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SUFFICIENT CONGRUENCE CONDITIONS FOR THE
EXISTENCE OF RATIONAL POINTS ON
CERTAIN CUBIC SURFACES

ERNST S. SELMER

1. Tt is well known that the elementary congruence conditions (e.c.c.)
—together with solubility in real numbers—are sufficient for the solu-
bility in integers of a homogeneous quadratic equation in any number of
variables. In the cubic case, however, sufficient solubility conditions are
much more difficult to establish. I have recently [3] shown the insuffi-
ciency of the e.c.c. for homogeneous ternary cubic equations, i.e. for the
existence of rational points on cubic curves.

In the case of homogeneous cubic equations in four variables (surfaces),
it is known that the existence of one rational point implies that there is
an infinity of such points. Mordell [2] has conjectured that the e.c.c. are
sufficient for solubility in this case.

I shall prove Mordell’s conjecture for the purely cubic equation

(1.1) a3+ a3+ asxt+ax,® = 0, aa.040, = 0,
satisfying the additional condition that (for instance)

(1.2) %% _ o rational cube.
1%y
My method does not apply to the general case (1.1), but numerical evi-
dence indicates that Mordell’s conjecture still holds.
I shall finally show how the method can be extended to prove the con-
jecture for the more general equation

(1'3) f3(x3 ()] =n-f3(u, v),

where f3 is an arbitrary binary cubic form.
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2. We may suppose that the coefficients of (1.1) are cubefree integers,
and that

(@1, @y, A3) = (@g, Ay, Ay) = (a4, A3, @) = (A, A3, @) = 1.

The only equations which can be shown insoluble by e.c.c. are then typi-
fied by one of the following combinations (arbitrary signs):

a,=0, a,= +1, a;= 42, a, = +4 (mod 9)

) ) ay i
(2.1) a, = r'a;, a,=1r""'a,’, — (N)r, or t=1lor?2,
' 4
by ! da’3 N ’or
al-—?‘al,ao——raz,a—an ;z_( ) r¥aa, .
2 4

Here r = +1 (mod 3) is a prime, for which () denotes cubic non-residua-
city in rational numbers (with the notation of [3], Ch. II, § 1).
The equation (1.1) can be written as

“3“4) Qs
A1Qe/ Ay

23+ ( Xy — (xf-{— 2 xf) =0.
a, a

4
If (1.2) is satisfied, we can therefore transform the equation into
(2.2) 234+-my? = n(ud+mo3)

with integer, cubefree m and » (but not necessarily (m, »n) = 1). We shall
first prove Mordell’s conjecture for this equation.
The e.c.c. for solubility of (2.2) are given by:

Ryrif m = r'm', n = r*"n’ l t=1lor2,

(2.3) m(R)r if rin, r+m
(2.4) n(R)r if rim, r+n
(2.5) m’n’(

(

(2.6) o Ryr if m = r'm’, n = r'n’ ] r¥m'n’.
Here (R) denotes cubic residuacity. There are no conditions mod 9, since
the first combination of (2.1) is inconsistent with (1.2).

We note that the equation (2.2) is really symmetric in m and n, which

consequently may be interchanged in the arguments below.

3. We shall treat (2.2) in the purely cubic field K(m'®) = K(8). Be-
cause of the condition (2.3), the natural primes dividing n will all factorize
in this field (cf. [3], Ch. III, § 1).

We consider the ideal equation
(3.1) [x+y?] = n - [u+tvI],
where n is a product of ideal factors such that N(n) = n. The equation
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implies that n must be principal, and is in fact easily solved if we can
find such an ideal:

(3.2) n = [eHf0-+g9°),

ie.

(3.3) N(n) = eB+mf3+m2g3—3mefg = n .

We may choose u = f, v = —g, so that the term with 92 disappears in

the product

(e+fO+99*)(f—99) = ef —mg*+-(f2—eg)d .
A solution of (3.1), and thereby of (2.2), is then clearly given by
(3.4) x:ef—mg2,y=f2—eg,u=f,v=—g.

If the ideal 1t is non-principal, the method still works if the class-number
h,, is prime to 3. We can then always find an ideal d such that nd3 is prin-
cipal,

nd? = [e+fI9-+g9?], where N(nd?) = nd?
(an “‘auxiliary cube’, cf. [3], Ch. 3, § 7). The only consequence for the

solution of (2.2) is a factor d in the expressions (3.4) for u and v.
When 3|h,,, however, the case is more complicated.

4. We first note that the n of (3.2) may be a fractional ideal:
X+YO+2729? ] _ [17]

4.1 _ | ~ L
(4.1) "SIl Urverwee 5

i.e.
(4.2) X3+mY3+4+m2Z8—3mXYZ = n(U3-+mV34+m2W3—3mUVW).

We can come back to (3.2) if we multiply numerator and denominator of
(4.1) by the conjugate of the denominator, which is then replaced by the
rational integer N(4) = d. This will only have the same effect as the
auxiliary cube mentioned in section 3.

An equivalent approach, but involving less calculations, is the follow-
ing: Find a number &« = a-+b9-¢d2 such that the terms with 92 disap-
pear in both products

[ o = aX +mecY+mbZ+bX+aY +mcZ)d+(cX +bY +aZ)9?
z Y 0

(4.3)

ad = aU+meV4mbW + (bU+aV +meW)d+(cU+bV+aW)d2.

u v 0

As indicated, we then get a solution (z, ¥, , v) of (3.1), and thereby of
(2.2).

8*
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The two linear, homogeneous equations for a, b, and ¢ have the solution
(4.4) 0=XV-YU,b=2ZU—-XW,c=YW—-ZV.

We get o« = 0 only when # and ¢ have proportional coefficients, i.e. if n
is a rational cube. In this case, however, the equation (2.2) is trivially
soluble with y = v = 0.

Substituting (4.4) in (4.3), we get z, ¥, u, and v expressed as rational
cubic forms in X, Y, Z, U, V,and W. Since clearly a solution of (2.2) is
also a solution of (4.2), we see that these two equations are simultaneously
soluble or insoluble.

5. We now return to the case when 3|A,,. Let us first assume that
h,, = 3, resulting from one (and only one) prime factor r = +1 (mod 3)
of m. Let generally a denote an ideal such that N(a) = a, and let 7 be
the class of principal ideals. It is easily seen that

(5.1) if rjm, r + a, then a(R)r > ae IT.

Proof: It follows from (3.2-3) (the term e%) that the norm of a prin-
cipal ideal is always a cubic residue of r. If two ideals a; and a, belong to
the same class, then a,/a, is principal, and consequently

Na) _ @

Ny a0

The norms of all ideals in one class do therefore belong to the same ‘“cubic
residuacity class” mod r (cf. [3], p. 216). Since there are three such classes,
and three classes of ideals, there must be a one-one correspondence.
The possibility of (3.2) now follows immediately from (2.4) if » t n. In
the case (2.5), we get
mnell &dell »vm’ - *"'n'ell-nell,
m=[J] n
and in the case (2.6):
m’ tm’ @
—,EH—)—;:T:[—-]EHQI'[GH.
n 'n n
In all cases, we can therefore find n as a principal ideal. —If 3|k, > 3
(“exactly divides”), an auxiliary cube may be necessary to get a princi-
pal ideal.
Let next m contain M different prime factors r, i.e. 3¥|h,,. If in parti-
cular %,, = 3™, we have the following generalization of (5.1):
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I rm,r,4a,i=1,2,...,M,then a(R) all r, 2 a € II. As above, it is
easily concluded that we can always find 11 as a principal ideal if 3¥|}h,,,
possibly with an auxiliary cube if A,, > 3,

So far, the solubility of (2.2) has been established in all cases. The
method fails, however, if

(5.2) 3M+p A >0,

i. e. if the class-number is divisible by a higher power of 3 than can be
concluded from the number of prime factors r of m. To illustrate the diffi-
culty, let us consider the simplest case:

h = 3, no prime r dividing m or = .

The class to which the ideal n belongs is then uniquely determined, and
may well be non-principal, e.g. n € I', where I', I'2, and I = [] are the
three classes of ideals. The only way to establish the solubility of (2.2) is
then by an argument of the following kind:

Suppose that we can find a prime r which factorizes in K (9) (i.e. m(R)r),
and where the three prime ideal factors of r all belong to different classes:

(5.3) [Fl=rw't",xell,Yel " el?.

(The only alternative is that the factors all belong to the same class,

principal or not.) We then obtain a fractional, principal ideal by (for in-
stance)

m="re T, Nou) = Nw) = n.

To this ideal, we can apply the methods of section 4, and consequently
find a solution of (2.2) also in this case.

The question is: do primes of the type (5.3) always exist? It follows
from section 6 below that the answer is affirmative, but I can see no elemen-
tary way to prove this statement or the similar, more complicated state-
ments arising from (5.2) with M > 0 and/or 4 > 1.

6. To prove Mordell’s conjecture for the equation (2.2) in all cases, we
can use a deep result of Hasse ([1], with further references): Let K be an
algebraic number field, and let 2 be a cyclic field over K. A number n
in K is then the norm of a (fractional) number in 2 if and only if the con-
gruence

N (&) = n(mod m)

is soluble with & € 2 for any modulus m € K. — In other words, the con-
gruence conditions are sufficient for the solubility of such a norm-equation.



118 ERNST S. SELMER

The purely cubic field K(m'®) = K(d) is not cyclic over the field of
rational numbers. We overcome this by choosing K(p) as our basic field,
where o is a complex cube root of unity. The resulting field Q(m"'/?)
= Q(9) over K(p) is then cyclic (cf. [3], Ch. IV, § 4), and it follows from
Hasse’s result that the equation (4.2) is soluble in K(p) when the con-
gruence conditions (2.3-6) are satisfied. (These conditions imply the
solubility of the congruence corresponding to (4.2) in rational numbers,
and with Z = W = 0.)

As described in section 4, we can then deduce a solution of (2.2) in
numbers from K(p), i.e. a complex point on the corresponding surface.
Since the coefficients m and n are supposed to be absolutely rational, a
chord through this point and the conjugate point will cut the surface in a
third point with absolutely rational coordinates.

This completes the proof of Mordell’s conjecture for the equation (2.2).
Based on Hasse’s result, the argument was independent of class-number
considerations. I did, however, include the above section 5 to show the
possibilities and limitations of such considerations. It would be very
interesting if all cases could be covered by similar elementary means.

7. The above method fails for the more general equation (1.1), when
(1.2) is not satisfied. I have verified the solubility in all cases (not of the
type (2.1)) for which

|a 0,050, < 500 .

It seems to me very likely that Mordell’s conjecture still holds, for the
following reason: A solution of (1.1) is clearly obtained from a solution
of the two simultaneous equations

(7.1) a3 +ay%,° = by, ®, axtax® = by,®,

with arbitrary b. When the e.c.c. for (1.1) are satisfied, we can choose
an infinity of values b for which both equations (7.1) are possible for all
moduli. From my earlier experience with such ternary equations (cf. [3],
p. 205), the e.c.c. seem to be sufficient for solubility in about 70 % of
all cases. The possibility of (7.1) is therefore strongly suggested by consid-
erations of probability.

8. The above proof of Mordell’s conjecture applies also to the equation
(1.3) (a generalization of (2.2)). By alinear substitution, we can transform
this equation into

(8.1) 23+ mxy?+myy® = n(udt+muvi+myo3) .
The corresponding field K(0) is defined by
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(8.2) 0°+my0+my = 0.
A solution of (8.1) can then be deduced from a solution of the norm-
equation
X+ YO0+Z62 N
8.3 N( ) = N(—) =n.
(8:3) U+V0+Woe s/ ="

As in section 4, we determine a factor o« = a-+b60-4c62% such that the
terms with 6% disappear in both products «z and «d.
We note that we may assume (8.2) to be irreducible, since a rational
linear factor on both sides of (8.1) would immediately lead to a solution.
The field K(0) is cyclic only if it is a Galois field, i.e. when the discri-
minant of (8.2),
D = —4m3—27m,?,

is a perfect square. This can always be obtained by taking K(D'?) as the
basic field of rationality. We can then apply Hasse’s result again, show-
ing that the congruence conditions for (8.1) and (8.3) (in rationals) imply
the solubility of these equations in K(D'?), and consequently (by the
chord process) also in rationals.

Incidentally, the argument shows that Hasse’s result is valid for any
cubic field, cyclic or not.
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