MATH. SCAND. 1 (1953)

FOURIER-STIELTJES TRANSFORMS WITH
BOUNDED POWERS

ARNE BEURLING and HENRY HELSON*

1. Denote by A the set of functions

o0

1) =\ édoa)

.
—00

where o(x) is a function of bounded variation on the real line. The sum

and product of functions in 4 belong to 4, and the ring is complete under
the norm

1711 = {idotat

The problem of this paper is to determine all the functions of 4 such that

/™1

is bounded as n ranges over all (positive and negative) integers. Any ex-
ponential F(t) = el
where a and b are real constants, has this property; the theorem to be
proved states that no other such functions exist.

The interest of the authors in this question has arisen in two connec-
tions. The behavior of ma

for large positive integers » was investigated in [1], and it was shown that

lim || f* " = sup 1f@)

n—>00

provided o(x) contains no singular component. On the other hand, the
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problem treated here presents itself as the essential difficulty in classifying
the automorphisms of the algebra of summable functions on the line, or
more generally, on any locally compact abelian group [2].

2. Let I" be the subset of 4 containing those functions f for which
M(f) = sup || f*|| < oo,

where the supremum is taken over all integers. The powers of f and of
1/f are thus uniformly bounded over the whole axis, so that

If@)=1.
The argument of f,

1
plt) = ;log (),

can be chosen to be continuous. Denote by y the totality of real functions
@ so obtained from fin I
For any elements f and g of 4,

If-gll =Uf1-lgl.

Hence the product of functions in I' belongs to I', or equivalently, y is
closed under the formation of sums. Even more is true: given any ¢ in y,
integers 4,, and real constants a,, b,, the sum

v »

k
a,+bot+ d'A,9(a+b,t)
v=1

belongs to y.
The result to be proved is the following:

TurorREM. Every fin I" has the form

f(t) = @ (a, b real constants) .

3. For the proof of this theorem we need the following
Lemma. If f and g belong to I" and if
Sft) = g()

on a set of positive measure, then the functions coincide for all &.

Set k() = f(t)/g(¢). Then & is in I" and is equal to 1 on a closed set of
positive measure, which we call E. We are to show that % is constant
everywhere. Define 11 t))"

2

b0 = (
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Then . 1 (tek)
0 = im0 = ()

where E’ denotes the complement of E. Expand the expression for k, by

the binomial theorem and estimate the norm of the sum by the triangle

inequality:

M (h)

Ton

Vi s T8 sy = mon.

4

1 n
1= 5 3

»=0

Thus there exist functions u, of bounded variation such that

kn(t) = eitxdfun(x) )

X
and e

Integrating k, over an interval (y--d, y+90) and dividing by 26 gives

y+0
]_ g

5 \ k,(t)dt = cgoemy

y—o —00

sin 0z
ox

Ay () .

As n increases the integrand on the left converges to k(t), so the limit of

the integral is the function

L
\ k(t) de .

:2—6 L
y—0

ks (y)

The integrand of the right side is continuous and tends to zero for ¥ —-oo.
Since the y,, are uniformly of bounded variation, there is a function x of
bounded variation such that the limit of the right side for some subse-
quence of n is

As § tends to zero, the first expression of £,(y) tends to 0 on £’ and almost
everywhere to 1 on E by a classical theorem of Lebesgue. Setting

o0

a(y) = \ (@)

bde o}

we thus find that almost everywhere k(xr) = a(x). Being a continuous
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function a will everywhere satisfy the equation a(1—a) = 0, which im-
plies @ = 1, since @ = 1 on some non-empty subset of E. Therefore k = 1
almost everywhere. Since ¥ is a closed set it will therefore cover the entire
real axis.

4. Let f be an arbitrary function in I, and for each integer n let ¢, be
the function of bounded variation for which

() = Semdan(x) .
We write M for M(f). Let (t) be the argument of f(¢), defined to be conti-

nuous, and multiply f by a constant of absolute value 1 if necessary so as
to have

From the theory of Fourier series it is well known that there exist an
integer k£ (depending on M) and coefficients a, (v = 0, 1, ..., k) so that
k
27 la,| =1,
v=0
ko 1
sup| Mae™| < —.
0 v=0 2M

For any real numbers s and ¢, the sum

k
Dla e (n = integer)
v=0

has the representation

Y ok
1]
\ v (¢
S Da,e* @V, (x) ,
r=0
-
from which follows
ko Y koo
Dagnrton | <\ |do,(@)| - sup| Xt
v=0 e x v=0
-—00
L 1
< M -sup| Nae” §§'
0 v==0

Suppose the numbers

x, =@t+rs), (»=0,1,...,k),

— 9
K1 = <70
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were linearly independent over the integers. By the Kronecker approxima-
tion theorem, for any given system of real numbers S, ..., f;, and ¢ > 0
there is an integer n satisfying the inequalities

|nx,—f,| <e (mod 27) (»=20,...,k).

So by proper choice of n,
k

Tne(t+vs)
Dage
v=0

can be made arbitrarily close to
k

Sla|=1.
=0

But we have just found the bound } for the modulus of the sum. Hence
the «, are linearly dependent.

Thus for given ¢ and s there are integers A4, ..., 4;, not all zero such
that
k
M Aplt+rs)+2rA,,=0.
r=0

We shall show that the coefficients can be chosen independent of ¢ and s.

Let E 4 be the closed set of points (¢, s) in the plane for which the form
above vanishes, 4 denoting the set of its coefficients 4,. Each pair
(¢, s) falls into at least one E,, and there are only denumerably many
sets of coefficients; hence at least one £, has positive plane measure.
That is, for certain integers B,, ..., B}, not all zero the function

k
p(t,s) = %’B,q)(t—l-vs)—{—,?anH

vanishes for all pairs (¢, s) belonging to a set £z of positive plane measure.
Considered as a function of either variable alone, y(¢, s) belongs to y. By
the Fubini theorem, there is an s, such that (¢, s;) is in By for all ¢ in a
set of positive linear measure, so that (¢, s,) vanishes on a set of positive
measure. By the lemma, it vanishes identically. Again by the Fubini
theorem, the set of s, for which this argument applies has positive linear
measure. For every fixed ¢ then, y(t, s) vanishes on a set of positive
measure and hence identically. We have shown that y(t, s) vanishes for
all values of the variables.

Since ¢(0) = 0, the coefficient B;,, vanishes. To complete the proof
of the theorem, we have to show that only a linear function can satisfy
the difference equation
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k

S Bp(t+vs) =0

v=0
and belong to y. Now any Fourier-Stieltjes transform is uniformly con-
tinuous, and so the same holds for the functions of y. This implies in
particular that

@) =0(t]) (It] o).

We shall prove that under this restriction all the solutions of the differ-
ence equation are linear.
For ¢ > 0 define the function

o

g e )
w0 = \o =8 - de.
. e

—00

It is easy to verify that @, satisfies the same difference equation as ¢;
@, has derivatives of all orders; and ¢,(f) converges to ¢(t) uniformly on
bounded sets as ¢ — 0. For any non-negative integer p, the Taylor theo-
rem gives

P g (M m
@ (tFrs) = Y (pe__‘_it_)_(fsw)“ +O(sPH) .

m=0

Choose p to be the smallest integer for which

k
By’ 40,
r=0
interpreting this to mean

k
S'B +0
v=0
for p = 0. The existence of p is assured by the fact that not all the B,
are zero.
Inserting the expression for ¢, in the difference equation,

k P o M) m
3B, { P Pe (E)'(_Vf),A + 0(87’+1)l —0.
v=0 m=0 .

Rearranging terms and using the fact that

k
I'By" =0 (m<p)
=0
we find
@ (”)(t)sf’ k
—E——'*—— ZB,,'VP—l— 0(8p+1) = O.
p!

=0
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Holding ¢ fixed and letting s tend to zero, we find that
PPt =0.

Thus ¢, is a polynomial of degree at most p—1. But ¢ is the limit of ¢,
uniformly on bounded sets, so ¢ is itself a polynomial. The restriction on
the rate of growth of ¢ and our normalization ¢(0) = 0 imply ¢(¢) = at .

5. For any locally compact abelian group @, the notions of Fourier-
Stieltjes transform and spectral norm can be defined, and the problem
solved here can be posed anew.

TarOREM. If G is a locally compact abelian and connected group, and f
Fourier-Stieltjes transform defined on G whose positive and negative powers
are bounded in spectral norm, then f is a continuous character of G.

A corollary of this result is a solution of the isomorphism problem for
the corresponding class of group algebras.

TarorREM. If G and H are locally compact abelian groups, and if at least
one of G and H has connected dual, then G and H are topologically isomorphic
provided L(G) and L(H) are algebraically isomorphic.

The proof of the first theorem can be reduced to the case of the real
line already considered by the consideration of one-parameter subgroups,

and the second theorem follows immediately by virtue of the results
of [2].
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