ON THE ASYMPTOTIC DISTRIBUTION OF THE EIGENVALUES AND EIGENFUNCTIONS OF ELLIPTIC DIFFERENTIAL OPERATORS

LARS GARDING

Introduction. Let a = a(x, D) be a differential operator of the form

$$a(x,D) = \sum_{|\alpha| \le 2m} a_{\alpha}(x) D^{\alpha} \qquad (m \ge 1),$$

where $x = (x_1, \ldots, x_n)$ is a point in real *n*-space, $\alpha = (\alpha_1, \ldots, \alpha_n)$ is a differentiation index, $|\alpha| = \alpha_1 + \ldots + \alpha_n$, and

$$(0.1) D^{\alpha} = D_{x}^{\alpha} = i^{|\alpha|} \frac{\partial^{|\alpha|}}{\partial x_{1}^{\alpha_{1}} \dots \partial x_{n}^{\alpha_{n}}}.$$

The coefficients $a_{\alpha}(x)$ are supposed to be infinitely differentiable in an open region T, and the operator a is supposed to be elliptic so that

(0.2)
$$a_0(x,\xi) = \sum_{|\alpha|=2m} a_{\alpha}(x) \xi^{\alpha} \qquad (\xi^{\alpha} = \xi_1^{\alpha_1} \dots \xi_n^{\alpha_n})$$

is a positive definite polynomial in ξ for all x in T.

Let H = H(S) be the set of all infinitely differentiable functions vanishing outside compact subsets of an open bounded set S whose closure is contained in T. Put

$$((f,g)) = \int\limits_{S} \sum_{|lpha| \le m} f_lpha(x) \overline{g_lpha(x)} \ dx, \qquad \|f\|^2 = ((f,f)), \qquad f_lpha = D^lpha f \, ,$$

and

$$(f,g) = \int_S f(x) \overline{g(x)} dx, \qquad |f|^2 = (f,f).$$

Closing H(S) in the norm ||f|| we get a Hilbert space $\mathfrak{H} = \mathfrak{H}(S)$ which may be described roughly as the set of all functions in S having square integrable derivatives of any order $\leq m$, those of order < m vanishing at the boundary of S.

Received August 3, 1953.

¹ The assumptions on the differential operator a may be weakened by considering it only in S and by letting the coefficients be only sufficiently differentiable, but we do not go into the details.

Consider (af, g) where f and g are in H(S). By integrations by parts it may be written in the form

$$a(f,g) = \int_{S} \sum a_{\alpha\beta}'(x) f_{\alpha}(x) \overline{g_{\beta}(x)} dx \qquad (|\alpha| \leq m, |\beta| \leq m),$$

and hence it is obviously a bounded function of f and g in \mathfrak{H} . As shown by the author [3], the form a(f,g) is also bounded from below in the following sense. Let t be a large positive number and put

$$a_t(f, g) = a(f, g) + t(f, g)$$

and

$$((f,g))_t = ((f,g)) + t(f,g)$$
.

Then there exist a number t_0 and a number c > 0 so that²

$$(0.3) c^{-1} ((f,f))_t \le |a_t(f,f)| \le c ((f,f))_t (t > t_0)$$

for all f in \mathfrak{H} . Hence the bounded linear operator N_t from \mathfrak{H} to \mathfrak{H} defined by

 $a_t(f,f') = ((N_tf,f'))_t, \quad f,f',N_tf \in \mathfrak{F}$,

has a bounded inverse N_t^{-1} . Let $\mathfrak{F}_0 = \mathfrak{F}_0(S)$ be the set of all square integrable functions defined in S. As is easily seen, the equation

$$(f,f')=((M_tf,f'))_t, \quad f\in \mathfrak{H}_0, \quad M_tf,f'\in \mathfrak{H}_0,$$

defines a completely continuous linear operator from \mathfrak{H}_0 to \mathfrak{H} . Hence

$$(f, f') = a_t(G_t f, f'), \quad f \in \mathfrak{H}_0, \quad f' \in \mathfrak{H}$$

where $G_t = N_t^{-1}M_t$, defines a completely continuous linear operator G_t from \mathfrak{H}_0 to \mathfrak{H} which will be called Green's transformation corresponding to the differential operator $a_t = a + t$ and the linear subset \mathfrak{H} of \mathfrak{H}_0 . The reason is that G_t transforms \mathfrak{H}_0 into \mathfrak{H} and that G_t^{-1} is an extension of the differential operator a_t whose graph is the set of all pairs $\{f, a_t f\}$ where $f \in \mathfrak{H}$ is 2m times continuously differentiable and $a_t f$ is in \mathfrak{H}_0 . In fact, if h is in H we have $a_t(G_t a_t f, h) = (a_t f, h) = a_t(f, h)$ so that $G_t a_t f = f$.

Let k be an integer > 0. We shall prove that G_t^k has a kernel $g_t^{(k)}(x, y)$ so that

$$(G_t^k f, f') = \int_{S \times S} g_t^{(k)}(x, y) f(x) \overline{f'(y)} dx dy$$

$$p_t(f,f)(1-|R_t|_t) \le |q_t(f,f)| \le p_t(f,f)(1+|R_t|_t)$$
 ,

the norm $|R_t|_t$ being defined in l. c. p. 69. Now $|R_t|_t$ tends to zero with 1/t, and hence Theorem 2.2 of l. c. proves that the formula (0.3) above is true.

² In [3] the operator a is denoted by q. Introducing the operator R_t defined in the proof of Lemma 4.1 (l. c. p. 69), we may write $q_t(f, f)$ as $p_t(f + R_t f, f)$. Hence we get

when $f, f' \in H(S)$. The kernel is infinitely differentiable when $x \neq y$ and has the singularity to be expected when |x-y| is small. If 2km > n it is continuous and satisfies

(0.4)
$$\lim_{t \to \infty} t^{k-\nu} g_t^{(k)}(x, y) = \delta_{xy} (2\pi)^{-n} \int (a_0(x, \xi) + 1)^{-k} d\xi$$

where $\delta_{xy}=0$ when $x\neq y$ and $\delta_{xx}=1$ and $\nu=n/(2m)$. If a is formally self-adjoint, that is, if (af, f) is real for all f in H, then G_t is also self-adjoint,

$$\operatorname{tr} G_t^{\ k} = \int\limits_S g_t^{\ (k)}(x,x) \, dx < \infty$$

if 2mk > n, and

(0.5)
$$\lim t^{k-\nu} \operatorname{tr} G_t^{\ k} = (2\pi)^{-n} \int_S dx \int (a_0(x,\,\xi) + 1)^{-k} d\xi \ .$$

Moreover, if α is self-adjoint, there exists a set $\varphi_1, \varphi_2, \ldots$ of eigenfunctions of every G_t with eigenvalues

$$(\lambda_1+t)^{-1}$$
, $(\lambda_2+t)^{-1}$, ... $(\lambda_1 \leq \lambda_2 \leq \ldots)$.

The eigenfunctions form a complete orthonormal system in \mathfrak{H}_0 . If 2mk > nwe have

$$g_t^{(k)}(x,y) = \sum \overline{\varphi_j(x)} \, \varphi_j(y) \, (\lambda_j + t)^{-k}$$

and

$$\operatorname{tr} G_t^{k} = \sum (\lambda_i + t)^{-k}.$$

We can now apply the method of Carleman [2] to deduce some asymptotic formulas for the eigenfunctions and eigenvalues. Our last two formulas combined with (0.4) and (0.5) and a Tauberian theorem of Hardy and Littlewood [4] in the formulation of Pleijel [9] show in fact that

(0.6)
$$N(t) = \sum_{\lambda_i \le t} 1 = (2\pi)^{-n} w_a(S) t^{n/(2m)} (1 + o(1))$$

and

(0.7)
$$\lim_{N\to\infty} N^{-1} \sum_{1}^{N} \overline{\varphi_j(x)} \, \varphi_j(y) = \delta_{xy} \, w_a(x) / w_a(S) \,,$$

where

$$w_a(x) = \int\limits_{a_0(x,\xi) < 1} d\xi \quad ext{ and } \quad w_a(S) = \int\limits_S w_a(x) \ dx \ .$$

These formulas are well known in various special cases. They were stated by the author [3] with indications of a proof³ which works when 2m > n.

³ Essentially this proof has been published in detail by Browder [1].

In this paper we shall follow another line of attack to obtain the key formulas (0.4) and (0.5).

- Our results combined with those announced by Keldych [7] prove that the asymptotic formula (0.6) is true also when a is not self-adjoint, provided that we replace λ_i by $\Re \lambda_i$.
- 1. Two lemmas. We shall use the theory of generalized Fourier transforms (Schwartz [10]). Let $F = F(x) = F(x_1, \ldots, x_n)$ be an infinitely differentiable function on real n-space vanishing outside a compact set. It has a Fourier transform f given by

$$f(\xi) = \int e^{ix\xi} F(x) dx ,$$

where $x\xi = x_1\xi_1 + \ldots$ It is well known that $f(\xi) = O((1+|\xi|)^{-N})$ for every $N(|\xi| = (\xi_1^2 + \ldots)^{\frac{1}{2}})$. The inverse formula reads

$$F(x) = (2\pi)^{-n} \int e^{-ix\xi} f(\xi) d\xi$$
.

Let $a(\xi)$ be a locally integrable function which is $O(1+|\xi|^N)$ for some N>0. Then

$$A(F) = (2\pi)^{-n} \int a(\xi) \overline{f(\xi)} \, d\xi$$

defines an antilinear functional A of F called the generalized inverse Fourier transform of a. If $(2\pi)^{-n} \int |a(\xi)| d\xi = c < \infty$, the function

$$A(x) = (2\pi)^{-n} \int e^{-ix\xi} a(\xi) d\xi$$

is continuous and defined for all x, and $|A(x)| \leq c$. In this case

$$A(F) = \int A(x) \ \overline{F(x)} \ dx \ .$$

More generally, we say that A is a function A(x) in a region R if there exists a locally integrable function A(x) in R for which this equation holds when F vanishes outside a compact set in R.

Returning to the general case, let D^{α} be defined by (0.1). The derivative $D^{\alpha}A$ of A is defined by

$$D^{\alpha}A(F) = (2\pi)^{-n}\int \xi^{\alpha} a(\xi) \overline{f(\xi)} d\xi$$
,

where ξ^{α} is defined in (0.2). The product λA of A and a polynomial $\lambda(x)$ is defined by

$$\lambda A(F) = (2\pi)^{-n} \int a(\xi) \; \lambda(D_\xi) \overline{f(\xi)} \; d\xi$$
 ,

where $\lambda(D_{\xi}) = \lambda(i\partial/\partial \xi_1, \ldots, i\partial/\partial \xi_n)$.

Among the results of Schwartz we quote the following ones. If the product of A and a polynomial λ which is not zero in a region R is a function B(x) in R, then A is the function $B(x)/\lambda(x)$ in R. If all the derivatives of A are functions in a region R, then A is infinitely differentiable there and its ordinary derivatives $D^{\alpha}A(x)$ are related to $D^{\alpha}A(F)$ by the formula

$$D^{x}A(F) = \int D^{x}A(x) \ \overline{F(x)} \ dx \qquad \big(F \in H(R)\big).$$

We are now in a position to prove the following lemma.

LEMMA 1. Let $p(\xi)$ be a polynomial of degree μ whose coefficients are majorized by a number c_1 , and suppose that $|p(\xi)| \ge c_2(1+|\xi|^{\mu})$. Then the generalized inverse Fourier transform of $1/p(\xi)$ is an infinitely differentiable function P(x) in the region $x \neq 0$ satisfying

$$|D^{\alpha}P(x)| \leq C \ e_{|\alpha|}(x) \ \big(1+|x|^N\big)^{-1}, \begin{cases} e_{|\alpha|}(x) = 1 & when \ \mu-|\alpha|-n>0, \\ e_{|\alpha|}(x) = |x|^{\mu-|\alpha|-n-\epsilon} & when \ \mu-|\alpha|-n \leq 0. \end{cases}$$

Here $N \ge 0$ and $1 > \varepsilon > 0$ are arbitrary, and the number C depends on $c_1, c_2, |\alpha|, N$, and ε , but is otherwise independent of the polynomial p.

Proof. Let λ be a polynomial. Then

$$\lambda D^{x}P(F)=(2\pi)^{-n}\int \xi^{x}p^{-1}(\xi)\;\lambda(D_{\xi})\overline{f(\xi)}\;d\xi\;.$$

By virtue of the properties of p, we may integrate by parts and get

$$\lambda D^{\scriptscriptstyle \alpha} P(F) = (2\pi)^{-n} \! \int \! \overline{f(\xi)} \; \lambda (-D_\xi) \! \left(\xi^{\scriptscriptstyle \alpha} p^{-1}(\xi) \right) d\xi \; .$$

Let λ be homogeneous of degree $k \leq N$ and let its coefficients be ≤ 1 in absolute value. Let C denote a suitable number, not always the same, but depending only on $|\alpha|$, c_1 , c_2 , N, and later also on ε . It is clear that

$$\left|\lambda(-D_{\xi})\!\big(\xi^{\alpha}p^{-1}(\xi)\big)\right| \leq C(1+|\xi|)^{|\alpha|-\mu-k}.$$

Hence, if $|\alpha| - \mu < -n$ and λ has the properties stated, it follows that $\lambda D^{\alpha}P$ is a function majorized by C. This proves the first half of the lemma.

Next consider the case $|\alpha|-\mu \ge -n$. Supposing that the coefficients of λ are ≤ 1 in absolute value, we let λ be homogeneous of degree $k+n+|\alpha|-\mu$ where $1\le k\le N+1$. Then

$$|\lambda(-D_{\xi})(\xi^{\alpha}p^{-1}(\xi))| \leq C(1+|\xi|)^{-n-k},$$

and if $\lambda D^{\alpha}P$ is the function

$$(2\pi)^{-n} \int e^{-ix\xi} \; \lambda(-D_\xi) \! \left(\xi^\alpha p^{-1}(\xi)\right) d\xi \; .$$

Math. Scand. 1.

⁴ Actually, it is analytic (Schwartz [10], F. John [6]).

This function vanishes when x=0, the integrand being a sum of exact differentials, and hence we may replace $e^{-ix\xi}$ by $e^{-ix\xi}-1$ whose absolute value is less than $C|x|^{1-\varepsilon}|\xi|^{1-\varepsilon}$, so that $\lambda D^{\alpha}P$ is majorized by $C|x|^{1-\varepsilon}$.

Hence, if λ is a polynomial with the properties stated above, then $\lambda D^{\alpha}P$ is a function bounded by $C|x|^{1-\epsilon}$. The second half of the lemma follows.

The function P(x) is a fundamental solution of the differential operator $p(-D_x)$ in the sense that

$$\int P(x-y) \ p(D_y) F(y) \ dy = F(x) \ .$$

We shall express the connection between P and p by the symbolic notation

$$P(x) \sim (2\pi)^{-n} \int e^{-ix\xi} \ p^{-1}(\xi) \ d\xi \ .$$

It is clear that linear coordinate transformations preserve the sense of this formula.

Obviously, $e_{|\alpha|}(x)$ is majorized by $e_{|\alpha'|}(x)$ if $|\alpha| \leq |\alpha'|$ and x is bounded. For large |x|, $|D^{\alpha}P(x)| \leq C|x|^{-N}$ for arbitrary N, and hence we obtain from Lemma 1 the supplementary

Lemma 2. Under the hypotheses of Lemma 1, the following estimates hold:

$$|D^{\alpha}P(x)| \le C|x|^{1-\epsilon-n}(1+|x|^N)^{-1} \qquad (|\alpha| < \mu)$$

and

$$|D^{\alpha}P(x)| \leq C|x|^{-\epsilon-n}(1+|x|^N)^{-1} \qquad (|\alpha| \leq \mu).$$

Here $N \ge 0$ and $1 > \varepsilon > 0$ are arbitrary, and the number C depends on c_1, c_2, N , and ε , but is otherwise independent of the polynomial p.

2. Estimates of certain fundamental solutions. Let τ be a large positive real parameter and consider a differential operator of order μ

$$b = b(\tau, x, D_x) = \sum_{|\alpha| \le \mu} b_{\alpha}(\tau, x) \ \tau^{-|\alpha|} D_x^{\alpha},$$

where $b_{\alpha}(\tau, x)$ is a polynomial in τ^{-1} whose coefficients are infinitely differentiable functions in an open region T. It is assumed that the following polynomial in ξ

$$b_0(\tau, x, \xi) = b(\tau, x, \tau \xi) = \sum b_{\alpha}(\tau, x) \xi^{\alpha}$$

has the property that

(2.1)
$$b_0^{-1}(\infty, x, \xi) = O(1) (1 + |\xi|^{\mu})^{-1},$$

uniformly on compact subsets of T.

The algebraic adjoint b^* of b is defined by the identity

$$\int b^*f(x)f'(x)\ dx = \int f(x)\ bf'(x)\ dx, \qquad \left(f,f'\in H(T)\right).$$

It is readily seen to have the same form as b itself,

$$b^{\star}(\tau,x,D_x) = \sum_{|\alpha| \leq \mu} b_{\alpha}^{\star}(\tau,x) \; \tau^{-|\alpha|} \; D_x^{\alpha} \; ,$$

where $b_{\alpha}^{\star}(\tau, x)$ is a polynomial in τ^{-1} and $b_0^{\star}(\infty, x, \xi)$ satisfies (2.1) since, in fact, we have

(2.2)
$$b_0^*(\infty, x, \xi) = b_0(\infty, x, -\xi)$$
.

Let U be an arbitrary open subset of T whose closure \overline{U} is contained in T. When τ is large enough we are going to construct a fundamental solution Γ of the differential operator b, that is, a function $\Gamma(\tau, x, z)$ defined on $U \times U$ and having the property that

$$\int \varGamma(\tau,z,x) \ b^{\star}(\tau,x,D) f(x) \ dx = f(z) \qquad \left(f \in H(U) \right).$$

The point z is called the pole of Γ . We shall establish the estimates

(2.3)
$$\Gamma(\tau, z, x) = O(1)\tau^n e_0(\tau(x-z)) (1 + |\tau(x-z)|^N)^{-1}$$

(where $e_0(y) = |y|^{\mu - n - \varepsilon}$ when $\mu - n \leq 0$, and $e_0(y) = 1$ otherwise) and

$$(2.4) \quad D_x^{\alpha} \Gamma(\tau, z, x) = O(1) \tau^{|\alpha| + 1 - \varepsilon} |x - z|^{1 - \varepsilon - n} (1 + |\tau(x - z)|^N)^{-1} \quad (|\alpha| < \mu) .$$

In these formulas $N \ge 0$ and $1 > \varepsilon > 0$ are arbitrary, and the estimate O(1) for large τ is uniform in $U \times U$. We shall also prove that, if $\mu > n$, then

(2.5)
$$\lim_{\tau \to \infty} \tau^{-n} \Gamma(\tau, x, x) = (2\pi)^{-n} \int d\xi / b_0(\infty, x, \xi) ,$$

uniformly on the diagonal $\Delta(U \times U)$ of $U \times U$. Precisely the same estimates hold for a similarly constructed fundamental solution $\Gamma^*(\tau, x, z)$ with pole in z defined in $U \times U$ for large τ and satisfying⁵

$$\int \Gamma^{\star}(\tau, x, z) \ b(\tau, x, D) f(x) \ dx = f(z)$$

when f is in H(U). For future reference we write them down:

(2.6)
$$\Gamma^{\star}(\tau, x, z) = O(1) \tau^{n} e_{0}(\tau(x-z)) (1 + |\tau(x-z)|^{N})^{-1},$$

⁵ It is convenient to change the parts played by the last two variables in Γ and Γ^* .

$$(2.7) \ D_x^{\alpha} \Gamma^{\star}(\tau, x, z) = O(1) \tau^{|\alpha| + 1 - \epsilon} |x - z|^{1 - \epsilon - n} \left(1 + |\tau(x - z)|^N \right)^{-1} \quad (|\alpha| < \mu) ,$$

(2.8)
$$\lim_{\tau \to \infty} \tau^{-n} \Gamma^{\star}(\tau, x, x) = (2\pi)^{-n} \int d\xi / b_0^{\star}(\infty, x, \xi) .$$

By virtue of (2.2), the right sides of (2.5) and (2.8) are the same.

We shall use the current parametrix method of Hilbert [5] and E. E. Levi [8]. The parametrix is a fundamental solution $B(\tau, z, x)$ of the differential operator $b(\tau, z, -D_x)$ with its pole at z. Put

$$(2.9) \ B(\tau,z,x) \sim (2\pi)^{-n} \int e^{-i(x-z)\xi} \ b^{-1}(\tau,z,\xi) \ d\xi \sim \tau^n \ (2\pi)^{-n} \int e^{-ix'\xi} \ b^{-1}(\tau,z,\tau\xi) \ d\xi$$

where $x' = \tau(x-z)$. By virtue of (2.1) the polynomial $b(\tau, z, \tau\xi)$ never vanishes if τ is large enough, so that

$$\int B(\tau,z,x)\;b(\tau,z,\,-D_x)f(x)\;dx=f(z)\qquad \left(f\in H(T)\right).$$

Also, by virtue of (2.1), the polynomial $b(\tau, z, \tau\xi)$ satisfies the requirements of Lemma 1 on compact subsets of T. Hence by Lemma 2,

$$D_{x'}{}^{\alpha}B(\tau,z,x) = O(1)\,\tau^n\,|x'|^{1-\epsilon-n}\,(1+|x'|^N)^{-1} \qquad (|\alpha|<\mu)\,,$$

so that

(2.10)
$$D_x^{\alpha} B(\tau, z, x) = O(1) \tau^{|\alpha|+1-\epsilon} |x-z|^{1-\epsilon-n} \left(1+|\tau(x-z)|^N\right)^{-1} \quad (|\alpha|<\mu)$$
. Similarly

$$(2.11) \ \ D_x^{\alpha} B(\tau, z, x) = O(1) \tau^{|\alpha| - \varepsilon} |x - z|^{-\varepsilon - n} \left(1 + |\tau(x - z)|^N \right)^{-1} \quad (|\alpha| \le \mu) \ .$$

Both of these estimates are valid for arbitrary $N \ge 0$ and $1 > \varepsilon > 0$, uniformly for sufficiently large τ , all x and all z on any compact part of T. Let us put

$$\beta(\tau,z,x) = \big(b(\tau,z,D_x) - b(\tau,x,D_x)\big)B(\tau,z,x) ,$$

and let $u(\tau, z, x)$ be a solution of the integral equation

(2.12)
$$u(\tau, z, x) - \int_{\mathcal{U}} u(\tau, z, y) \, \beta(\tau, y, x) \, dy = \beta(\tau, z, x) \, .$$

Then

(2.13)
$$\Gamma(\tau, z, x) = B(\tau, z, x) + \int_{\tau} u(\tau, z, y) B(\tau, y, x) dy$$

is a fundamental solution in $U \times U$ (see F. John [6]). We shall investigate the possibility of solving (2.12). Writing $\beta(\tau, z, x)$ more explicitly as

$$\sum (b_{\alpha}(\tau,z)-b_{\alpha}(\tau,x)) \tau^{-|\alpha|} D_x^{\alpha} B(\tau,z,x)$$

and using (2.10) and (2.11), we get

$$eta(au,z,x)=O(1)\; au^{-\epsilon}\,|x-z|^{1-\epsilon-n}\,ig(1+| au(x-z)|^Nig)^{-1}$$

for arbitrary N and ε , uniformly when τ is large and x, z belongs to a compact part of $T \times T$. Hence the Neumann series of (2.12), namely

$$\beta(\tau, z, x) + \int_{U} \beta(\tau, z, y) \beta(\tau, y, x) dy + \dots,$$

is majorized by

$$\left(1+|\tau(x-z)|^N\right)^{-1}\left\{C\tau^{-\varepsilon}|x-z|^{1-\varepsilon-n}+(C\tau^{-\varepsilon})^2\int\limits_U|z-y|^{1-\varepsilon-n}|y-x|^{1-\varepsilon-n}dy+\ldots\right\},$$

where C is a constant. We have here used the simple inequality

$$(1 + |\tau(z-y)|^N)^{-1} (1 + |\tau(y-x)|^N)^{-1} \le (1 + |\tau(z-x)|^N)^{-1}.$$

Hence, if τ is large enough, the integral equation may be solved by its Neumann series, and we get

(2.14)
$$u(\tau, z, x) = O(1) \tau^{-\epsilon} |x - z|^{1 - \epsilon - n} (1 + |\tau(x - z)|^{N})^{-1}$$

for large τ , uniformly on $U\times U$. This estimate together with (2.13) proves the desired estimate (2.7), because, as it stands, we may clearly differentiate (2.13) with respect to x less than μ times. From (2.9) and Lemma 1 follows

(2.15)
$$B(\tau, z, x) = O(1)\tau^n e_0(\tau(x-z)) (1 + |\tau(x-z)|^N)^{-1},$$

which together with (2.12) and (2.13) gives (2.6).

It remains to prove (2.8). From (2.9) and the properties of b it follows that

$$\lim_{\tau \to \infty} \tau^{-n} B(\tau, x, x) = (2\pi)^{-n} \int d\xi / b_0(\infty, x, \xi),$$

uniformly on any compact subset of $\Delta(T \times T)$. Now if $\mu > n$, (2.15) reads

$$B(\tau, z, x) = O(1)\tau^{n} (1 + |\tau(x-z)|^{N})^{-1}.$$

Combining this with the estimate (2.14) of u, we see that τ^{-n} times the integral in (2.13) is uniformly small on $U \times U$ if τ is large enough. Hence (2.8) follows. For Γ^* the construction and the proofs are the same.

At last we remark that according to the results of F. John, $\Gamma(\tau, z, x)$ is infinitely differentiable in $U \times U$ if $x \neq z$, and if f is in H(U) then

(2.16)
$$\Gamma f(x) = \int \Gamma(\tau, z, x) f(z) dz$$

is infinitely differentiable in U. Moreover,

$$(2.17) b(\tau, x, D_x)\Gamma(\tau, z, x) = 0 (x \neq z),$$

and

$$(2.18) b(\tau, x, D_x)\Gamma f(x) = f(x).$$

Analogous results hold for $\Gamma^*(\tau, x, z)$ and

$$\Gamma^{\star}f(x) = \int \Gamma^{\star}(\tau, x, z) f(z) dz$$
.

3. Estimates of a certain kernel. Let us use the notations of the preceding section, and let $\mathfrak{F}_0(T)$ be the set of all square integrable functions on T. Assume that a bilinear form

$$C(f, g) = C(\tau, f, g)$$

is given on $\mathfrak{H}_0 \times \mathfrak{H}_0$ and that it is uniformly bounded for large τ and satisfies the identity

(3.1)
$$C(bf, g) = C(f, b^*g) = \int f(x)g(x)dx$$

on $H(T) \times H(T)$. Then we shall prove that C has a kernel $c(\tau, x, y)$,

$$C(f,g) = \int_{T \times T} c(\tau, x, y) f(x) g(y) dx dy \qquad (f, g \in H(T)),$$

which is infinitely differentiable when $x \neq y$ and satisfies

(3.2)
$$c(\tau, x, y) = O(1) \tau^n e_0(\tau(x-y)) (1 + |\tau(x-y)|^N)^{-1},$$

where as usual

$$\begin{split} e_0(z) &= |z|^{\mu-n-\varepsilon} &\quad \text{when } \mu-n \leqq 0, \\ e_0(z) &= 1 &\quad \text{when } \mu-n > 0 \;. \end{split}$$

The estimate O(1) is uniform for large τ and compact subsets of $T \times T$, but it depends on the numbers N and ε which may be chosen except for the conditions $N \ge 0$ and $1 > \varepsilon > 0$. When $\mu - n > 0$,

(3.3)
$$\lim_{\tau \to \infty} \tau^{-n} c(\tau, x, y) = (2\pi)^{-n} \delta_{xy} \int d\xi / b_0(\infty, x, \xi) ,$$

uniformly on compact subsets of $T \times T$, the symbol δ_{xy} denoting 0 when $x \neq y$ and 1 otherwise.

Let V be an arbitrary open subset of T whose closure \overline{V} is contained in T, and choose three larger telescoping open subsets V_1 , V_2 and V_3 such that $V \subset \overline{V} \subset V_1 \subset \overline{V}_1 \subset V_2 \subset \overline{V}_2 \subset V_3 \subset \overline{V}_3 \subset T$. Construct fundamental solutions Γ and Γ^* in $U = V_3$ satisfying (2.3) to (2.8). Let ψ be in $H(V_3)$ and let it be 1 on V_2 . We want to prove that

$$\begin{aligned} \varrho\left(\tau,x,x^{\star}\right) &= \varGamma^{\star}(\tau,x,x^{\star}) - \varGamma(\tau,x,x^{\star}) \\ &= \int\limits_{V_{3}-V_{2}} \varGamma(\tau,x,z) \; b^{\star}(\tau,z,D_{z}) \big(\psi(z) \varGamma^{\star}(\tau,z,x) \big) dz \; . \end{aligned}$$

when x and x^* are in V_2 . This formula in another form is due to F. John [6], but for the convenience of the reader we give a proof.

First let $x \neq x^*$ and choose three open telescoping neighborhoods W, W_1 and W_2 of x^* such that $\overline{W} \subset W_1 \subset \overline{W}_1 \subset W_2 \subset \overline{W}_2 \subset V_2$ and \overline{W}_2 does not contain x (see the figure).

The shaded rings are those where the corresponding functions are ± 0 and ± 1 . Each function equals 1 inside its ring and 0 outside it.

Let $\varphi \in H(W_1)$ be 1 on W and $\varphi_1 \in H(W_2)$ be 1 on W_1 . Put $f(z) = \Gamma(\tau, x, z)$ and $f^*(z) = \Gamma^*(\tau, z, x^*)$. Then, by the properties of Γ and Γ^* ,

$$\left[f,b^{\star}\big((\psi-\varphi)f\big)\right]=f^{\star}(x) \qquad \left(\left[f,g\right]=\int f(x)g(x)dx\right).$$

Since $b^{\star}f^{\star}=0$ except at the point z=x, the left side can be written as

$$[f, b^*(\psi f^*)] + [f, b^*(1-\varphi)f^*].$$

But

 $[f,\,b^{\star}(1-\varphi)f^{\star}] = [\varphi_1f,\,b^{\star}(1-\varphi)f^{\star}] = [b\varphi_1f,\,(1-\varphi)f^{\star}] = [b\varphi_1f,f^{\star}] = f(x^{\star})\,,$ and hence

$$f^{\star}(x) - f(x^{\star}) = [f, b^{\star}(\psi f^{\star})],$$

which is the formula (3.4). By continuity, the formula just proved is valid also when $x = x^*$. This shows that ϱ is infinitely differentiable on $V_2 \times V_2$. Put

$$\Gamma^{\star}(\tau, f, g) = \int \Gamma^{\star}(\tau, x, x^{\star}) f(x) g(x^{\star}) dx dx^{\star}$$

and

$$C'(f,g) = C(f,g) - \varGamma^\star(\tau,f,g)$$
 .

By virtue of (2.4) with $|\alpha| = 0$, the norm

$$|C'| = \sup |C'(f,g)| \ |f|^{-1}|g|^{-1} \qquad \left(|f|^2 = \int\limits_{V_2} |f(x)|^2 dx; \quad f,g \in \mathfrak{F}_0(V_3)\right)$$

of the bilinear form C' is $O(1)\tau^{1-\epsilon}$. Moreover, by the properties of Γ^* ,

$$C'(bf, g) = [f, g] - [f, g] = 0$$
,

and if $\Gamma(\tau, f, g)$ and $\varrho(\tau, f, g)$ are defined in analogy to the above definition of $\Gamma^{\star}(\tau, f, g)$,

$$C'(f,b^\star g) = C(f,b^\star g) - \varGamma(\tau,f,b^\star g) - \varrho(\tau,f,b^\star g) = -\varrho(\tau,f,b^\star g)$$

on $H(V_2) \times H(V_2)$. Put

$$(3.5) p(x,z) = b(\tau,z,D_z) (\Gamma(\tau,x,z)(1-\varphi(z)))$$

and

$$(3.6) p^{\star}(z, x^{\star}) = b(\tau, z, D_z) \left(\Gamma^{\star}(\tau, z, x^{\star}) (1 - \varphi(z)) \right),$$

where $\varphi \in H(V_2)$ and equals 1 on V_1 . For given x and x^* in V_1 , the functions p(x, z) and $p^*(z, x^*)$ vanish except on the ring $V_2 - V_1$. Put further

(3.7)
$$c'(\tau, x, x^*) = C'(p(x, .), p^*(., x^*)).$$

By the continuity of p, p^* and C',

$$c'(\tau,f,g) = \int c'(\tau,x,x^\star) f(x) g(x^\star) dx dx^\star = C'(f - b\varphi \Gamma f,g - b^\star \varphi \Gamma^\star g) \;,$$

where f and g are in H(V),

$$\Gamma f(z) = \int \Gamma(\tau, x, z) f(x) dx$$
,

and

$$\Gamma^{\star}g(z) = \int \Gamma^{\star}(\tau, z, x^{\star})g(x^{\star})dx^{\star} .$$

By the properties of C',

$$c'(\tau, f, g) = C'(f, g) + \varrho(\tau, f, b^* \varphi \Gamma^* g)$$
.

Now

$$\begin{split} b^{\star}\varphi \varGamma^{\star}g(z) &= b^{\star}(\tau,z,D_z) \big(\varphi(z) \int \varGamma^{\star}(\tau,z,x^{\star}) g(x^{\star}) dx^{\star} \big) \\ &= g(z) + \int b^{\star}(\tau,z,D_z) \big(\varphi(z) \varGamma^{\star}(\tau,z,x^{\star}) \big) g(x^{\star}) dx^{\star}, \end{split}$$

where the kernel

(3.8)
$$\sigma(\tau, z, x^*) = b^*(\tau, z, D_z) (\varphi(z) \Gamma^*(\tau, z, x^*))$$

is different from zero only when z is in $V_2 - V_1$. Hence

$$C(f,g) = \Gamma^{\star}(\tau,f,g) + c'(\tau,f,g) + \varrho(\tau,f,g) + \lambda(\tau,f,g)$$
 ,

where

(3.9)
$$\lambda(\tau, x, x^{\star}) = \int_{V_2-V_1} \varrho(\tau, x, z) \sigma(\tau, z, x^{\star}) dz.$$

Consider now the functions p(x, z) and $p^*(z, x^*)$. Since

$$b(\tau, z, D_z) \Gamma(\tau, x, z) = 0$$

when $x \neq z$, and

$$b^{\star}(\tau, z, D_z) \Gamma^{\star}(\tau, z, x^{\star}) = 0$$

when $x^* \neq z$, only derivatives of orders $< \mu$ of Γ and Γ^* really enter into p and p^* , respectively. Hence by (2.4)

$$p(x, z) = O(1) \tau^{1-\epsilon} r^{1-\epsilon-n} (1 + |\tau r|^N)^{-1},$$

where r is the distance from x to V_1 , and analogously,

$$p(z,x) = O(1) \tau^{1-\varepsilon} r^{\star 1-\varepsilon-n} (1+|\tau r^{\star}|^{N})^{-1},$$

where r^* is the distance from x^* to V_1 . Hence

$$(3.10) p(x,z) = O(1) \tau^{1-\epsilon-N}$$

and

$$(3.11) p^{\star}(z, x^{\star}) = O(1) \tau^{1-\varepsilon-N}$$

uniformly on $V \times (V_2 - V_1)$ and $(V_2 - V_1) \times V$, respectively. In a similar fashion we infer from (3.4) that

(3.12)
$$\rho(\tau, x, z) = O(1)\tau^{2(1-\epsilon)-N}$$

uniformly on $V_1 \times V_2$, and

(3.13)
$$\varrho(\tau, x, x^*) = O(1)\tau^{2(1-\varepsilon-N)}$$

uniformly on $V_1 \times V_1$. Further,

$$\sigma(\tau, z, x) = O(1)\tau^{1-\varepsilon-N}$$

uniformly on $V_2 \times V_1$. Hence by (3.9),

$$\lambda(\tau, x, x^{\star}) = O(1)\tau^{3(1-\varepsilon)-2N}$$

uniformly on $V_1 \times V_1$. Combining (3.10) and (3.11) with the estimate $O(1) \tau^{1-\epsilon}$ of |C'|, we get

(3.15)
$$c'(\tau, x, x^*) = O(1)\tau^{3(1-\varepsilon)-2N}$$

uniformly on $V \times V$. Combining (3.13), (3.14), and (3.15) it follows that C(f, g) has a kernel

$$c(\tau, x, x^*) = \Gamma^*(\tau, x, x^*) + O(1)\tau^{3(1-\varepsilon)-2N}$$
,

O(1) being uniform on $V \times V$. Hence the desired formulas (3.2) and (3.3) follow from (2.6) and (2.8), respectively.

4. Estimates of Green's function. In the introduction, Green's transformation G_t was defined for sufficiently large t by

$$(4.1) (f, f') = a_t(G_t f, f'),$$

where $f \in \mathfrak{H}_0(S)$ and $G_t f, f' \in \mathfrak{H}(S)$. It is clear that $||f||_t^2 \ge t |f|^2$ and hence by (0.3),

$$|tc^{-1}|G_tf|^2 \le c^{-1}||G_tf||_t^2 \le |a_t(G_tf, G_tf)| \le |f||G_tf|,$$

so that

$$|G_t f| \le c t^{-1} |f|.$$

Considering G_t as an operator from \mathfrak{H}_0 to \mathfrak{H}_0 we therefore have

$$|G_t| \leq c t^{-1}$$
.

We have already shown that if f is in H(S) then

$$(4.2) G_t a_t f = f.$$

Let a_t^* be the complex conjugate adjoint of a_t defined by

$$(a_t f, f') = (f, a_t^* f') \qquad (f, f' \in H(S)).$$

If $f \in \mathfrak{H}(S)$ and $f' \in H(S)$, we then have

$$(4.3) (G_t f, a_t^* f') = a_t (G_t f, f') = (f, f').$$

Let k be a positive integer and put

$$C(f, f') = (G_t^k f, \overline{f}') t^k$$

and $b = t^{-k}a_t^{\ k}$. Then C(f, f') is bilinear and bounded,

$$|C(f,f')| \leq c|f||f'|$$
,

and by virtue of (4.1),

$$C(bf, f') = (G_t^k a_t^k f, \bar{f}') = (f, \bar{f}') \quad (f, f' \in H(S)).$$

If b^* is the algebraic adjoint of b, it follows from (4.3) that

$$C(f, b^*f') = (G_t^k f, a_t^{*k} \bar{f}') = (f, \bar{f}') \qquad (f, f' \in H(S)).$$

Moreover, putting $\tau^{2m} = t$, it is clear that

$$b = b(\tau, x, D_x) = \sum b_{\alpha}(\tau, x) \tau^{-|\alpha|} D_x^{\alpha}$$

has the property (2.1). Hence, applying the results of the preceding section we see that G_t^k has a continuous kernel $g_t^{(k)}(x, y)$ with the property

(4.4)
$$\lim_{t\to\infty} t^{k-\nu} g_t^{(k)}(x,y) = \delta_{xy} (2\pi)^{-n} \int (a_0(x,\xi)+1)^{-k} d\xi ,$$

provided that 2mk > n $(\nu = n/(2m))$.

If a_t is self-adjoint, that is, if $a_t^* = a_t$, then $a_t(f,f) = (a_tf,f) = (f,a_t^*f)$ is real when $f \in H(S)$. Hence $a_t(f,f)$ is real when $f \in \mathfrak{H}(S)$ and consequently $(G_tf,f) = a_t(G_tf,G_tf)$ is real when $f \in \mathfrak{H}_0$. By virtue of (0.3) also $(G_tf,f) \ge 0$ when t is large enough, and hence G_t is a self-adjoint positive transformation. But then $g_t^{(k)}(x,x) \ge 0$, and Fatou's theorem gives

$$(4.5) \qquad \underline{\lim} \ t^{k-r} \int_{\mathcal{S}} g_t^{\ k}(x,x) dx \geqq (2\pi)^{-n} \int_{\mathcal{S}} dx \int (a_0(x,\,\xi)+1)^{-k} d\xi \ .$$

It remains to prove the converse inequality.

Let \dot{S} be an open set in T containing the closure of S, and let \dot{G}_t be Green's transformation corresponding to \dot{S} . By virtue of (4.1) we have

$$(G_t f, f) = a_t(G_t f, G_t f) = \sup |(f, g)|^2 / a_t(g, g) \quad (g \in \mathfrak{H}(S)).$$

Since $\mathfrak{H}(\dot{S})$ contains $\mathfrak{H}(S)$ this means that

$$(G_t f, f) \leq (\dot{G}_t f, f) = (E \dot{G}_t f, f) \quad (f \in \mathfrak{F}_0(S)),$$

where E is the projection of $\mathfrak{F}_0(\dot{S})$ upon $\mathfrak{F}_0(S)$. Hence all the eigenvalues of G_t taken in descending order are less than or equal to the corresponding eigenvalues of the restriction $\Gamma_t = E\dot{G}_tE$ of \dot{G}_t to $\mathfrak{F}_0(S)$. Hence

$$\operatorname{tr} G_t^{\,k} \leq \operatorname{tr} \Gamma_t^{\,k}$$

for all k. We want to obtain an estimate for the right side.

To begin with, it is clear that the bilinear forms $(\dot{G}_t{}^k f, \bar{f}') t^k$ and $(\Gamma_t{}^k f, \bar{f}') t^k$ both satisfy the requirements of the preceding section with respect to the differential operator $b = t^{-k} a_t{}^k$ and the regions \dot{S} and S, respectively. In particular, $\Gamma_t{}^k$ has a kernel $\gamma_t{}^{(k)}(x,y)$ which is continuous when 2mk > n and satisfies

(4.6)
$$\lim t^{k-\nu} \gamma_t^{(k)}(x, x) = (2\pi)^{-n} \int (a_0(x, \xi) + 1)^{-k} d\xi.$$

The kernel $\gamma_t(x, y)$ of Γ_t is the restriction of the kernel $\dot{g}_t(x, y)$ of \dot{G}_t to S, and hence from (3.2) we get the estimate

$$\gamma_t(x, y) = t^{\nu-1} O(1) e(\tau(x-y)) (1 + |\tau(x-y)|^N)^{-1}$$

with arbitrary $N \ge 0$ and $1 > \varepsilon > 0$, uniformly on $S \times S$ for large t $(\tau^{2m} = t)$. Here e(x) = 1 if 2m - n > 0, and $e(x) = |x|^{2m - n - \varepsilon}$ otherwise. By virtue of this estimate and Fubini's theorem, the kernel of Γ_t^k is

$$\gamma_t^{(k)}(x, y) = \int_{sk-1} \gamma_t(x, y_1) \gamma_t(y_1, y_2) \dots \gamma_t(y_{k-1}, y) dy_1 \dots dy_{k-1}.$$

Putting y = x and $y_j = x + \tau^{-1}z_j$ we get

$$\begin{split} 0 & \leqq t^{k-\nu} \gamma_t^{(k)}(x,x) \\ & \leqq O(1) \int e(z_1) e(z_1 - z_2) \dots e(z_{k-1}) \left(1 + |z_1|^N \right)^{-1} \left(1 + |z_1 - z_2|^N \right)^{-1} \dots \\ & \qquad \qquad (1 + |z_{k-1}|^N)^{-1} \, dz_1 \dots dz_{k-1} \, . \end{split}$$

If 2mk > n, we can make the right side finite by choosing N large enough and ε so small that $2mk - \varepsilon k > n$. Combining this formula with (4.7) and applying Lebesgue's theorem it follows that

$$\lim\, t^{k-\mathbf{r}} \int\limits_S \gamma_t^{(k)}(x,\,x) \, dx = (2\pi)^{-n} \int\limits_S dx \int \big(a_0(x,\,\xi) + 1\big)^{-k} \, d\xi \; .$$

Since $\gamma_t^{(k)}(x, y)$ is a continuous and positive kernel, the integral on the left side is the trace of Γ_t^k , and hence

$$\overline{\lim} \ t^{k-\nu} \ \mathrm{tr} \ G_t^{\ k} \leqq (2\pi)^{-n} \int\limits_S dx \Bigl\backslash \bigl(a_0(x,\,\xi) + 1\bigr)^{-k} d\xi \ .$$

It follows form this formula and (4.5) that

(4.7)
$$\lim_{t \to \infty} t^{k-\nu} \operatorname{tr} G_t^{\ k} = (2\pi)^{-n} \int_{S} dx \int (a_0(x,\xi) + 1)^{-k} d\xi$$

when 2mk > n.

Since G_t is self-adjoint and positive, there exists a complete system $\varphi_1, \varphi_2, \ldots$ of eigenfunctions of G_t (t fixed) with positive eigenvalues $(\lambda_1+t)^{-1} \geq (\lambda_2+t)^{-1} \geq \ldots$ In view of the properties of G_t , a necessary and sufficient condition that $\varphi \in \mathfrak{H}_0$ and $G_t \varphi = (\lambda+t)^{-1} \varphi$ is that $\varphi \in \mathfrak{H}_0$ and that $(\lambda+t)(\varphi,f) = a_t(\varphi,f)$ for all f in \mathfrak{H}_0 . Hence $G_t \varphi = (\lambda+t)^{-1} \varphi$ implies $G_s \varphi = (\lambda+s)^{-1} \varphi$ and conversely if t and s are large enough. Hence

$$G_t \varphi_i = (\lambda_i + t)^{-1} \varphi_i$$

for all t. Moreover, $(\lambda_j+t)(\varphi_j,f)=a_t(\varphi_j,f)$ means that $(\varphi_j,(\lambda_j-a)f)=0$ when f is in H(S), and consequently by Schwartz's theorem on weak solutions of elliptic differential equations [10] and John's construction of a fundamental solution, φ_i is infinitely differentiable and

$$a\varphi_i=\lambda_i\varphi_i$$
.

Suppose now for a moment that we have shown that

(4.8)
$$g_t^{(k)}(x, y) = \sum (\lambda_i + t)^{-k} \overline{\varphi_i(x)} \varphi_i(y)$$

when 2mk > n. Then

(4.9)
$$\int_{S} g_t^{(k)}(x,x)dx = \sum (\lambda_j + t)^{-k} = \operatorname{tr} G_t^{k}.$$

Let us consider the integral

$$w_a^{(k)}(x) = (2\pi)^{-n} \int (a_0(x,\xi) + 1)^{-k} d\xi$$
.

Introducing polar coordinates in the integral by the formula $d\xi = d\varrho^n d\omega$, where $\varrho^{2m} = a_0(x, \xi)$, we get, since $d\omega(\xi)$ is homogeneous of order zero,

$$w_a(x) = \int\limits_{a_0(x,\,\xi)<1} d\xi = \int\limits_0^1 d\varrho^n \int d\omega = \int d\omega \; ,$$

and consequently

$$\begin{split} & w_a^{\;(k)}(x) = w_a(x) \, (2\pi)^{-n} \! \int\limits_0^\infty (\varrho^{2m} \! + \! 1)^{-k} d\varrho^n = \\ & = w_a(x) \, (2\pi)^{-n} \Gamma(\nu \! + \! 1) \, \Gamma(k \! - \! \nu) (\Gamma(k))^{-1} \, . \end{split}$$

Hence, by (4.4) and (4.8)

Putting x = y and integrating, we obtain by virtue of (4.9) and (4.7),

$$\varSigma\left(\lambda_{j}+t\right)^{-k}=\left(2\pi\right)^{-n}w_{\boldsymbol{a}}(S)\,\varGamma(\boldsymbol{v}+1)\varGamma(k-\boldsymbol{v})\big(\varGamma(k)\big)^{-1}t^{\boldsymbol{v}-k}\big(1+o(1)\big),$$

where $w_a(S) = \int_S w_a(x) dx$.

By application of a Tauberian theorem of Hardy and Littlewood [4] in the formulation of Pleijel [9], we arrive at the desired formula (0.6) of the introduction. Applying the same theorem to (4.4) with x = y we get

(4.11)
$$\sum_{\lambda_j \le t} |\varphi_j(x)|^2 = (2\pi)^{-n} w_a(x) t^r (1 + o(1)),$$

and applying it to

$$\begin{split} & \Sigma (\lambda_j + t)^{-k} |\varphi_j(x) + \theta \varphi_j(y)|^2 \\ &= (2\pi)^{-n} \big(w_a(x) + w_a(y) \big) \Gamma(\nu + 1) \Gamma(k - \nu) \big(\Gamma(k) \big)^{-1} t^{\nu - k} \big(1 + o(1) \big) \end{split}$$

 $(|\theta|=1)$, which when $x \neq y$ follows from (4.4), we obtain

$$(4.12) \, \sum_{\lambda_j \leq t} |\varphi_j(x) + \theta \varphi_j(y)|^2 = (2\pi)^{-n} \big(w_a(x) + w_a(y) \big) \, t^r \big(1 + o(1) \big) \quad (|\theta| \, = \, 1) \; .$$

The validity of the formulas (4.11), (4.12) and (0.5) prove the desired formula (0.7).

It remains to prove that (4.8) holds. Consider the kernel $g_t^{(k)}(x,y)$. Locally it is O(1) in $S \times S$ if 2mk > n and $O(1)|x-y|^{2mk-n-\varepsilon}$ if $2mk \le n$. Hence, if $2mk-n-\varepsilon > -\frac{1}{2}n$, that is, if $2mk > \frac{1}{2}n+\varepsilon$, the integral

$$\int\limits_V |g_t^{(k)}(x,\,y)|^2\,dy$$

is finite provided that \overline{V} is contained in S. We want to prove that also

(4.13)
$$\int_{S} |g_{t}^{(k)}(x, y)|^{2} dy < \infty.$$

Let us put $C(f,g)=t^k(G_t{}^kf,\bar{g})$ and $b=t^{-k}a_t{}^k$, and apply the methods of the preceding section. Let U be an open subset of S whose closure \overline{U} is contained in S and choose another open set U_1 such that $\overline{U}\subset U_1\subset \overline{U}_1\subset S$. Let $\eta\in H(U_1)$ be 1 on U and put with large $\tau=t^{1/(2m)}$

$$q(x,z) = b(\tau,z,D_z) \big(\varGamma(\tau,x,z) (1-\eta(z)) \big), \qquad x \in U \; ,$$

and

$$r(x) = C(q(x, \cdot), g), \quad x \in U$$

where $g \in H(S - \overline{U}_1)$. If $f \in H(U)$, it follows from the properties of C and Γ that

$$\int r(x)f(x)dx = C(q(f,.), g) = C(b(\Gamma(\tau, f,.)(1-\eta(.)), g)$$

= $C(f, g) - (\Gamma(\tau, f,.)\eta(.), g) = C(f, g)$.

Now the bilinear form C has a kernel $c(\tau, x, z)$ so that the last result can be written in the form

$$\int r(x)f(x)dx = \int c(\tau, x, z)f(x)g(z)dxdz.$$

Since f is arbitrary in H(U), r is continuous and c continuous when $x \neq z$, we get

$$C(q(x,.),g) = \int c(\tau, x, z)g(z)dz$$

when $x \in \overline{U}$ and $g \in H(S - \overline{U}_1)$. This proves that

$$\int_{S-U_1} |c(\tau, x, z)|^2 dz \le |C|^2 |q(x, .)|^2$$

when x is in U. Because $g_t^{(k)}(x,y) = t^{-k}c(\tau,x,y)$, the formula (4.13) follows and we also see that $g_t^{(k)}(x,.)$ considered as an element of \mathfrak{F}_0 is uniformly continuous in x on compact subsets of S. Now by Fubini's theorem and the properties of G_t ,

$$(\lambda_j + t)^{-k}(f, \varphi_j) = (G_t^k f, \varphi_j) = \int \left\{ \int g_t^{(k)}(x, z) f(x) dx \right\} \overline{\varphi_j(z)} dz$$
$$= \int \left\{ \int g_t^{(k)}(x, z) \overline{\varphi_j(z)} dz \right\} f(x) dx$$

when $f \in H(S)$. This means that

$$\int g_t^{(k)}(x,z)\,\overline{\varphi_j(z)}\,dz = (\lambda_j + t)^{-k}\,\overline{\varphi_j(x)}$$
 ,

both sides being continuous in x. Hence, by Parseval's formula,

(4.14)
$$(g_t^{(k)}(x,.), g_t^{(k)}(y,.)) = \sum (\lambda_i + t)^{-2k} \overline{\varphi_i(x)} \varphi_i(y) .$$

By Fubini's theorem

$$\begin{split} & \int \!\! f(x)\overline{f(y)}\,dx\,dy \int \!\! g_t^{(k)}(x,z)\,\overline{g_t^{(k)}(y,z)}\,dz \\ = & \int \!\! dz \left\{ \!\! \int \!\! g_t^{(k)}(x,z)f(x)\,dx \!\! \right\} \!\! \left\{ \!\! \int \!\! g_t^{(k)}(y,z)f(y)dy \!\! \right\} = (G_t^{\ k}f,\,G_t^{\ k}f) \\ = & (G_t^{\ 2k}f,f) = \int \!\! g_t^{(2k)}(x,y)f(x)\overline{f(y)}\,dx\,dy \end{split}$$

when f is in H(S). Hence the left side of (4.14) equals $g_t^{(2k)}(x, y)$, and since $\varepsilon > 0$ is arbitrary, this proves the desired formula (4.8) when 2mk > n.

BIBLIOGRAPHY

- F. E. Browder, Le problème des vibrations pour un opérateur aux dérivées partielles self-adjoint et du type elliptique à coefficients variables, C. R. Acad. Sci. Paris 236 (1953), 2140-2142.
- T. Carleman, Propriétés asymptotiques des fonctions fondamentales des membranes vibrantes, Åttonde skand. matematikerkongressen i Stockholm 1934, 34–44.
- L. Gårding, Dirichlet's problem for linear elliptic partial differential equations, Math. Scand. 1 (1953), 55–72.
- 4. G. H. Hardy and J. E. Littlewood, Notes on the theory of series (XI): On Tauberian theorems, Proc. London Math. Soc. (2) 30 (1930), 23-27.
- D. Hilbert, Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen (Sechste Mitteilung), Nachr. Ges. Wiss. Göttingen Math.-Phys. Kl. 1910, 355-417.
- F. John, General properties of solutions of linear elliptic partial differential equations, Proc. of the symposium on spectral theory and differential problems, Stillwater, Okla., 1951, 113-175.
- M. V. Keldych, On the eigenvalues and eigenfunctions of some classes of non-selfadjoint equations, Doklady Akad. Nauk SSSR 77 (1951), 11-14. (Russian.)
- E. E. Levi, Sulle equazioni lineari totalmente ellittiche alle derivate parziali. Rend. Circ. Mat. Palermo 24 (1907), 275–317.
- Åke Pleijel, Propriétés asymptotiques des fonctions et valeurs propres de certains problèmes de vibrations, Ark. Mat. Astr. Fys. 27 A, No 13 (1940), 100 pp.
- 10. L. Schwartz, Théorie des distributions I-II, Paris, 1950-51.

UNIVERSITY OF LUND, SWEDEN