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both sides being continuous in x. Hence, by Parseval’s formula,

(4.14) 0P@,.), 9:Py,) =2 (A4 ;@) 9 (y) .
By Fubini’s theorem

\r@T@iardy (o0 257, dz
— (@ {{ 00w ar@def {00, 2100y} = @Fs, 6lp)
= ©1.0) =9, 1@ J§) dr dy

when fis in H(S). Hence the left side of (4.14) equals ,%®(x, y), and since
¢ > 0 is arbitrary, this proves the desired formula (4.8) when 2mk > n.

10.

. E.

L.
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