MATH, SCAND. 1 (1953)

CONTINGENCY TABLES
AND APPROXIMATE x*-DISTRIBUTIONS

DAVID FOG

Within various domains of mathematical statistics we are concerned
with random variables which are approximately y2-distributed; for in-
stance in the treatment of contingency tables. It is well known that a
variable which is exactly y2-distributed with n degrees of freedom, may
be split up into a sum of n squares of independent variables z,, each
of which is normally distributed with zero mean and unit variance. In
the following we shall show, for a number of cases, that a variable,
approximately y2-distributed with »n degrees of freedom, can be split up
in approximately the same way, i.e. into a sum of squares of n variables
having approximately the same properties as the z’s above. The investi-
gation includes not only two-dimensional contingency tables, but similar
tables of an arbitrary number of dimensions, and leads to a decom-
position into a sum of squares of uncorrelated variables, having zero
mean and variances which only depend on the number N of experiments
and tend to 1 for N — oco. The exact values of the variances are found
as functions of N.

1. Multinomial distribution without secondary conditions. As an in-
troduction to the contingency tables we shall start with the multinomial
distribution. Consider an experiment, which may give ¢ different results,
denoted by the integers 1, 2, ..., ¢. The corresponding probabilities
P1s Pos - - -5 P, are assumed to be known. We consider a series of N in-
dependent experiments, N being given. The results Nos. 1,2, ..., q are
assumed to oceur my, m, ..., n, times respectively, so that

(1.1) 2n;=N.

It is well known that the expression
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7 (n;—v;)?

(1.2) et

1 Vi

v; = E(n,;) being the mean of n,, is approximately y?-distributed with ¢—1
degrees of freedom. Below we shall give a decomposition of (1.2) into
a sum of ¢g—1 squares with certain specified properties.

As the distribution of the set (ny, n, . . ., n,) is an ordinary multinominal
distribution, the means, variances, and covariances of the n’s are deter-
mined by

(1.3) v,=E(n,) = Np,, var(n;) = Np(1—p,), cov(n;,n;) = —Npipi NUER

Introducing the new variables

n;

14 e
(1.4) Yi y 2

_vi

we get from (1.3)

(1.5) E(y;) = 0, var(y,) = 1—p;, cov(y,, ;) = —(pp)"?, (@ +j),

and from (1.1)
q

(1.6) 21)7/1/23/1: 0.

1

Consider an orthogonal substitution of order ¢

q
2= D hpiy;, m=12...,¢q—1,

'
=1

(1.7) \
2 = 20"
i=1
the ¢tt linear form being that of (1.6), the others needing no specification.
This substitution is applied to the #’s introduced in (1.4); from (1.6)
follows 2z, = 0, and owing to the orthogonality of the transformation
we get

q g-1
(1.8) Dyr=32,2.
1
For each variable 2y, z,, ..., 2, , the mean E(z,) = 0. Further we find

q 9
COV(yl, zm) = hml(l_pl)_zkmi(plpi)llz = hml_plllzzkmipillz = hml
i=1

i=2
or, after replacement of a subscript,

(1.9) CoOV(Y;, 2,) = Pops
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Consequently
(1.10) var(z th =
and for m + m,

(1.11) COV (2, Zpny) kahmn=

So we have obtained the desired result:
The sum of squares v (
2 ?/z 2 o

may be written as a sum of squares of g— 1 normalized and mutually orthogonal
linear forms z,,2,,. . ., 24, given tn (1.7). These are uncorrelated, with zero
mean and unit variance.

This result is mentioned in a paper by Irwin [1].

For large N the variables 2, 2,, . . ., 2,_, are approximately normal and,
being uncorrelated, they are also approximately independent.

n;—v;)?

v;

2. Two-dimensional contingency tables. Let w and » be two inde-
pendent variables assuming the values u,, u,,.. ., Ugs and vy, vy, ..., 0,

respectively, with given probabilities. As in § 1 we consider a series of N

| Uy TS
vy Ny Mgy cee Mg b,
vy Nyg Mgy R b,
v, Ny, Ny, cee My, b,
| a, . @, | N

q

experiments, N being given. The number of occurrences of the couple
(w;, v;) is denoted n;;. The variables n,; shown in the accompanying table
are connected in a multinomial dlstrlbutlon Denoting the marginal fre-
quencies (the frequencies of u; and v;) by «; and b; we have

(2.1) 2:7%,5]- = a;, 27&,’] == bj .
J 3

As the equation X';;n;;= N may be derived from the ¢+ equations (2.1)
in two different ways, only ¢+r—1 of them are linearly independent.

In the following the marginal frequencies a;, b; are assumed to be fixed.

Under these circumstances we have (Wilks [4], p. 216)

ab;
(2.2) vy = B(ny) = Nf
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and

(2.3) var(n;) = ai j(l"_w_i_fvl)_(_L;—i)_%%)’
(2.4) cov(ny, m; ;) = a_j%bj (va___i —%> ’
(2.5) cov(ng, 1,7,) = azzlxlr)jbh(Nl—l 1%’)

In (2.4) and (2.5), as well as in later formulas of the same kind, different
subscripts like ¢ and 4,, j and j, denote different numbers.
As in § 1 we introduce new variables

n,

oo P o o
(2.6) Yij = — 1/22Z
’V’ij

The sum of the squares of these variables is known to be approximately
y2-distributed with (¢q—1)(r—1) degrees of freedom. In the following we
shall give a transformation of this sum of squares analogous to that
£ (1.8).
From (2.1) we get the equations

(27) Zyz]b M= O Zyz] i = ’

among which g-fr— 1 are linearly independent. In view of the following,
we note that these equations are equivalent to ¢-+r—1 other equations

(2.8) 2 iy =0,
i

the left sides of which are normalized and mutually orthogonal.
Immediately we have E(y,;) = 0, and further we get from (2.3), (2.4),
and (2.5)

(2.9) var(yy) = 14 &= DG=D e,

N—1 N’
b —1 b,
(2.10) oV (Y, Yiyg) = (;0;))"" (N—-l _N]>
1 1
(2.11) COV(?/Z']', yiljx) (@ a"lbjbjl)lm (N* 1 _ﬁ> '

Consider now a linear form

(2.12) 2= hyyy
%
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which is orthogonal to all forms (2.7) and, accordingly, to (2.8). This
requirement is equivalent to

(2.13) %’hija; =0, Z,Vz”b;/2

giving g-+r—1linearly independent equations between the coefficients ;.
The mean of z is zero. For a closer investigation of z we form, using
(2.9)—(2.11),

b,—1 b
COV (Y11, 2) = hu( (@, )( ) &J)

N—1 N
g b,—1 b, " -1 a
+ 3 () + Do) ()
511 N—1 N ﬁ‘f” N—1 N

¢ T 11
+ 3 3 hj(a,abb) ( Z*V—j——> .

i=2 j=2

By means of (2.13) the two sums in the second line may be converted into

b,—1 b, a,—1 a
—k11a1<N_ ﬁ) kubl(l_vl—;—l—lT;)’

while the double-sum in the third line may be reduced to

1 1 1 1
—y 1/2 o
12,2 by (@4a;) (N—— 1 N) hy,0.b, (N——l N) .

As the terms with denominator N vanish we get

(2.14)  cov(yyy, 2) = h11(1+(a1—1)(b1—1)—2'a1 (b1—l)+a1b1> ,

N—1

3’ denoting the sum of the term quoted and the term obtained by
interchanging the letters @ and b, i.e.,

(2.15) Say(b,—1) = a,(b;—1) + b, (a,—1) .
Now

(2.16) (@,—1)(by—1) — 3'a,(b;—1)+-ab, = 1,
and we get from (2.14)

@17 cov(y;, 2) = (1+~1_~1>
Hence

Math. Scand. 1. 7
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1
(T
var(s) = Ihf (145
or, if z is assumed to be normalized,

1
2.18 =14—.
(2.18) var(z) ¥ 1
Under the conditions (2.13) the forms (2.12) determine a linear space
of gr—(9+r—1) =(¢—1)(r—1) dimensions. This space may be represented
by (9—1)(r—1) normalized, mutually orthogonal forms

(2.19) 2 = 2 i i lL=mz=(¢—1)(r-1).
7

All these forms have the variance (2.18). Further they are uncorrelated,
since for two such forms z =3;h,y,; and 2’ = Zijh;jyij we get by means
of (2.17)

1
cov(z,z') = z’hi.k;.<1+___) =0,
5 .Y\ N-—1

owing to the orthogonality.
We now construct an orthogonal substitution of order ¢r, adding to
(2.19) the equations

(2.20) 2y = Dby (q—1)(r—1) <m = qr,
5]

the right sides of which are the forms of (2.8). Applying this substitution to
the y’s in (2.6), which satisfy (2.7)—and the equivalent system (2.8)—,
we get
(2.21) 2y =22" 1=m=(—1)(r—-1).

Y

It has thus been proved:
The sum of qr squares L (ni— i)
Ty = I

”ij

i i
may be written as @ sum of squares of (¢—1)(r—1) normalized and mutually
orthogonal linear forms (2.19). These forms are uncorrelated, and all have
mean 0 and variance 1-4-(N—1)"1

For large N the forms (2.19) are approximately normal with unit
variance and approximately independent.

This problem has been studied by Lancaster [2], who states the variance
to be 1, which is only true asymptotically.
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3. Three-dimensional contingency tables. Let u, v, and w be three inde-
pendent variables assuming the values (u, us, . . ., %,), (v1, 0y, . . ., v,), and
(wy, w,, . . ., w,), respectively, with given probabilities. The theory of § 2 may
be applied to any two of these variables ; however,as the independence of the
variables two by two does not imply the independence of all three, it is
of interest to study the whole three-dimensional table and not only the
two-dimensional marginals.

In many respects the situation is here analogous to that described in
§ 2, and for such parts of the investigation we may confine ourselves to
brief indications. However, the analogy is not perfect; at a certain point
something new appears, which makes a more profound treatment of the
three- and multidimensional contingency tables necessary.

As before the number of experiments is assumed to be N, and the fre-
quency of the triple (u;, v;, wy) is called n,;,. Denoting the one-dimensional

frequencies by a;, b;, ¢;, respectively, we have

(3.1) Znijk = aj, .Z”ijk = b;, Enijk =Cp .
ik ik i
Only ¢+r+s—2 of these ¢g+r+s equations are linearly independent.
For fixed marginal frequencies a;, b;, ¢;, we find in analogy to (2.2-3)

abjcy,

Vije = E (ngr) = N

a;bic, < 1+ (@;—1) (=1 (—1) aibjck)

V&I’(nijk) == N2 (N_ 1 )2 Nz

and corresponding expressions for the covariances (compare (2.4-5)).
Consider now the variables

N:7.—/7V:r
__ gk ik
(32) yijk‘ - 1/2
Vijk

Introducing the y’s in (3.1) we get the equations

(3.3) %yijk(bjck)llz =0, %yijlc(aick)llz =0, %‘yijk(a’ibj)l/z =0,
which are equivalent to ¢+r-+s—2 linearly independent equations
(3.4) %kmijkyijk =0,

the left sides of which are normalized and mutually orthogonal.
We have E(y,;) = 0, and corresponding to the formulas (2.9-11) we
find

™*
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(3.5) var (yy) = 1+(ai_l)((lli,j:;;2(6k_l) —-(%(:,]:—k,

(3.6) OV (Y Yipn) = (@;0;,)'"* (%ﬂ - %E:) )
(3.7) COV(Yijis Yiyjyp) = (i3 0;b;,)" ((7(30: 1l 2 1—6\7&2) ’
(3.8) COV(Yijks Yirjyky) = (@i5,0,0; 10 ) (ZZ_Vil_)? — Z_Vl_2> .

We now consider a linear form

(3.9) 2 =ﬁ2k'hijk?/ijk )

the coefficients A,; satisfying the equations

(3.10) ;’hijkai‘/Z =0, %’hijkbjm =0, %‘hijkck”z =0.

It is orthogonal to all forms (3.3), and accordingly to (3.4).
The mean of z is 0. As in § 2 it may be shown that

1
(3.11) OV (¥ijis 2) = hijp (1_(WLT)5)'
In the proof we make use of the identity (compare (2.16))
a,—1)(b,—1)(¢c;,—1)—3"a,(b;—1)(c;—1
(3.12) (a, )(1’ ) (ei—1) 1(b;—1) (¢, —1)
+2'aby (e —1)—abe; = —1,

3’ denoting as in § 2 the sum of the term quoted and the terms obtained
by permutations of letters. The identity (3.12) is easily extended to g
dimensions, the right side then being (—1)°.

From (3.11) we find for a normalized 2

(3.13) var(z) = 1— ———.
Under the conditions (3.10) the forms (3.9) determine a linear space

of (g—1)(r—1)(s—1) dimensions; this space may be represented by
(g—1)(r—1)(s—1) normalized, mutually orthogonal forms

(3.14) Zm =§hmijkyijkr l=m <= (¢g—D(r—1)(s—1),
i

all with variance (3.13). As in § 2, they are seen to be uncorrelated.
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Now we have come to the point, where the discussion departs from
that of section 2. In fact, we have not yet a sufficient number of forms
for writing down an orthogonal substitution corresponding to that of
(2.19-20). Consider, therefore, a linear form

(3.15) 2 :Zhijckl/gyijk )
ik
the quantities h,; satisfying the equations
(316) Zhijaillz = 0, Zhwbjllz - O .
¢ J

This form is seen to be orthogonal to all forms (3.3)—and (3.4)—as well
as to any form (3.9).

The mean of z in (3.15) is 0. By means of (3.5-8) it is found by a
reduction similar to the former ones, but more tedious, that

1
(3.17) €OV (Yyjps 2) = hyjer (H-N—_—*l) )
whence for a normalized 2
1
3.18 = 14—
(3.18) var(z) = 1+ 5 —

Further any form (3.15) is uncorrelated with any form (3.9).

Under the conditions (3.16) the forms (3.15) determine a linear space
of (9—1)(r—1) dimensions. It may be represented by (¢—1)(r—1)
normalized, mutually orthogonal forms

(3.19) Zm :ijzk;hmijckl/vzyijk )
all with variance (3.18) and—as before (§ 1, § 2)—mutually uncorrelated.
Further

(3.20) 2 =%’hzkbjl/2?/ijk
i

and

(3.21) 2 =2hjk“il/2%jk ’
ik

with suitable conditions on the coefficients, give rise to (¢g—1)(s—1)
and (r—1)(s—1) normalized, mutually orthogonal forms

(3.22) Zyp = %’hmk by
B
and
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(3.23) 2y = Zk' Fomje®s ™ Yt »
%

all with variance (3.18) and mutually uncorrelated. Any form (3.22) or
(3.23) is orthogonal to and uncorrelated with all forms (3.9) and (3.15),
and is, further, orthogonal to the forms (3.3).

Now we are able to construct the desired orthogonal substitution of
order grs. In (3.14), (3.19), (3.22), and (3.23) we have altogether

(3:24) (¢—1)(r—D)(—D+g—Dr—D+@—1D)—D+r—1)(s—1)
= qrs—(g+r+9)+2

normalized and mutually orthogonal forms. The orthogonal substitution
is formed by adding to these the ¢-+r+s—2 forms

m =%'hmijkyijk ’
Y

constituted by the first members of the equations (3.4). Applying this
substitution to the y’s in (3.2) we get

Zyijkz = sz2’ l=m=qrs—(q+r+s)+2.
ik m
It has thus been proved:

The sum of qrs squares

Sy = 3 )

ijk ijk Yijk
may be written as a sum of squares of qrs—(q+r+38)+2 normalized and
mutually orthogonal linear forms (3.14), (3.19), (3.22), and (3.23). These forms
all have zero mean and are mutually uncorrelated. The (g—1)(r—1)(s—1)
forms (3.14) have variance 1—(N—1)%, while the remaining forms have
variance 14-(N—1)71.

As in § 2, for large NV, these forms are approximately normal with

unit variance and approximately independent.

4. Multidimensional contingency tables. Now it is evident how to
pass to an arbitrary number of dimensions, g. Let the frequencies in N
experiments be Wiig. i, and the one-dimensional marginal frequencies
@5 by - > Gip where 1 <4, < ¢;,1 =1, =¢,, ..., | =%, =¢,. The mean
of n, i, for fixed marginal distributions a,, b;,, .. 9, then becomes

1199+ - 11

_ab,. .9,

Net o

(4.1) v =

i1ig- -1
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and with

Pirig---ig ™ Virip---ig
1/2
Viyia- i)

(4.2)

Yirig--ip =

the result may be formulated as follows:
The sum of q1q,. . .q, squares
) .2'(%1@2...1’9)2,
1122 Y
may be written as a sum of squares of q,q,. . .q,—(q1+q2+- - - +9,)+o—1
normalized and mutually orthogonal forms
(4.3) 2 =42h¢1i2.,.¢9y¢1i24..i9 ,

ixia- i

having zero mean, zero covariances, and variances as stated below:

2(g;—1)(g;—1) forms have variances 1+(N—1)7",
2‘(Qz_1)(q]_l)(qk_1) 3] ) » 1—(N'—1)_2’
(44) Z(Qz__l)(q‘]_]')(Qk_l)(QI_1) IE) ) ”» 1+(N_1)—3’
(1 —1)(q.—1)- - - (g,—1) » o (=N —1)"C,

The meaning of X in (4.4) is most easily explained by an example. For
0=3

2(g;—1)(g;—1) = (1—1)(¢a— D+ (q:—1) (¢s— 1)+ (g.— 1) (gs— 1) .

As in the previous cases, for large N the 2’s in (4.3) are approximately
normal with unit variance and approximately independent.
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