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A THEOREM ON
FUNCTIONS DEFINED ON A SEMI-GROUP

ARNE BEURLING

If G is the additive group of real numbers and f(x) a continuous bounded
function on @, it is known that the linear manifold spanned, in a suitable
topology, by the set {T'.f = f(x+£), £ € G} will always contain a con-
tinuous bounded group character provided f does not vanish identically.
It has been shown by Godement that this property remains true for all
locally compact abelian groups. There exists now a rather extensive
litterature on this and on other aspects of the problem, while, on the other
hand, very little is known concerning analogous properties of semi-
groups. In an earlier paper [1] the author has considered the following
case as being for semi-groups the simplest typical problem of its kind.
Let S be the additive semi-group of non-negative integers x and let f(x)
belong to the space L*(S) referred to the measure taking the value 1 at
each point x € S. Is it true for an f == 0 that the L2-closure of the set
{f(x+¢&), £ € 8} always contains a character, i.e. in this case a function
of the form A” where A is a complex number less than 1 in modulus?
The answer is in the negative, and the same holds for L? over the non-neg-
ative reals as shown by Nyman in his thesis [2]. In the two cited papers a
complete characterisation was given of the closed linear subsets C < L2hav-
ing the property 7'.C' = C, £ € 8, and it turned out that there exist non-
empty sets of this kind that do not contain any character. This settles
the stated problem, but leaves open the question whether the required
property would hold for the manifold spanned by {f(z+¢&),&e S} in
some weaker topology. The purpose of this paper is to show that even
elementary function theory yields a positive answer to this question.

In the sequel we will consider the semi-group S formed by the positive
reals < 1 under multiplication. L? will denote the space of measurable
functions on the unit interval with the norm

. P 1/p
11, = {§ i@ irae .
0
To an f e LP, p > 1, we assign the closed linear manifolds C’f’, 1=r <o,
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spanned by the set {T.f = f(x£), £ € 8} in the topology of L', and our
weak closure I’/ will be defined as
P "N LP
Iy = érrl pof nLr.

We recall that each continuous character ¢ of S belonging to L? and
normalized by the condition (1) = 1 has the form x~* where 1 is a com-
plex number in the half-plane Re(1) < 1/p. We also observe that if f(z)
vanishes almost everywhere on an interval 0 < z < a, then the same is
true of 7'.f and the sets C;” cannot contain any function which does not
vanish on (0, a).

TaroREM I. Let f(x) belong to a space LP, 1 < p < oo, and let it not vanish
almost everywhere on any interval 0 < x < a. Then ;P contains at leasi one
function of the form x~* Re(d) < 1/p.

According to a theorem of F. Riesz and Banach the function x~* will
belong to the set Uy if and only if for any k € L”,r" = r[(r—1), the con-
dition 1

(1) \k@y @y =0, o0<e=1,
implies 0 1
2) Sk(x)x“dw — 0.
0
On defining f(x) and k() as 0 for > 1 and on setting
(3) 9() = k@) @z, &> 0,
0

we obtain for & > 1 by an inequality of Jensen

Y 1/r 1 1/p 1/'5 1-1/p—1/r’
)1 = {§ ey i} { S s Eoran | an |7 < e up1, 60

0 0 0

We next observe that the integrals

o0

g(&)EdE o< 1fr,

6ts) = |
K(s) = Sk(x)x‘sdx , o< lfr,
F(s) =

o

0
1
Sf(x)x"“‘dx , o> 1/p,
0

converge absolutely for s = ¢+¢ lying in the half-planes indicated.
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On multiplying (3) by &' where s is a complex number in the strip
1/p < ¢ < 1/r and on integrating with respect to & over (0, o) we obtain
G(s) on the left side. The double integral on the right converges absolutely
and a change of the order of integration yields the relation

(4) G(s) = K(s)F(s), l/p<o<l]r.

We may now assume that k(x) can be chosen so that K(s) == 0, since the
opposite assumption would imply C;" = L"for r < p, which is a stronger
property than the one stated in the theorem. We already know that
F(s) is holomorphic for ¢ > 1/p and from (4) we see that F(s) coincides
with G(s)/K(s) in the strip 1/p < o < 1/r. Since the latter function can
have no singularities other than isolated poles in o < 1/p, it follows that
F'(s) can be continued analytically across the line ¢ = 1/p and that it is
meromorphic for |s| < co. Due to the inequality
const.
|F(o+1t)] < (0_——;—1-/—2;—)1;171;, o> 1/p,

F(s) cannot have any pole on the line ¢ = 1/p, and we have thus only
two alternatives to consider: Firstly, F(s) has at least one pole 4 in the
halfplane ¢ < 1/p; secondly, F(s) is entire. In the first alternative we will
have K(A) = 0 not only for the particular k(x) considered, but for any &
satisfying (1) and belonging to some space L" for 1 < r < p. Thus (1) im-
plies (2) and consequently 2~* will belong to each C;" for 1 < r < p, which
was our statement.

To finish the proof we have to show that the second alternative, F(s)
entire, cannot occur. Let o be a number in the open interval (1/p, 1/r)
and let M be a constant such that F(s), G(s), and K(s) are in modulus
< M on the line ¢ = «. Thus K(s) and G(s) are not only bounded and
holomorphic in the half-plane ¢ < « but also regular at each finite bound-
ary point. Under these conditions we may apply the following expansion
due to F. and R. Nevanlinna [3],

log |K| = U+ U,+U,

where U, = —2XG(s, a,) , G being the Green’s function of the half-plane
H:o < «,and a, the zeros of K(s) belonging to H. The second term U,
stands for the Poisson integral of log | K (x-1t)|, while Uy is a non-positive
harmonic function in H vanishing at each finite boundary point. Simi-
larly,

log |G| = V+V,+7V,.

Since each zero of K(s) in ¢ < « will also be a zero of G(s) we conclude
that V,—U, < 0. The difference V,—U, is the Poisson integral of
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log |G(xx—+1t)| —log | K(x—+1t)] =< log M and must, therefore, be < log M
throughout ¢ < «. Finally, V, and U, have the form ¢,(0—«), ¢;(0—«)
respectively, where c,, ¢, are constants = 0. Setting ¢ = ¢,—c, we will
have
5) {IF(a+it)l =M, o=«

|F(o+it)) < Me® "™, ¢ < «.

If ¢ = 0, F(s) will be bounded. Since F(s) - 0 for ¢ — oo, it follows by
Liouville’s theorem that F(s) vanishes identically. This implies that
f(x) = 0 almost everywhere, which is contradictory to our assumption.
If ¢ < 0 we set a = ¢° and define

(6) F,(s) = Sf(ax)xs‘ldx .

On combining (5), (6), and the relation
1
Fi(s) = a™*(F(s)— S f(x)z*dar)

we find that F,(s) is bounded in both half-planes ¢ > « and ¢ < «. The
conclusion F,(s) = 0 follows as in the previous case and leads now to the
contradiction that f(x) vanishes almost everywhere on the interval (0, a).

In Theorem I the spaces LP did not refer to the invariant measure
dz|x of S, a fact which made it possible to use the metric of L”, r < p,
to define a suitable weak topology. Let now § be the additive semi-group
of reals * = 0 and let LP= LP(S) be defined with respect to the invariant
measure dx, while L., ¢ > 0, is referred to the measure e~ **dz. By minor
modifications of the previous proof we find that if f(x) belongs to some
LP,1 < p < oo, and does not vanish almost everywhere on any interval
(@, o) then there is at least one function of the form ¢ %, Re(4) > 0,
contained in each L P-closure of the linear combinations of the set {f(z+£),
& = 0}. We finally point out that the corresponding statement will remain
true if we take the closure in the LP-metric referring to the measure
e dx for x = 1/2, but will be false if « < 1/2.
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