MATH. SCAND. 1 (1953)

THE THEORY OF METRIC SPACES APPLIED
TO INFINITELY DIFFERENTIABLE FUNCTIONS

THOGER BANG

1. An infinitely differentiable function f(x) of a real variable has at
each point ¢ an element (in the sense of Weierstrass), viz. the sequence
{f™(a)} consisting of the value of the function and the values of its deri-
vatives at that point. This element varies with a. Its variation depends
on the derivatives of the function, and if these are restricted in some
way, the variation of the element will be restricted. Thus the problem of
quasi-analytic functions, as posed by Hadamard, consists in finding con-
ditions for the bounds of the derivatives in order that the function be
uniquely determined when one of its elements is given. This is the case
when in Taylor’s formula the remainder term corresponding to a certain
derivative f™(x) tends to zero as n — oo, so that the function is analytic.
The difficulties in the general case arise from the fact that a remainder
term, in order to be small enough, cannot be expressed in terms of one
derivative only, but must contain several derivatives.

In order to study the variation of the elements, we organize the set of
elements as a metric space. Restrictions on the derivatives can be ex-
pressed in a simple way in this metric. We shall apply this to prove
results on infinitely differentiable functions. An outline of the present
article was given in [3].

In § 2 we define a norm in the vectorspace of numerical sequences and
state its main properties. The norm makes the space a metric space in
the sense of Fréchet; it would be desirable to make it a Banach space,
but it seems difficult to perform this in a way suitable for our purpose.
In § 3 we apply this norm to the elements. We suppose that the deriva-
tives are bounded uniformly in z, |f™(z)| =< m,, where {m,,} is a sequence
of positive numbers which also enter in the definition of the norm, and
then we prove an inequality that is fundamental for our applications.
In § 4 we prove the necessity of a condition on the sequence {m,} in order
that f(z) might have an element in common with the zero-function with-
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out being identically zero. Thus, we prove the more difficult half of the
Denjoy-Carleman theorem, which gives the answer to the above-men-
tioned problem of quasi-analytic functions. In § 5 we suppose this condi-
tion to be satisfied and investigate how fast f(x) can deviate from the
zero-function.

In the rest of the article we suppose that the above condition is not
satisfied so that the functions are quasi-analytic. We also suppose that
the sequence {m,} is logarithmically convex; this is not essential for the
method, but it simplifies the notations (in § 6 it is mentioned how a theo-
rem would read without this assumption). In § 6 we give a procedure
which generates the (uniquely determined) function from one of its ele-
ments. In particular, for an analytic function the procedure may pro-
duce the values outside the circle of convergence, but it does not consist
in a summation of the Taylor series. In § 7 we consider a sequence of
zeros of the successive derivatives, and the result is applied in § 8 to get
theorems on the zeros of quasi-analytic functions and on the zeros of
their successive derivatives. These theorems contain results on analytic
functions, which are thus proved by real variable methods.

2. The class of sequences U = {u,} = uy, uy, ..., Uu,, ... (of real or
complex numbers) forms a vectorspace in an obvious way. In this space
we shall introduce a metric.

Let {¢,} be a monotone decreasing sequence tending to 0,

Eg>& >8> ...>0,

and let P be an infinite set of non-negative integers.
We define the norm ||U]|| in the following way:

(1) |U]| = inf [max {e,, max |u,|}].
peP 0Sn=sp

It is obvious that ||U|| = 0. Moreover, ||U|| is smaller than or equal to
¢, for a p € P if, and only if, |v,| < ¢, for all n < p. Thus, roughly speak-
ing, a small norm means that a large section of the sequence consists of
numbers near 0. The only sequence whose norm is 0 is the sequence con-
sisting of zeros.

Moreover, if ¢, < |U|| <«

to find a p € P, such that

e Where p; and p, lie in P, it is possible

(2) Ul = max {¢,, max |u,|}  where p, = p < p,.

0=nsp
Indeed, a p smaller than p, cannot give the “inf” in (1), as |U]| = ¢,,;
and from |U]| = ¢, it easily follows that the quantity in square brackets
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in (1) cannot decrease for p > p, and p € P, so that there exists a p < p,
for which (2) is valid.

It is obvious that ||—U|| = ||U||, and we have also |tU|| < ¢|U]|| for
¢ > 1 (but the norm is not linear). Moreover, the triangle inequality
(3) IU+VI = 1UI+IVI

is satisfied. This is immediate if |U]| or ||V is 0. In the general case, (2)
shows that there exist numbers p and ¢ in P such that

U] = max {e,, max |u,|}

and 0s=n=p
VIl = max {g;, max |u,|} .

0s=n=sgq

Supposing for example p < ¢, we infer that
max {e,, max |u,+v,[} =< [[U[+|V],
0=n=p
which shows that (3) is valid.

If we define the distance between U and V as ||[U—V]||, we have organ-
ized the vectorspace of sequences U as a metric space. The topology
induced by this metric is that in which convergence means conver-
gence in each coordinate without any uniformity. This implies that if
the elements w, are continuous functions w,(x) of a parameter x, the
norm ||U|| will also be a continuous function of x.

3. Let {m,} be a sequence of positive numbers, n =0, 1,2, .... We
suppose that the sequence increases so rapidly that m,'™ — co; then there
exists (see for instance [8], p. 73) a unique largest minorant sequence
{mg} which is logarithmically convex, that is a sequence satisfying

(4) MMy = Mgy [0, -

n—1 =—

The equation m{ = m,, is satisfied for infinitely many =, in particular
for n = 0. In the following we shall use the set of these integers as the
set P in the definition (1). We remark that when = is not contained in
P the sign of equality prevails in (4).

Let f(x) be a function defined in an interval I (finite or infinite) of the
real axis and possessing derivatives of every order. We now put u,(x) =
f™(@)/(e"m) and e, = e7P. The norm defined in this way by (1) shall
be denoted by |/f|l,,

(n)
(5) Ifll, = int [max{e~p, s w}]

n,
peP osn=zp €My

It is a continuous function of x since each u,(x) is continuous.
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For this norm we shall prove a theorem that will be fundamental
throughout the following. First we need a lemma.

Lemma. If ||f]l, = €72 for some q € P, and |fP(£)] < my, for all &, then

Ul = 151 - exp (el - )

mp_y
p € P being an integer for which the infimwm on the right-hand side of equa-
tion (5) s attained.

The existence of an integer p for which the infimum in (5) is attained
and for which even p < ¢ follows from (2) with ¢ instead of p;.

Proor or THE LEMMA. We have the two inequalities

(6) e? = |Ifll,
and
(7) IfP()] < e'my|fll, for 0=n=p,

and with the same p we get from (5)
" /
1flloss < max {e s w}
osnsp €My,

If here €77 is the larger of the two terms between the braces on the right-
hand side, it follows from (6) that the statement of the lemma holds true.
Otherwise we shall estimate |f“(x+h)|/(e"m). Using Taylor’s formula
with remainder term we find that the term in question is majorized by

Pt frH)| - R fPE) - AP

=0 jle™m,, (10——11)!e"mc

In the first sum we use (7). In the last term we use that |f®(&)] < m,
my, (as p € P) and multiply the term by e?|/f|,, which is greater than or
equal to 1 according to (6). The last term may then be placed under the
summation sign, and we get the upper bound

10 B ehl

n ”+J
B I lle™ IS )

=0 jle™m;, = J! mn

arAdl

In view of (4) this is less than or equal to

TR Sy R

j= J! My_y

Here the series is a partial sum of the expansion of exp (e|hlmy/m;,_;).
Hence the statement of the lemma is verified in all cases.
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TrEOREM L. If f(x) possesses derivatives of every order, and if these are
bounded for all n,

(8) (&) < m, uniformly in &,

then from the inequality ||f|, = e™% it follows that
mC

9) s < 11, - exp (elhl 222
my_y

If g P, Theorem I is an immediate consequence of the lemma. In
fact, we remarked above that we can choose the integer p smaller than or
equal to g. Hence it follows from (4) that the right-hand side of the ine-
quality in the lemma is smaller than or equal to the right-hand side of
(9). If ¢ is not contained in P, we may replace ¢ by ¢+1 in the theorem,
since the assumption ||f||, = ¢"7' is satisfied a fortiori, while the right-
hand side of (9) is unchanged as the sign of equality is valid in (4) (» = q).
We repeat this process until ¢ is replaced by a number contained in P,
and the theorem is proved.

The statement of the theorem may be expressed in the following man-
ner. If f(x) satisfies (8), then L(x) = log ||f]|, satisfies a Lipschitz condi-
tion at every point wher eit is defined, and at a point x where L(x)>—¢q
and L'(z) exists we have |L'(x)| = emg/my_,.

In Theorem I we have considered only functions f(x) for which the con-
dition (8) is satisfied, the sequence {m,} being subjected to the re-
striction m,!™ — oo imposed at the beginning of this section. If, however,
lim inf m,'™ < oo, i.e., m, < K" for a suitable K and arbitrarily large
n, the corresponding remainder terms f™(&)h"/n! in Taylor’s formula
tend to 0 as n — co. Hence f(z) is the limit of the corresponding partial
sums, which implies that f(x) is quasi-analytic. In view of this, the above
restriction concerning {m,} means no actual loss of generality, and we
shall therefore maintain it in the sequel.

4. The theorem of Denjoy and Carleman on quasi-analytic functions
states (see e.g. [9], p. 78) that an infinitely differentiable function f(x)
which satisfies (8) is uniquely determined by the sequence {f"(a)},
n=20,1,2,...,if and only if

oo mC
(10) 2=

n=0 m‘rH—l
Mandelbrojt and Bang found independently that the proof of the neces-
sity of the condition (i.e., the construction of a counterexample when the
series in (10) converges) is both simple and elementary ([9], pp. 80-84,
[2], pp. 55-56). Here we shall prove the sufficiency of the condition.
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If the sequences {f,"(a)} and {f,"(a)} are identical, and f,(x) and f,(x)
both satisfy (8) in an interval I, then f = (f,—f,)/2 also satisfies (8) in
I, and ||f||, = 0. Suppose now that f; and f, are not identical. Then
Ifll; == 0, and there exists a number x, satisfying ||f|l,, = ¢”* where
p, € P. Between x, and a there exists a monotone sequence z,, Z,, Z, . . .
such that

(11) Ifllg; = €777

where p, < p, < p; < ... are precisely all numbers = p, in P.
On setting x = z; and +h = w;_, in Theorem I, we have by (9)

m?
—pr_ —pi. _ P
e Pt < e7Pi-exp (eixj ;4| '—c—>,

pj—-1
or

me.
ele_zj—ll = (pj_pj—l) ﬁ!°
Py
Here the right-hand side can be written

p,-—l mc

(12) 2 —

n=pj-1 mn+1

since, as remarked above, the terms of this sum are all equal.
As x,, z,, ... form a monotone sequence in the interval between z, and
a, we have

2|xj“3€;‘_1| = la—ay .
By adding the expressions (12) for j = 2, 3,..., we thus get
(13) P o

n=p; ""n+l

é ela_xll ’
which implies the convergence of the series in (10). This completes the
proof of the deeper half of the Denjoy-Carleman theorem.

5. Let us consider a non-quasi-analytic function f(z), i.e., a function
for which the series in (10) converges, m, denoting the upper bound of
|f™(@)|. If f(a) = f'(a) = f"(a) = ... = 0, formula (13) restricts the rate
of increase of f(x). In fact, if eJa—z| is less than the left-hand side of ine-
quality (13), we have ||f||,<e P, which by (5) implies |f(x)|<e Pm{=
¢ Pm,, and hence we infer that

1 2 me )
(14) le—a| <- 3 —= implies |f(x)| < e Pm,.
n=py ""'n+l1

If the infinite series converges slowly, the estimate (14) is substantially
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better than the result obtained by identifying f(x) with the remainder
term in Taylor’s formula from the point a, viz.

|z—al”

(15) @) Sm,
n:

where, of course, n should be chosen such that the right-hand side is mini-

mal. (The inequality (15) has been applied for instance by Gontcharoff
[6], p. 49, and by Bang [2], p. 57.)
As a typical example let

m, = n!(log n)"d+?

with g > 0. The series in (10) is then convergent (when 8 = 0 it diverges).
It follows from (14) that, if x — a, f(x) tends to 0 so rapidly that

log Ilog If(x)[[ >4 |x—al™P,
while (15) only yields an inequality of the type
log [log |f(z)l| = B - [x—a| P,

A and B being positive constants. In the last inequality the essential
difference between the cases f > 0 and 8 = 0 has disappeared.

6. Consider now again a quasi-analytic function, i.e., a function for
which the series in (10) diverges, m,, denoting the upper bound of |f™(z)|.
The theorem of Denjoy and Carleman states that f(x) is uniquely deter-
mined by an element {f"(a)}. It is therefore natural to ask how to calcu-
late the function when the element is given. In general the corresponding
Taylor series diverges. Carleman proved, however, that a certain sum-
mation method (in the sense of Toeplitz), depending on the sequence
{m,}, produces f(x) when applied to the Taylor series (| 4], chapt. VII; a
recent proof is due to L. Carleson [5]). This result can also be deduced
from a general theorem on linear functionals in the vectorspace of numer-
ical sequences ([1], p. 66).

Here we shall give a generating method for f(z), a method that in a
rather direct way yields the function and all its derivatives when the
element {f™(a)} is given. The idea is, roughly speaking, that a large par-
tial sum of the Taylor series from = a gives a good approximation to
f(z) in a small neighbourhood of a. In the expansion of this partial
sum from a neighbouring point xy_; we cancel the term of highest de-
gree whereby a good approximation is obtained in a neighbourhood of
zy_,. Next we expand this new polynomial from a certain point z_, of
this second neighbourhood, etc. Eventually every point x of the interval
of definition is reached.
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To simplify the notations we suppose in the sequel that the sequence
{m,,} itself is logarithmically convex. Thus m, = m;, for all n, and P con-
sists of all non-negative integers.

The precise formulation of the above method of approximation is as
follows.

TraeorEM II. For any given (positive) integer N we introduce the follow-
ing points:

xN = a
(16) Ty = Tyt+my_/(emy)
Ty_y = Ty_+my_of(emy_,) elc.

On the interval (xy, Ty_,) we take the polynomial Sy(x) of degree < N for
which
(17) SN(n)(xN) :f(n)(xN): n = 05 ]-: ""N_l;

on the interval (Xy_,, Tn_,) we take the polynomial Sy_,(x) of degree < N—1
Sfor which

Sy ™(@y_y) = Sy (@y_y), n=0,1,....,N—2;

and so on. The function S(x) composed of these polynomials converges then
to f(x) as N —oc, and each of its derivatives converges to the corresponding
dertvative of f(x), the convergence being uniform with respect to x in every
Sfinite interval to the right of x = a and contained in the interval of definition.

If we do not suppose that {m,} is logarithmically convex, the theorem
has to be modified as follows. The numbers m, should be replaced every-
where by m{,. Further, we take N € P and use Sy(x) on the interval
(xy, ®y,), where N, is the largest number in P smaller than N. Simi-
larly, on an interval (zy,, zy,) we use the polynomial Sy (v) of degree
< N,, for which the element at zy coincides as far as possible with the
element of Sy(x) at zy,. In this way we continue.

Let us remark that if |jg|l, < ¢, ¢g(¢) being a function for which
lg9(£)] = m, for all & (but without any assumption that ¢*’(&) be bounded
for n + ¢), we have

(18) Iglloan < €9 for 0 < b < myf(em,) .

If |lgll, = €79, this follows immediately from the lemma in § 3, putting
p = ¢, which is possible in view of (2). If |lg||, < €79, the statement (18)
is a fortiori true since ||g|. is continuous.

We begin the proof of the theorem by considering the function f—8.
In view of (17) all of its first derivatives vanish at @ = x,. Hence the
definition of the norm (5) with p = IV implies
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If—Snlloy = eV,
and since |fM(&)—SyM(&)| = |fY(£)] = my, we infer from (18) that
If—Snlay, = €V
From this it follows that also
(19) “f_SN—IH:cN‘I é 6~N+1v

the only change being that on the left-hand side of (19) we have to con-
sider

If(N—l)(xN—l)_SN—l(N_l)(xN—l)[ = lf(N—l)(xN—l)l =My,

which means that in the maximum occurring in the definition of the norm
(5) a quantity enters whichis < ¢ " ™', and this can never conflict with (19).
In the same way we get

=Sy allay_, = €77
and generally
]lf-—.S‘Rﬁ-l”mR_‘..l § e—R—l'
Hence, by (18),
If=Spalle < € for wp,, <o < ap,
so that altogether
(20) If—8, = e*

uniformly in the interval xy < « < x;. In the case of a finite interval of
definition the uniform convergence is restricted to the part of the interval
(xy, xp) which is contained in the interval of definition.

From equations (16) we have

N 1 Yom,;

j-1

xR—a = E (x.‘l—-xj) = — E = .
j=R+1 j=R+1 My

In view of the assumption

(21) 2

it is, therefore, possible to tie R to N in such a manner that N — oo im-
plies R — oo and, at the same time, xp—a — co. Hence (20) shows that
If—A8], tends to 0 for N — oo, uniformly in every finite interval to the
right of # = ¢ and contained in the interval of definition. Thus, the
theorem is proved.

If we consider the class of all functions f(x) which in a given interval
satisfy
(22) IfP) < Om,, n=0,1,...,

Math. Scand. 1. 10

mn—l

My,

= 0
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where C is a constant depending on f(z), and {m,} is a given sequence,
we observe that the points z, = z, v, as defined by (16) where m,, is re-
placed by Om,,, are independent of C. Thus the above method of approx-
imation is applicable to the whole class with the same points z, = z, y.
Even for quasi-analytic classes defined, as is usual in the literature, by
inequalities

(23) I[f™(x)] < CK™m,, n=0,1, ...,

where C and K are constants depending on f(x), there exists an approx-
imation method that is common to the whole class. This follows easily
from the fact that a class of the type (23) is contained in some class of the
type (22), where the sequence {m,} is replaced by a more rapidly increas-
ing sequence {m,*} for which the condition (21) is maintained. (See [4],
p. 68; from the convergence of an approximation method, common to a
whole class of type (23), at a fixed point z, = @ follows also the existence
of a Toeplitz summation which produces f(x) for all x when applied to the
Taylor series from the point @, see [4], pp. 71-72).

7. In §§ 5 and 6 we have considered functions for which all derivatives
vanish at the same point. To investigate the situation when the deriva-
tives have different zeros, we shall now apply the definition of the norm
in a special way. As usual we suppose |f™(z)| < m,,, the sequence {m,,}
being logarithmically convex.

We put [[f|l, = [/, and generally

(n)
(24) I = it |max {e‘”’Ngj;lCn W(f)l}]

simply omitting the derivatives of order less than N in the definition (5).
Another way of connecting ||f]|, ™ with the norm as defined by (5) would
be to put

(25) I 12 = e MIFD*, |

where || ||* is given by (5) with the sequence m,, m,, ... replaced by

Mpry Mpygs v oo
Let us first note that if we put p = N in (24) we get

(26) I < e

A theorem corresponding to Theorem I is also valid for ||f|,®, i.e.,
1% = ¢ implies
m
(27) ™ = 1L exp( el L ).
My_y
In fact, (26) shows that the assumption can only be satisfied if ¢ = N,
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and hence, by (25), the result follows from Theorem I, ¢ being replaced
by ¢—N.
Finally we have the inequality

(28) ISP = 11N

It follows from (26) if |||, > ¢, whereas, if |f],™ < ¢, the
infimum in (24) is attained for some p = N+1, and then the right-hand
side in (24) can never increase when we omit » = N. For our applications
it will be essential that the sign of equality holds in (28) when f™(z) = 0,
which is obvious in view of (24).

Suppose now that f(x) is not identically 0 and that each of its deriva-
tives f™(x), n = 0, 1, ..., possesses at least one zero x,,.

Consider ||f||,™ on the closed interval from x_, to . This norm is a
continuous function By(t) of the parameter ¢ defined by

(29) b= |To—| |2 —2|+ . . . |y — Ty Xy, —2] .

Thus ¢ denotes the length of the shortest path from x, passing through
the points z, ..., ., successively, and ending up at the point . The
norm By(¢) is defined in the interval 7),_, <t < 7y, where

(30) Tg = [Bo—&|+. .. +|rg 1 —2 .

Since f™M(xy) = 0 we have By(ry) = By,,(7y). Hence, there exists a
continuous function B(t) with the property that By(t) = B({) when
Ty_1 =t = ty. The function B(t) is defined for 0 =<t < 7, where 7 =
lim 7y =< oo.

In (26) we give N the values ¢g+1, ¢+2, ... and infer that

(31) B(i) <e?for t = 7,.

In particular, B(t) > 0 as ¢ — 7.

Since f(x) is not identically 0, it is easily shown that B(t) is not identi-
cally 0. It follows that, for a suitable integer r, the range of values of B(t)
contains all the numbers e~%, ¢ = r. We may now select an increasing
sequence {tq}, qg=r, r+1, ..., such that iy is the smallest value of ¢
exceeding ¢, ; for which B(f) = 7. Thus B(¢,) = ¢™? and B(f) > e~? for
tg <t <t

The values 7y (if any) for which?,_, < 75 < ¢, give rise to a subdivision
of the interval (¢,_,, ;) into smaller intervals for each of which the ine-
quality (27) implies

B(s) = B() - exp(e(p—0) ),
My,
x and g denoting the left and the right end points respectively. When

10*
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multiplying together the inequalities obtained in this way, we infer that

(32) B(t,) < B(t,)- exp(e(tq-tq_o g )

My_y
or, since B(t,) = e~? for every ¢ =,

1m

¢ —t ==Lt
TN T e m,
Hence
(33) t+ Py
] =7r+1 m]

It follows from (31) that ¢, < 7,. Substituting the expression (30) for
Ty WE conclude that

3 1 dm;
(34) 2 2, —2;| > = 3 — const.
e/ S my

8. Let us apply the last result to quasi-analytic functions. We there-
fore suppose that the series (21) is divergent.

Hence, the right-hand side in (34) tends to infinity as ¢ — o, and we
have the following theorem:

TaroreM III. If a quasi-analytic function f(x) is not identically 0, and
(@) = f'(1) = f" (%) = ... = 0, then the series X'|a; ,—u;| is divergent.

A corollary (suggested by Professor R. P. Boas) that gives the answer
to a question put forward by Borel (see [4], p. 75) is the following:

CoroLLARY : If f(x) is quasi-analytic in an interval, and all its derivatives
are positive at the left end point a, then all the derivatives are positive in the
whole interval, i.e., f(x) is absolutely monotone (and consequently analytic).

For, suppose there exists a zero of one of the derivatives, f(j)(xj) =0,
then by Rolle’s theorem there would exist a monotone sequence of zeros
of the subsequent derivatives #; > ;,, > ... > a, and from Theorem I1I
it would follow that f@(x) ( whlch is also quasi-analytic) is identically 0,
which contradicts the assumption.

The following theorem, which is also an immediate consequence of
(34), is more general than Theorem III:

TarorEM IV. If f(x) belongs to the quasi-analytic class defined by the
inequalities (23), then
q
m""l) >0
n=1 mn

(35) lim 1nf<2[ % ) D)

g—>00
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We remark that the inequality (35) is valid also in the complex domain.
Let f(x) be analytic in a domain D in the complex plane and continuous
on the boundary I" of D. We assume that sup,.p, |f™(®) < C - K" - m
for suitable constants C and K, {m,} being logarithmically convex. As
above we assume that there exists a sequence of numbers x;€ D+ 1T for
which f(f)(x ) = 0. Finally we assume the existence of a constant L such
that any two consecutive points z; , and z; can be connected by a poly-
gonal line [I; in D4I" whose length does not exceed L - [x;_,—x;|. The
last assumption is satisfied, for instance, if D is convex (L = 1), or if the
set {z;} is bounded and has a positive distance from I'. In the case where

m,_,/m,) diverges, the proof may then be accomplished along the
same lines as that of § 7 (if the series converges, the inequality (35) is
immediate with an obvious exception when z;, = 2, = x, = ...). The
polygonal lines I71,, I,, ... form an infinite polygonal line /7 in D4T.
As a parameter ¢ we take the distance along [T from z, to the arbitrary
point z of /7, and as the numbers 7, we now choose the values of ¢ corre-
sponding to the pomts z,. Moreover, we define B(t) = |/f]|, @ when
xelly, ie, 1y, St <7ty. Asin § 7, B(t)is a contlnuous function de-
fined for 0 <t < v = lim 7y and B(f) -~ 0 as ¢ - 7. The sequence {t},
q = r, is defined as above, and the only change in the proof of (32) is that
the subdivision of the interval (¢,_,, ¢,) is performed by means of all values
¢t in the interval which correspond to vertices in IJ. Equation (32) im-
plies (33) without alterations and the inequality ¢, < 7, remains valid.
Since, by assumption, 7, =< L - 2 [zj1—2;], 1 =j = g, the inequality (34)
subsists except for a constant factor. This completes the proof.

Special values of m, give special classes of analytic functions. For in-
stance, the values m,, = n!*(x < 1) give entire functions of order 1/(1—x),
and thus we get theorems due to Gontcharoff and others (see e.g. Whit-
taker [11], chapt. III).

Let us return to quasi-analytic functions (with |f™(z)| < m,) in the
interval 0 <x< oo, If such a function has an infinity of zeros z,<z;<z,<.. .,
then by Rolle’s theorem each of its derivatives has an infinity of zeros,
and it is possible to choose x, = 2z, < z; < z, < ... such that x, < z,,
Xy < 2, ... and f@(x;) = 0. Hence the left-hand side of (34) is equal to
T~y < z;—z,, and we obtain the following theorem concerning the
distribution of the zeros z, of the function:

TraroreMm V. If f(x) is not identically 0 and has the zeros z2y<z;<z,<...,

then 1 m
j—1
2, >~ 34— —-C
e j=1 m]
where C is independent of q.
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Theorems of essentially this type have been proved by I. I. Hirschman
[7]. He assumes the sequence {m,} to be somewhat more regular (while in
Theorem V it is only supposed to be logarithmically convex), so that his
results cannot be applied to subclasses of the class of analytic functions,
while Theorem V gives a unified approach to quasi-analytic functions and
special analytic functions (e.g. entire functions of order « > 1). On the
other hand, instead of the constant 1/e in the theorem above he has the
better constant 2/x, and this seems to be the best possible value.

A quasi-analytic function f(x), not identically 0, can only possess a
finite number of zeros in a finite interval, and the same is valid for its
derivatives (which are also quasi-analytic). Let IV, denote the number
of zeros of f™(z) in the given closed interval. Then N, cannot increase
too rapidly as n — oo.

TrEOREM VI. If f(x), defined in an interval of length [, is not tdentically
0 and |f™(x)| < m, for all x and n, then

n+Np m.
(36) liminf 3} 7 <el.
n—>c0 jont1 My

If f(x) is not quasi-analytic, the statement of the theorem is void. We
shall therefore assume that Z(mj_llmj) = oo, On the other hand, if
m;_,/m; is bounded away from 0, then f(x) is an entire function of order
1 and (36) follows from certain well-known results on the zeros of such
functions. Hence we may suppose that m;_,/m; - 0 as j — oo. In view of
this, the inequality (36) is obvious if lim inf N, < co. We may, therefore,
assume that N, > 1 for sufficiently large n, say n = ¢,.

We begin by defining the increasing sequence ¢, ¢,, . . . by induction
as follows: If g, = n we put ¢,,, = n+N,—1.

Denoting by z, the smallest (largest) zero of f™(z) we may apply
Rolle’s theorem in the above way and find an increasing (decreasing) set
of zeros @, T,,;, ... , T, of the subsequent derivatives (f9(z,) = 0),
where z,,, 5 _, is chosen as the largest (smallest) zero of f (- Nn=D(z;),

Choosing «, as the smallest zero of f@(x), the above procedure deter-
mines a sequence {z;} (j = ¢,) for which f¥(z;) = 0 and

9s+1 9s+1
.
(37) X el =] Y ()| ST
J=qstl J=qs+1

To this sequence we wish to apply (34). Since, however, z; is defined
only when j = q,, it is necessary to modify (34) by restricting the sum-
mations on both sides so as to begin with j = ¢,+1 instead of j = 1.
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This modification is easily justified by applying (34) to f99(z) instead of

f().
We may now complete the proof of (36) indirectly. In fact, if

n+Np )

> it 4e)-d

j=n+1 My
for all sufficiently large values of n, then
n+Np—1 .

o (145).
> >(1—|—2) el

J=n+1 mj

for all sufficiently large n since m; ,/m; - 0 as j - co. We apply thisine-
quality only when n has the form n» = ¢, and n4+N,—1 = q,,,. In view
of (37) this gives

gs+1 mj—l & gs+1
) 2 e () e, 2 e
J=qst+1 J J=qs+1

for all sufficiently large values of s, say s = s,. By adding the inequalities
obtained from (38) when s is given a sufficiently large number of conse-
cutive values s = s, s,+1, ..., we arrive at a contradiction to the modi-
fied inequality (34). This completes the proof of the theorem.

Like the preceding theorems, Theorem VI may be applied to analytic
functions of special order and type, and gives theorems of a kind treated,
for instance, by Pélya [10], but here again the constant e in the theorem
does not seem to be best possible. However, Theorem VI is applicable
to non-analytic, quasi-analytic functions. Choosing for instance m, =
n! (log »)", it follows that

log N
lim inf 82" < g
logn
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