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ON ANALYTIC FUNCTIONS OF SEVERAL VARIABLES.
A THEOREM ON ANALYTIC CONTINUATION

HANS TORNEHAVE

Introduction. Let z,=x,4 4y, v=1,..., m, be complex variables.
We shall use the vector notation 2 = (z,,..., 2,,) = ®-+y. For real vec-
tors we shall use the norm

el = (@24 . a2

We map the vector 2 on the point (®; y) = (xy,..., %y} Y1, - - Ypp) Of @
2m-dimensional space R,,,. If 2 is a point set in N,,,, the relation z € Q
will be used in place of (x;y)e 2. In the present paper we shall
study functions f(z) analytic in a point set £ defined by a condition

(], ) € e

where o is a connected point set in the quadrant x = 0, y = 0 of the
(z, y)-plane. (A function is called analytic in a connected point set £ if it
is analytic in an open domain which contains ). The point set £ is an
open domain if and only if w is an open domain relative to the quadrant
x=0,y = 0.

Corresponding to a point set 1Y
w in the quadrant z = 0,y = 0
we introduce another point set
w* consisting of all points (x, y)
which satisfy the conditions

X2—y? = 22—}
I=r=2,0=y =1

for a point (x,, y,) of w. The
point set w* will be called
the hyperbolic completion of w.
(Fig. 1)

The object of the present
paper is to prove the following

theorem.
_ . Fig. 1
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THEOREM 1. Let w be a connected point set in the quadrant x = 0,y = 0
of the (x, y)-plane and let w* be the hyperbolic completion of w. Every func-
tion f(z) = f(zy,...,2,) (m = 2) analytic in the point set (|x]], |[yl)) € w
then possesses an analytic continuation tnto a domain which contains the
point set (|lll, [yl)) € o*.

The point sets (||x||, [[y|]) € » are characterized by the property that
they are invariant with respect to every rotation

ol = 1ot o

where A and B are orthogonal matrices. These rotations, however, are
not analytic if A = B and it is not to be expected that every domain (2 of
the form (|lz|, |ly]]) € ® has an analytic completion (i. e. a regularity do-
main 2’ O Q with the property that every function analytic in £ possesses
an analytic continuation into the domain Q) of the form (jlx||, |ly||) € w’.
(Compare [2].)

1. An auxiliary theorem. The following auxiliary theorem is very
closely related to some classical results by F. Hartogs [1].

THEOREM 2. Let 2 be a bounded, closed, and connected point set in R,,,
and let Ry(z) and R,(z) be two positive functions, continuous in £ and
satisfying the condition Ri(z) = R,(2) where the sign of equality holds at least
for ome vector z = z* € Q. Every function f(z; w), analytic for all (z; w)
satisfying

zeQ;  (lw—Ry2))(lwl—Ryz)) =0,

possesses an analytic continuation into the point set
2eQ;  Ry(2) = |w] = Ry?) .

Proor. There exist a positive number % and an open domain 2* D
such that f(z; w) is analytic and bounded in the domain

(1) z € 0%, R,(z)—h < |w| < Ry(=)+h
and in the domain
(2) z € 0Q*; Ry(z)—h < |w| < Ry(=)+h.

In the domain (1) the function f(2; w) can be developed into a Laurent
series

flesw) =3 an(z)ur

N =—00
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where

1
®) i) = o\ ) i
2m
[wl=e@)

The function g(z) has to be chosen such that R,(z)—h < o(2) < R,(2)+A,
but it can be chosen as a constant in the neighbourhood of any particular
vector 2. Hence a,(2) is an analytic function in £%*. Similarly we have in
the domain (2)

flz;w) = _2_’ b, (=) w",
where
1
) b = 5\ S wy e,
2m|wl_a(z)

The function ¢(z) must satisfy R,(2)—h < 0(2) < Ry(2)+h. As in the
preceding case it follows that b,(2) is analytic in Q*.

In the neighbourhood of z* we can choose g(z) = o(), hence a,(z) =
b,(z) in a neighbourhood of z* and therefore, by analytic continuation,
in 2* We have thus proved that the two Laurent series are identical
and their common domain of convergence must contain the domain

(5) z € Q%; R,(z)—h < |w| < Ry(2)+h .

If K denotes the maximum of | f(z; w)| in the domains (1) and (2), we
get from (3)
la,(2)] = K(Ry(2)—h)™"
and from (4)
1b,(2)] = K(Ry(2)+h)™.

If we use the first estimate when n < 0 and the second estimate when
n> 0, we find that the Laurent series converges uniformly in every
closed subset of (5). Hence, it represents an analytic function in the do-
main (5) and this completes the proof of Theorem 2.

2. A fundamental lemma. The proof of the following lemma is the
most difficult part of our proof of Theorem 1.

THEOREM 3. Let w be a bounded, closed, and connected point set in R,,,
and let a(z) and b(z) denote functions continuous and positive in w. A point
set 2 in the (2; w,, w,)-space, where w, = U, +1v;, Wy = Uy+1V,, 18 defined
by the conditions

Z € w; w2 uy? = a(z), v,2+v,% = b(2).
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Every function f(z; w,, w,) analytic in Q then possesses an analytic con-
tinuation into the point sel

zew; a(@)—u—u,? = b(2)—v,2—0,?, U+ u 40,240, =< a(2)+b(2) .
The last condition can obviously be replaced by u,2+4u,? < a(z) or by
0’40, = b(z) .

Proor. First we shall prove Theorem 3 in the particular case where
a(z) = b(z) for every vector z € w. If A is a positive number satisfying

h < } min a(z), h < } min b(2), k < } min |b(z)—a(z)|,
the point set 2, defined by the conditions
zew; |ulttut—a(z) <k, |v°+02—b(2) = h

does not contain any point of the manifold u,%+wu,? = v,2+v,2. Let
f(z; wy, w,) be a given function analytic in 2. We choose % so small that
f(z; wy, w,) is analytic in £,

We introduce new variables z,*,. .., z,,*; {; = &+, {, = &+in, by
the transformation

(6)

¥ =z, v=1...,m;

{1 = wtwy?, {p = wi 4w, ,

which is non-singular when ¢, = w,+tw, & 0. The transformation is a
one-to-one analytic mapping of the domain w;+iw, == 0 on the domain

Ly 0.
The last two relations of (6) imply

(7) &1 = U Ut —0,2—0,?
and

- |2
®) 4(u12+u22)=|2<u1+iu2)12=|’c2+—%‘—l¢ - LI
2 2

It follows that the transformation (6) maps the point set 2, onto a point
set which contains the point set 2,* defined by the conditions

(9) Frew; [&—(a(z)—bEY)| < 4,
ol 2841202+ 1212 — da(e®)|Z,l?] < 2HIZ2

From the second condition follows that
2a(z*)—&; = 2a(2*)—(a(z*)—b(2*)+1h) = a(z*)+b(z*)—}h > 0.

Hence the biquadratic equation
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(10) |Zal*—2(2a(2*)— &, 4-R) Lo |Ly]2 = 0

is satisfied by two positive values of |{,| if it is satisfied by some real
value of |,|2 (both the sum and the product of the solutions with respect
to |C,|? are, in fact, positive). It follows that we may describe the point
set £2,* in the following way:

1) For a fixed 2* € o the variable &, runs through the interval

a(z*)—b(z*)—th = & = a(z*)—b(z*)+1h .

2) For fixed z* and &, satisfying 1) the variable %, runs through an
interval |n,| < k(2*; &;) where k(z*; &;) is the particular value of 7, for
which (10) has double roots.

3) For fixed 2* and {, satisfying 1) and 2) the variable ¢, runs through
a point set consisting of two closed annular domains which are defined
by the third condition in (9). They depend continuously on z* and ¢; and
they melt together into one annular domain when |7,] is close to its upper
bound k(z*; &,).

It follows from Theorem 2 that the function g(z*; {,, {,) corresponding
to f(2; wy, w,) by the transformation (6), has an analytic continuation
into a domain 2,** which we construct by adjoining to £,* all points
(=*; £y, ;) where 2* and ¢, satisfy 1) and 2) while {, belongs to the domain
between the annular domains in 3). The domain £,** is obviously de-
fined by the conditions

2¥ew; |&—(a(@¥)—bz")| < th,
[Cal*+281| 8o+ (812 —4a(2¥)[Cs]® = 2h[C,[2 .

The corresponding conditions in the variables z; w,, w, are, according to
(7) and (8),

REW; lu12+u22‘—7)12—”22_(“(2)*‘b(z))‘ = th, uPtu? < a(R)+3h .

This completes the proof of Theorem 3 in the special case where a(z) == b(z)
for every z € w.

Before we proceed with the proof of Theorem 3, we shall prove the
following statement, which is a simple corollary of the special case that
has already been proved.

Let w be a connected, closed point set in R,,, and A a closed domain in
the quadrant x = 0,y = 0 of the (x, y)-plane. Further, we assume that A
intersects every hyperbola x2—y? = ¢ in at most one arc, and that A does not
wntersect the straight line y = x. Let A* denote the hyperbolic completion
(defined in the introduction) of A. Every function f(z; w,, w,) analytic in
the domain Q defined by
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REW; ((“12“}‘“22)1/2, (”12+”22)1/2) e
then possesses an analytic continuation into the domain Q* defined by
zew;  ((u4u)", (v,24v,2)"%) e 4*.

We have, in fact, proved that f(z; w;, w,) has an analytic continuation
into the domain obtained from £ by adjoining a hyperbolic arc like PQ
Y in fig. 2 to 4. But we may then
even adjoin to 4 a strip bounded
by hyperbolic arcs, indicated
by dotted lines in fig. 2. Accord-
ing to Borel’s covering theo-
rem, a finite number of these
strips will cover the hyperbolic
completion. If the intersection
of two strips is not empty, the
corresponding continuations of
f(z; wy, w,) are identical in the
extension of £ corresponding
to the intersection,because they
are identical in the part of this
extension which is contained in
Q. This completes the proof of
the statement.

We shall now pass to the proof of Theorem 3 in the general case. Let
z =2"cw be a special vector, for which a(z°) = b(z°) = a. We have
only to prove that a function f(z; w,, w,) analytic in 2 has an analytic
continuation into a domain which contains the point set

z=2"% Ut +uy? = v’ v = a.

Without restricting the generality we may assume that 2° = 0. The func-
tion f(z; w,, w,) is then analytic in the domain

l2) <h,v=1,...,m; |u’+tu—al<h, [|v;*+v,,—al<h

where % is a sufficiently small positive number. According to the above
statement f(z; w,, w,) possesses an analytic continuation into the part
of the domain
2| < b,y =1,...,m; |u4+u2—v2—v,% < h,
U2+ 0,240, < at+h
outside the point set

(11) 2l <hyv=1,...,m; u>+u?=0v24v%<a—h.
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t— R u

11U, ~—h— ui+ul
a a
Fig. 3 Fig. 4

We have indicated the domain in fig. 3, where we have used wu,>+u,?
and v,2-+v,% as coordinates.

We replace u, by a new variable u,+0 = u,* where ¢ is a real constant
and we choose the absolute value of § so small that

lug*2—u®| < } b

for every point of the domain. In the new variables the domain indicated
in fig. 3 corresponds to a domain which contains the domain 4 drawn
with heavy lines in fig. 4. But a function, analytic when |z,| < &, v =
1,..., m, while (u,*2+4u,2 v,24v,%) belongs to A, possesses, according to
the statement above, an analytic continuation into the hyperbolic com-
pletion of the domain in fig. 4. Thus, we find that the exceptional set (11)
must be replaced by the set

(12) 2l <hv=1,...,m; (u—0)Fu® = 0’40, = a.

But no point belongs to (12) for all small values of §. Hence there exists
no really exceptional point after all. This completes the proof of Theorem 3.

3. Proof of Theorem 1. We start by proving the following special
case of Theorem 1.

THEOREM 4. Let a and b denote two positive numbers. Every function
f®) =f(y. .., 2,) (m = 2) analytic when |x|| = a, |[y|| = b has an ana-
lytic continuation into a domain which contains the point set

(13) loef2— [yl = a2—b?, |j|P+ly[2 < a24-b2.
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Proor. The conditions |x|| = a, |jy|| = b are equivalent to the follow-
ing set of conditions

4. 4, = a? oyl H4y,,2 <02
T 242 = A — (@ ... 42,7, Yty = 0P (Y YY)

and, according to Theorem 3, a function, analytic in this point set, pos-
sesses an analytic continuation into the point set

2.t S ad Y. .y, < b2
P22y =Y = AP — (@t 42, ) =0 (Y YY)
P22y Pyt = P — (.. 42, )0 — (Y . 4y,

but this set of conditions is obviously equivalent to the set (13).

Finally, we shall prove Theorem 1. If (,, y,) € w, the function f(z)
possesses, according to Theorem 4, an analytic continuation into a do-
main which contains the manifold

(14) ]2~y = 2®—yo*, 0 = x| =2, 0=yl =y,.

Ny To complete the proof we have
Q to verify that the continuations

of f(z) along the manifolds (14)

P, starting from two different

7 points (x,, ¥,) and (x,, y,) where

/ , x,2—y,? = x,2—y,? are identical
/ P in the intersection of the mani-
P L folds. We have illustrated this
P1 in fig. 5, where we have used
R 2|2 and |ly||* as coordinates.
v lz|? Let f(z) be a function, analytic
~  when (|22, |ly|?) € », and let P

Fig. 5 and @ be two points of wsituated
so that P@ has the slope 1

in the diagram. We shall prove that the continuations of f(#) along the
segments PR and QR where R is the point of intersection between PQ and
the boundary of the quadrant, are identical on the common part of the
two segments. There exists a broken line PP,..P,_ ;@ joining P and @
such that f(z) is analytic when (|jx|/? |[yl|?) belongs to this line. Let
R,R,,...,R,_,, R, be the projections of the vertices P, P,,..., P,_;, @
in the direction of the straight line |x[> = [|y||> on the boundary of the
quadrant. Let us assume that we already have proved that f(z) has an
analytic continuation into the domain corresponding to the hyperbolic
completion of PP,...P, The continuation is then analytic in the domain

RE,R, R

Y +1
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corresponding to the segments of the coordinate axes drawn with heavy
lines in fig. 5. Obviously, these form a connected set. But f(2) has a continua-
tion into the domain corresponding to the quadrangle P,P, ,R, R, and
this continuation is identical with the preceding one in a neighbourhood
of ([=])? |lyl>) = P,, hence, also when (||x|?, |ly||?) is on P, R, and, finally,
when (|||, |ly||?) is on the part of the segment R,R, ,; which belongs
to the hyperbolic completion of PP,...P, This implies that the two
completions are identical everywhere, which completes the proof.
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