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DIRICHLET’S PROBLEM FOR LINEAR
ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

LARS GARDING

Introduction. Consider a linear differential operator of order »,
(1) q ﬁZQp(w)Dﬁ,
Bisv

where the coefficients g4(x) are complex functions defined in some open sub-
set S of real n-dimensional space and D, derivatives (9/dz,). . . (0/ow,,)’
of orders |f| = B+ ...+, with respect to z,,. .., «,. For simplicity we
shall assume that the coefficients are infinitely differentiable!. Restrict-
ing the summation on the right side of (1) to derivatives of order » only,
we get an operator g, which (if not zero) is called the principal part of g.
Together with ¢, we consider the polynomial

qv(xr ‘5) ZZqﬁ(x){Sﬂ (Eﬂ —_ 51/31‘ . .Enﬂn)

|Bl=»
of the real variables &,,. .., &,. The operator ¢ is called elliptic in the re-
gion 8 if ¢ (x, &) = 0 when x belongs to S and & = 0. The simplest non-
trivial example is the operator

? +i ? (n = 2)
= — v — = .
1= 3. "oz,
Here v = 1,q = q,, and q,(x, &) = &,+1&, &= 0 if & == 0. The solutions
u = u(z) of the equation
qu = 0

are all analytic functions of the variable x|z, Other examples are
Laplace’s operator
02 02
a__x—la + DY + 5_;"’2
and its powers.

Received April 1, 1953.
! An extension to sufficiently differentiable coefficients does not present any difficulties.



56 LARS GARDING

We shall be concerned with weak solutions of the equation
(2) qu =h,

where h is an infinitely differentiable function in S. It is sufficient for
our purpose to define a weak solution as a function  which is integrable
on all compact subsets of § and satisfies the equation

3 \e@fi@dz = (1@)f @i
N N

whenever f belongs to the set H = H(S) of infinitely differentiable com-
plex functions each of which vanishes outside some compact subset of S.
Here ¢ is the formal adjoint of ¢ so that

if(x) =3 (=) Dy(g5()f () .

Hence, if % is » times continuously differentiable we may integrate by
parts in (3) and get {(qu(z)—h(x))f(z)dx = 0, so that u is a solution of
(2) in the ordinary sense. An important lemma by H. Weyl [18] asserts
that if ¢ is Laplace’s operator and 4 = 0 then every weak solution of (2)
after a correction on a null set becomes an ordinary solution, i. e., in this
case, a harmonic function. This lemma is a special case of a theorem by
Schwartz [15], p. 137, which states that every weak solution of (2) be-
comes infinitely differentiable after a correction on a nuli set, provided
that every point of S has a neighborhood in which a fundamental solution
of ¢ with certain properties can be constructed. Recently F. John [10],
[11] constructed such a fundamental solution assuming only that ¢ is el-
liptic with infinitely differentiable coefficients, and hence it follows
that every weak solution of (2) becomes infinitely differentiable after a
correction on a null set. If the fundamental solution is analytic, which
is the case when the coefficients of ¢ are analytic, then every weak solu-
tion of (2) with A = 0 is even analytic after a correction on a null set.

That Schwartz’s theorem is in a certain sense characteristic for ellip-
tic equations follows from a theorem by Petrowsky [14], which states
that if ¢ has constant coefficients but is not elliptic, then the equation
qu = 0 has infinitely differentiable solutions which are not analytic.

It is the object of this paper to solve Dirichlet’s problem for the equa-
tion (2) when (after multiplication of both sides by a suitable, non
vanishing function of z), ¢,(z, &) is a positive definite polynomial?, S is

% More generally : when the real part of g, is positive (see the end of section 3). This case
has been treated by J. Leray, Sém. Bourbaki, May 1951, for equations with constant
coefficients by a different method, and also by Vishik [17].
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bounded, and the coefficients of ¢ are sufficiently well-behaved.? Since
q,(x,—&) = (—1)'q,(x, &), the first assumption implies that » has to be an
even integer 2m. Roughly speaking, Dirichlet’s problem is the following:
To find a solution % of (2) such that the derivatives of orders < m of the
function w—g, where ¢ is a given function in S, vanish at the boundary
of S. Using a variant of the method of orthogonal projection by Zaremba
[19] and Weyl [18], which may be considered as a form of Dirichlet’s
principle, we shall reduce this problem to a Fredholm equation. In the
case m = 1 we add nothing new. When m > 1, the main difficulty arises
from the fact that there are several possible Dirichlet integrals corre-
sponding to the principal part of ¢ and that it may happen that none of
them is positive definite. Nevertheless, any Dirichlet integral is bounded
from below on the set of functions whose square integrals are 1 and which
vanish in boundary strips of § (Theorems 2.1 and 2.2). The proof of this
fact is the essential point of the paper, which also contains a remark on
Neumann’s problem and ends with a short paragraph on Green’s transfor-
mation and the vibration problem.—The main results were announced
in [8] and partial results for constant coefficients in [5] and [6].4

1. The Hilbert space of functions with vanishing boundary values.
As in the introduction, define H = H(S) as the set of all complex-valued
infinitely differentiable functions vanishing outside compact subsets of
an open subset S of real n-space. Put

fo(@) = Dyf(x)

and

(1) =\ S e

S1Bl=7

Closing H with respect to the norm |f|; = (f, f);'"* we get a Hilbert space
9; = 9,(8). If j = 0 it consists of all (equivalence classes of) square inte-
grable functions in S. We shall try to describe the spaces with j > 0.
Let us assume that S is bounded. Then we have

3 The exact conditions are found under a) and b) p. 60, c¢) p. 64, and d) p. 67.

4 Various circumstances have delayed the publication of this paper which was completed
in December 1951. It overlaps with the papers [16] and [17] by Vishik, who in [17] also
treats systems of equations. If in (1) we consider g(z) as square matrices of order I, inter-
pret ellipticity as q,(«,£) (more generally Rq,(x,&)) being positive definite for all £, and con-
sider functions with values in Il-dimensional unitary space, we get by formal changes
the most important theorems of Vishik. However, the fundamental Theorem 2.1 is
new. A review (with proofs) of the manuscript was given by L. Schwartz at the Bourbaki
seminar in May 1952. A proof of Theorem 2.1 has also been found by F. Browder [2].
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Lemma 1.1. If 8 is bounded there exist numbers c;; such that

(1.2) Ifle = ijlflj
when k < j and f belongs to H.
Proor. The inequality (1.2) is proved by repeated application of

a3)  \@rdr < sp(ifeid el g = ofjos),
5 5
where [S] is the diameter of S. This is Poincaré’s inequality in the sim-
plest case. To prove it we need only apply Schwarz’s inequality to
Tk
fla) = ka(xl,. sty @)

and afterwards integrate over S.

If f'eH (v = 1,2,...) is a Cauchy sequence in §,,, it follows from (1.2)
that it is also a Cauchy sequence in anyone of the spaces 9,,_;,. .., Do
Let A be any infinitely differentiable function. Passing to the limit in

V@@ = (—1P{fe)he)s,

where || =< m, we get
(1.4) \r@hede = (1) {f@h@s,

where f and f; are certain square integrable functions vanishing outside
8. It follows from (1.4) that f; is determined almost everywhere by f.
We therefore take f as a representative for the Cauchy sequence f.
The same equation permits us to call f; a (generalized or weak) derivative’
of f. The fact that every fe9,, has square integrable derivatives of orders
=< m defined in the whole space, but vanishing outside S, means roughly
speaking that f and its derivatives of orders < m vanish at the boundary
of S. These functions belong to a class of functions studied by Nikodym
[13] (see also Deny [4]). After a correction on a null set they are absolutely
continuous on almost every straight line parallel to any of the axes, and
after this correction they have vanishing limiting values almost every-
where on any smooth part of the boundary of S.

Lemma 1.1 has the following consequence:

Lemma 1.2. In §,, the norms |f|,, and ||fll, = (|fln2+ - - +If15)" are
equivalent.

5 The theory of such derivatives has been systematically developed by L. Schwartz [15].
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Proor. It is clear that |f|, = |/f||., and it follows from (1.2) that
12 = |flm24 - - FI1flo® = me?|f],,% if ¢ is the largest of the numbers

Coms+ + +» Conm
It is sometimes useful to express the norms |f|; (feH) in terms of the
Fourier transform

F(&) = Seix’ff(x)dx (@E = 26,4 . . 42,E,)

of f. Then fy(x) has the Fourier transform (—i)#1£,F(¢) and hence by
Parseval’s formula

(1.5) 17 = (an"gl S egrE)s
=]

We observe that X', _;£,? is comparable to [£|* (J&2 = &2+ ...4E,2),
so that the quotient (X5_;&:%)/(2)q_ns2+t) tends to zero as t - oo,
uniformly in £. This proves in particular that

. Fls®
1.6 lim sup —— =
(1.6) s A TR

The same formula leads to a simple proof of the following lemma.

LemmA 1.3. Let D, f and Dyf be two derivatives of f of orders =< m, not
both of order m, and let a(x) be a bounded function in S. Then the equation

(L7) Sa(w)Dmeﬂf'mdx — (Af, [

where f, f' and Af belong to 9,,, defines a completely continuous linear opera-
tor A.

Proor. By Schwarz’s inequality we get that the left side of (1.7) is
majorized by

la| |D,flo [Dﬂf’|0 ’

where |a¢| = sup |a(x)|. Hence by Lemma 1.1 it is a continuous function
of f and f’ in §,,, so that 4 exists as a bounded linear operator. If for
instance the order of D, is less than m we get

(AL, [l = Clf les 1f ' s
where C is a constant, and hence
(1.8) [Af | = Clf lmes -

Now let f* (v = 1,2...) be a sequence of elements in H such that |f*],, < 1.
Then also the sequence |f*|, is bounded and hence we may pick out a
subsequence f* such that the Fourier transforms
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F(&) =\ @),

which are uniformly bounded, converge for all £. Using the formulas (1.5)
and (1.8) we get, C, and later C, denoting suitable constants,

|Af" —Af* |2 < C¥f —f* | s?
= OIZS |2 IF"'(S)—F"'(£)I2d§+C’fS (&[22 | (&) —F* (&)|%dE .

|él<R =34
Here the first integral tends to zero when min (»’, u’) — co. The second
integral does not exceed

CRR |6 LF7(6)— F/(€)'dt = C2R-* |17 —f"),.2 < 40,2R-
GEYS
and tends to zero with 1/R. Hence |Af" — Af*|,— 0 as min (v', u') — oo,
so that 4 is completely continuous.

2. Dirichlet’s integral. From now on let m be a fixed positive integer.
Suppose that for every x in S we are given a real polynomial p(z, £)
of the real variables &,,..., £, which is homogeneous of degree 2m.

We assume that

a) the coefficients of p(z ,£) are infinitely differentiable and uniformly
continuous in 8.
b) the polynomial is uniformly positive definite in S. More precisely:

inf p(x, &) has a positive lower bound in S.
[&=1

To such a polynomial we can always construct Dirichlet quadratic forms,
i. e., expressions of the form

ol ]2)3; paﬂ(x)fa(x)fﬁ(x) ’
where the coefficients p,,4(x) are real and symmetric, satisfy the condition
a), and have the property that

@) L Pela) £y = Pl ).

To see that such forms do exist we write p(x, &) in the form

2 qkl. . kzm(x) Ekx A Ekzm >

where the indices k,..., k,,, range independently from 1 to » and the
coefficients ¢;, ;, are symmetric. Then the expression
— o"f ()
2 Uiy inden. @i i@y (@) (fil...im = m)

,il... m

2!
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is a Dirichlet form. If m = 1 there is only one Dirichlet form

X 0@ fi(@) fil)

and it is positive definite. If m > 1, neither of these statements is true.
Consider for instance the case p(&) = (£,2+&,2)%. Then

| fua(@) 2 2(1—0) | f1a(@) |2 | fan(@) 2+ 2cR f1 () fon(@)

is a Dirichlet form for any real ¢, and it is not positive definite® if |¢| = 1.
Now pick out any Dirichlet form belonging to p and put

(22) P, 1) =\ 3 pyfe)f @) e
N

If f = f’ this expression is an analogue of Dirichlet’s integral.
Omitting the index 0 in (f, f'),, we shall write

(2.3) (.4 = \f@f @
and, later on, also 8
(2.4) pdf, f) = o(f, f)+US, )

where ¢ is a real number.
We can now formulate the principal result of the paper.

TaEOREM 2.1. If p(f, f) is any Dirichlet integral belonging to p then’
inf P /)

ser (s f)

Proor. In the special case when p(z, &) = p(&) is independent of x it fol-

> — o0

8 It is interesting to note that if p has constant coefficients then p possesses a positive
Dirichlet form,

2 puﬁf af B =0,
if, and only if, p(§) is a sum of squares. In fact, the Dirichlet form, if it is positive, can
be written as a sum of squares,
2

2| 2 kapfs
« B
and hence

P& =2 ﬂZkaﬂw

is itself a sum of squares. The converse is obvious. Now it is well known (Hilbert [9])
that there are positive definite polynomials which are not sums of squares, and such
a polynomial has no positive Dirichlet form.

"It may happen that the lower bound is negative. In fact, let 1 = h(x) = ¢> 0 in S.
Then p(w, &) = h2(x)(£,2+&,%)? has a Dirichlet integral

p(f.f) = g h“’(|f11|2 + |f2212+3mf11f§22_ |f12‘2)dx .
S
The integrand is negative if f,; = fos = 0 and f;; = 1. Let ¥ = (y,, ¥;) be a point in §
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lows directly from Parseval’s formula that p(f, f) is positive and that
p(f, f))"* constitutes anorm in §,, equivalent to |f|, . Infact, let feH and let

F§) =\ =5 ()

beits Fourier transform. Then f, (x) has the Fourier transform (—z)™& _F(£),
and (2.3) together with (1.5) gives

(P = o IFE)( 3 89
and |B|=m

ot ) = @y {IF@pE)E

Since the polynomial p(&) is homogeneous of degree 2m and positive
definite, the quotient (X'&,2)-'p(¢) is bounded from below by some
positive number ¢_ and hence

(2.5) p(f.f) = clfln?  (feH).

This inequality can be used to take care of the general case. Let w(p)

be the common module of continuity of all p,4(x), i. e.,
w(e) = sup |Pap(®) —Pas(¥)] »
&y Py, Y

where « and y belong to § and are subject to the restriction |z—y| =
(2 (x,—y))"* < 0. Let T' be a sphere of radius p and z its center. If
f belongs to H(S n T') and p(f, f) is the Dirichlet integral corresponding
to the polynomial p(&) = p(x, &), we have

o(f, F)—p(f ) = |S§ (Pa, (@) — Pa p@) (@) f ()|
< ju(o) Sz @) 2 f5(@)2) e = w(@)d | fl? 5

d,, denoting the number of different derivatives of order m. Hence, by
(2.5),

P f) = o, f)—1p(f ))—p(f, )] = (2e—w(e)d,)|f| 2

if 2c = inf, g inf,_, p(y, §). By assumption b), the number ¢ is positive,
and by assumption a), the module of continuity w(p) tends to 0 with .
Hence, if we choose ¢ so small that w(e)d,, < c, it follows that

(2.6) p(f, f) = clfln?

and put f(@) = (, —y,)(w,—y,)b(x) where the function b belongs to H and equals 1 on a
small circle with center . Then f is in H and, if & tends to the characteristic function
of C, then p(f, f) tends to a negative value. Hence p(f, f) < 0 for some f in H if h is chosen
suitably.
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whenever f belongs to H(S n 7T') and T is any sphere of radius ¢. Now S
is bounded and hence we may cover § by a finite set of spheres 7'y,..., Ty
of radius 3¢. Let 27'; be the sphere concentric with 7', but with radius .
By a known device we may write

1= [h2@)+...+lhy*@)] (xed),

where the function A (x) belongs to H(2T,) (+ = 1,..., N). Let f be in
H(S) and consider

Pf ) = I\ 2 @)Dl @) el

Taking out one term A4,, we may write it as

| 2 @@ @), () @) — i,

where R, is a sum of integrals of products of a bounded function and two
derivatives of f of orders < m, not both of orders m. Estimating R, in an
obvious fashion and using Lemma 1.1, we get

(2.7) A; = phif, bif )=\ f 1 |l 5

where a; is a certain constant. But k;f belongs to H(27; n S) hence we
may apply (2.6) with the result that

2 C]hiflmz_aiuclm |f‘m—1 .

By the same argument which led us to the estimate (2.7) of 4; we conclude
that

(hif, hif ) = | @) 3 @)=l f s

where b, is a constant. Hence

4= o\ Ih¢ 3 \f, @) (ebi+a)\f I | l-s

|a|=m

o that, summing over 7 ,

p(f’f) % clflmz__a’lflm Iflm——l ’
where @ = 2'(cb,+a,;) and f belongs to H(S). This means that
P, f) = p(f, UL ) = clflw>+HSflo*—alf o 1l -
Let us put for a moment |f|* = ¢|f|,,2+t/f]o2. Then it follows that

pt(f’f) =
PUEDHUL L) Z 112 A—alf172 1 f L 1 lma) 2 12 —ac™ P flp g 1f17Y).
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By virtue of formula (1.6), the quotient |f|,_,/|f| tends to zero as
t - -+ oo, uniformly in f, and this shows that for ¢ large enough,

pf> ) = el flnai 411 -
This proves our theorem and at the same time the following only appar-
ently sharper result®:

THEOREM 2.2. There exists a number t, such that, when t > t,, (p,(f, f))**
constitutes a norm in 9, equivalent to the norm (|f|,,2+|f1o2)"2 The equiva-
lence is uniform for large ¢.

Proor. In fact, the last formula shows the uniform equivalence one way.
The converse inequality

2, ) = eillfln2+Hf1e%)

where ¢, is a constant which does not depend on ¢, follows trivially be-
cause

p(f.f) =
| S @ ie = swipe)] | o 210+ Ve

B, x

where d,,,, as above, denotes the number of different derlvatlves of order m.

3. Dirichlet’s problem. Integrating by parts in p,(f, f') and assum-
ing that f and f’ both belong to H, we get

pt(frf’) = (f’ ptf’) = (pzf:fl)

where p, is now a self-adjoint differential operator defined by

(3.1) Puf @) = (—1)" 2 Dy(Pap(@) Dyf () +1f ()

The most general linear differential operator ¢ with the same principal
part as p = p, can be written as ¢ = p-r, where
if @) = 2 r(x)D,f(x)
lyl<em

and r,(x) are complex-valued functions. We assume that

c) the coefficients r,(x) are infinitely differentiable in S and their
derivatives of orders < [}|y|] are bounded in S,

and put Dirichlet’s problem in the following form:
8 This follows if we apply Theorem 2.1 to the Dirichlet form p(f, f) —&(f, f),, which corre-

sponds to the polynomial p(z, &) —e2) 1pl=m&g>- If €> 0 is small enough, this polyno-
mial has the properties a) and b).
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Given a function g in S such that |jg|,, = (|9],,2+- - . +]g]e>)"? < o
and an infinitely differentiable function A such that ||, < c. Find a
solution u of the diffential equation

qu = h

such that g—u belongs to 9,,, i.e., a solution % having the same
boundary values as g.

In order to solve this problem we use the well-known method of ortho-
gonal projection by Zaremba [19] and Weyl [18]. Consider first the spe-
cial case when ¢ = p,, where ¢ is a real number greater than the number
t, appearing in Theorem 2.2. Then, if f is in H, it follows from Lemma
1.1 and obvious estimates that the expression p,(g, f)— (%, f) is majorized
by a constant times |f|,, and hence it is an antilinear continuous function
of fin §,,. Hence, by Theorem 2.2, there exists an element ¢’ of §,, such
that®

pt(g>f) = pt(g’af)+(h7f)
for all fin H. But p,g, f) = (9, p.f), and the equation

pt(k’ f) = (k’ ptf) ’

which is valid when k and f are in H, follows by a passage to the limit
when k = ¢g’'. Hence the square integrable function u = g—g’ satisfies
the equation

(3.2) (u, f) = (b, f)

when f belongs to H. But then from Schwartz’s theorem and John’s con-
struction of a fundamental solution it follows that » is infinitely differ-
entiable after a correction on a null set. Hence we may integrate by parts
in (3.2) and get

(ptu_h’ f )=10

for all fin H. Thus pu = h and we have solved Dirichlet’s problem in
this special case.

Consider now the general case. With the differential operator r we asso-
ciate the bilinear form

r(f’f’) = (1, f') = (f’ f'),
® Among all f in §,, the function g’ minimizes the expression
pt(g—fr 9-rf) —2%(’% 9=r,
and hence our method is nothing but an application of Dirichlet’s principle. The idea

to consider directly the antilinear function p,(g, f)—(k, f) of f seems to be due to Vishik
[16] and has distinctive advantages when it comes to equations which are not self-adjoint.

Math. Scand. 1. 5
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where f and f’ are in H and 7 is the adjoint of r. After suitable integrations
by parts we may write r(f, f') as a sum of expressions of the form (1.7)
where the function a(x) is bounded by virtue of our assumption c). Hence
r(f, ') is a continuous function on 9,, X 9,,-

If u is a solution of our problem and ¢’ = g—u, then it follows from
qu = h, by multiplication by a function f in H and integrations by parts,
that
(3.3) Q(gaf) = Q(g”f)"l‘(h:f) )
where q(g, f) = p(g, f)+7(g, f), and analogously for ¢(g’, f). Conversely, if
g' is an element of 9, satisfying (3.3), then v = g—¢’ is a function in
9, satisfying

(4, ¢f) = (B, f)
for all fin H (¢ = p-- is the adjoint of ¢). Hence, by Schwartz’s theorem,
u is infinitely differentiable after a correction on a null set, and conse-
quently it satisfies the equation gu = h. Thus we may concentrate upon
(3.3).

Choose a number ¢ > ¢, and put r_, = r—¢ so that ¢ = p,+r_,. To
begin with it is clear that ¢(g, f)— (%, f) is a continuous antilinear function
of fin §,,, so that, by Theorem 2.2, there exists an element § in §,, such
that
for all fin H. Moreover, according to Lemma 1.3 and Theorem 2.2, the
equation :

([, f") = p(Bf, [,

where f, f’, and Rf are in 9,,, defines a completely continuous linear
operator R on 9,, and hence (3.3) is equivalent to the equation

(3.4) g =9 +Ry

to which the theorems of Fredholm are applicable. In particular, if the
corresponding homogeneous equation f+4Rf = 0 has only the solution
f =0, then Dirichlet’s problem has a unique solution for any ¢ and A
satisfying the given conditions.
Further, the two equations
qu=1r,

3.5 -
(3.5) =1,

where u, v € ,, and f, b € 9,, constitute a Fredholm pair (Vishik [17] and
Browder [1]). In fact, they may be written as

qu, k) = (f, k) forallke H,
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g, k) = (h, k) for allke H,
and hence, since 7_(f, /") = r_{f"./) = PARJ". /) = pdf, Bf") = pAR*..1')

also as

u+Ru = Cf,
v+R* = Ch

where C is a completely continuous operator from §, to 9,,, defined by
(f, k) = p[Cf, k) for all k € H. The two equations (3.6) obviously consti-
tute a Fredholm pair.

(3.8)

ReMARK 1. We may modify ¢ by putting ¢ = p+ip’+r where p’ is a
differential operator of the same form (3.1) as p = p, and satisfies the
condition

d) the coefficients of p" are real, infinitely differentiable, and bound-
ed in D.

Then we may solve Dirichlet’s problem also for the modified ¢q. Because
of d), the equation ,
) the ed UL = pALD

where f and Af are in §,,, defines a bounded self-adjoint linear operator
A, and (3.4) becomes in this case

g —— g’—-l'-’LAgl—l—.Rg’
to which the theorems of Fredholm are also applicable. The two equa-

tions (3.5) still constitute a Fredholm pair because the only change in
(3.6) is that R is replaced by R+¢4 and EB* by B*—:A4.

ReMARK 2. The method of projection which we have used here also
applies to other boundary value problems, e. g. Neumann’s problem?!®,
Then we have to replace H by the set H of all infinitely differentiable
functions in S with square integrable derivatives. The scalar products
(f,f"); are defined as before. If S has a smooth boundary, it is easy to see
that the formula (1.2) is valid when we replace |f| ;on the right side by
(f12+1f [o2)"2%. Lemma 1.2 has to be modified accordingly. The formula
(1.5) is no longer true, but it is not difficult to see that (1.6) is still valid
and also Lemma 1.3 if we replace the scalar product (f, f'),, by (f, f )+
(f’ f’)o-

Let us now assume that we have a polynomial p(x, &) which has the
property a) and that we have a corresponding Dirichlet form which is
uniformly positive definite at all points of S,11

10 Another method was given by Vishik [16].
11 As we have seen, there are polynomials p(z, &) for which such Dirichlet forms do
not exist. In this connection it would be very interesting to know which polynomials have

5*
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D 0.5@f @) f5x) Z e 3 If @) (e>0).

Then it is trivial that p,(f, f) and | f|,,2+|f|s* are equivalent square norms
in H if t > 0. Let us denote the completed Hilbert space by @m Ifgisa
function defined in 8 such that pg, as defined by (3.1), is square inte-
grable, then g has a projection ¢’ in ,, defined by the equation

(g, f) =2d9'. ) (f€Dn).
Denoting by f a function in H, we may integrate by parts and get

(9—9, pf) =0 (fe H),

which means that w = g—g¢’ is infinitely differentiable and satisfies
pu = 0. Hence p,g’ exists and

(3.7) (pg' ) =pdg>f)  (f€Dm) -

If ¢’ has derivatives of ordens < 2m which are continuous in the closure
of 8, this equation implies that certain normal derivatives d,9" of g’ of
order » (m < » < 2m) vanish at the boundary of S. If m =1 and p is
Laplace’s operator, this means that the ordinary normal derivatives of u
and g are equal, and hence we are justified in considering u as the solu-
tion of the natural Neumann’s problem for the equation p,u = 0, the
boundary conditions being d,(u—g) = 0, which are implicit in the equa-
tion (3.7). The extension to differential operators with the same principal
part as p is immediate. It is also possible to treat by the same method a
variety of boundary value problems analogous to Riemann’s problem for
Laplace’s equation in the plane.

4. The vibration problem. For the differential operator

Q-—oc = p+r‘—_0‘ )

where « is a complex number, we may put the following vibration prob-
lem:
To find solutions in §,, of the equation

(4.1) qu=0.

Because of Schwartz’s theorem this equation is equivalent to

(4.2) q_(u,f)y=0 forallfin 9,,.

a Dirichlet form for which Theorem 2.1 is true when f varies over H and § is a simple
region, e. g. a square. It is conceivable that the Dirichlet form has to be positive in this
ase.
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We are going to connect the solutions of (4.1) with Green’s transfor-
mation @, defined in the next lemma.

Lemma 4.1. If t is sufficiently large, the equation
(4.3) (f; h) = 4lGf, B)

where f, b, and G,f are in 9,,, defines a completely continuous linear operator
G,, whose tnverse exists and is an extension of the differential operator g,.

Proor. Choose a number ¢ > ¢, (see Theorem 2.2). Then the equation
r(f, f') = p/R.f, f'), where f, f', and R,f are in §,,, defines a completely
continuous linear operator for which, by virtue of Lemma 1.1 and Theo-
rem 2.2, the square of the norm

PN L3
o it Npdf’ 1)
is not greater than
2 1f s® < csup Mnt®

P U U L1 = T P et

where ¢ is a constant independent of ¢. Hence |R,|, tends to zero with
1/t, (t > 0). From Lemma 1.3 and Theorem 2.2 it follows that the equa-
tion (f, k) = p,(4,f, k), where f, h, and A4,f are in H,,, defines another
completely continuous linear operator 4,. As ¢,(G,f, k) = p/(G.f+RG.f, )
we see that (4.3) is equivalent to

G f+RG,f= A,f.
Since |R,|, tends to zero with 1/t (t > 0),
G,= (1+R)4

exists for sufficiently large ¢ and is completely continuous. If G,f = 0
then (f, #) = 0 for all » in H and hence f = 0. Thus G,! exists.

Consider the differential operator g, which we define as an operator on
9., by letting its graph be the set of all pairs {f, ¢,f} where f and g¢,f
both belong to §,, and f is 2m times continuously differentiable. Then
(G q.f, k) = (q.f, b) = q,(f, k) when h is in H, so that G,q,f = f. This means
that the graph of g, is contained in the set of all pairs {G.f’, f'} where f’
lies in §,,, i.e., in the graph of G, . This proves the lemma. We shall
call G, Green’s transformation.

Now suppose that « + 0 belongs to §,, and satisfies (4.2). Then

9w, ) = (t+a)(w, f) = (t+x)qGu, f)
for all f in §,,. Hence {+« + 0 and
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(4.4) Gu = uf(t+«) .
Conversely, if u + 0 satisfies this equation, then

(t+0‘)(u> f) = (t+0‘)Qt(Gtu9 f) = qt(u’ f)
for all fin 9,, so that u satisfies (4.2.). We have thus proved

LeMMA 4.2. Any non-vanishing solution of (4.1) is an eigenfunction with
the eigenvalue 1/(t+x) of every G, with ¢ large enough, and conversely.

In particular, if u = 0 satisfies (4.4) for one value of ¢, then the same
equation follows for all values of ¢ for which @, makes sense. Since the
eigenvalues of any G, form a sequence tending to 0, it follows that the
equation (4.1) has non-vanishing solutions only for a sequence of values
o (B = 1,2,...) of &« which tends to infinity.

REMARK. If the degree of ¢ exceeds the number of variables, i. e., if
2m > n, we may apply the methods of Garding [7] with only small modi-

fications. The result is that for any xin § and f in ,,, f(x) is an antilinear
continuous function of f and representable in the form

f@) = ¢(Gy=, ), 1),

where G,(, y) is the kernel (Green’s function) of G,,

G =\ el sy

For Green’s function the asymptotic relation

p(x, £)+1

where d,, = 1 when 2 = y and §,, = 0 otherwise, may be proved as in
Garding [7]. If q is also self-adjoint, i. e., if ¢(f, f) is real for all f in H,
then @, is self-adjoint in the metric given by ¢, and has a complete set of
mutually orthogonal eigenfunctions ¢;, @,,.... We assume that they are
labeled in such a way that the corresponding eigenvalues 1/(t+«,),
1/(t+«y),. . . form a non-increasing sequence and normalize them so that
9(@r> ¢x) = o4+t Then

(@0 2) = UGipr> 9;) = (% +8)"q@p @;) = O

Green’s function can then be represented as a uniformly convergent series

(4.5) lim ¢ "em Gy(z, y) = 0, (27) ™"

t—>00

S dé

G, y) = §‘M¢k(y><ak+t)-l .

Following Carleman [3], we may combine this formula with (4.5) and a
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Tauberian theorem by Hardy and Littlewood. The result is the following
asymptotic formulas:

N _
lim N_I%' Pr@)Pr(y) = 6xywp(x)/wp(s),

(4.6) N(t) = 31 = (22)"w,(S)"*"(1+o0(1)) ,

ap<t

where w,(x) = (4 o<1 d, w,(S) = {gw,(x)dx, and o(1) tends to zero
with 1/¢. These formulas are well known in various special cases (see Gar-
ding [7]) and are also valid without the restriction 2m > n, but then
the proof is more complicated.!?

12Tt follows from a result announced by Keldych [12] that the eigenfunctions of G,
together with certain associated functions, are complete in §,, (in particular the number
of eigenvalues is infinite) also when ¢ is not self-adjoint; and moreover (because this
holds true for self-adjoint g) that the asymptotic formula (4.6) is valid also in general,
if 2m > n and qy is replaced by Ra;,.
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