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ON THE IDEAL THEORY OF COMMUTATIVE
SEMI-GROUPS

KARL EGIL AUBERT

Introduction. It is wellknown from the ideal theory of Priifer and
Lorenzen ([9],[7], and [8]) that there may be defined various fruitful ideal
concepts in the theory of rings and semi-groups. In the present paper we
shall give some results on the simplest one of these ideal concepts—the
so-called s-ideals.

The main contents of the paper are as follows. In the first section we
state some basic definitions together with a simple and well-known re-
sult on the structure of the lattice of all s-ideals of a commutative semi-
group. Next we make some remarks on the ascending chain condition for
s-ideals. In the following section we characterize those semi-groups which
satisfy both the ascending and the descending chain conditions for
s-ideals. It turns out that these semi-groups are those which contain only
a finite number of mutually non-associate elements. Among the semi-
groups which satisfy the ascending chain condition for s-ideals those in
which every s-ideal is principal are then characterized by the fact that
their lattice of s-ideals is always a chain. The next section deals with the
problem of giving basis representations for s-ideals. This discussion leads
for instance to the result that the only semi-groups which possess a basis
in a certain strict sense are the groups. The theory of s-Noetherian semi-
groups is treated very briefly in section six. Since that theory may be
included in the general theory of residuated lattices as developed by
Ward and Dilworth ([14] and [12]) most of the results of that section are
stated without proofs. We have, however, included a proof of the funda-
mental fact that an s-irreducible s-ideal in an s-Noetherian semi-group is
primary because our direct proof of this theorem is somewhat simpler
than the proof of the general lattice theorem ([14], p. 349, Theorem 11.2)
from which it may be derived. In the two final sections we make various
remarks on s-ideals in ring- and valuation theory.

Many of the results of the present paper have immediate generaliza-
tions to r-ideals in the sense of Priifer-Lorenzen. There are also, however,
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various points which, in the case of general r-ideals, require a closer exa-
mination. But we shall not enter upon these questions here.

1. s-ideals in commutative semi-groups. By a semi-group is usually
understood a set in which there is defined an associative binary operation.
We shall in the following deal exclusively with commutative semi-groups
S having an identity e satisfying ae = a for all @ € S. In the present paper
we shall therefore use the terms ‘semi-group’ and ’commutative semi-
group (with an identity)’ as synonyms. If the cancellation law ab =
ac - b = ¢ holds in § we shall say that S is a regular semi-group. Most
of our results concern general (non-regular) semi-groups so that these
results will also apply to rings having divisors of zero. We say that a
divides b, and write a|b if there exists an element ¢ € § such that ac = b,
(@ is a divisor of b, b is a multiple of a). If a|b and bla we say that @ and b
are associate, and write a ~ b. A divisor of the identity element e is called
a unit. The set of all units in S is a group. If S is regular, two elements
are associate if and only if they differ only by a unit factor. By the pro-
duct AB of two subsets A, B of S we shall mean the subset of S consist-
ing of all products ab with a € 4 and b € B. An s-ideal in S (small Ger-
man letters will always denote ideals) is a subset a of S such that Sa = a.
In the case that S does not contain a zero element, i. e. an element 0 sat-
isfying a0 = 0 for every a € S we shall agree to consider the void set as
an s-ideal. With this convention it is readily seen that the set of s-ideals
of S forms a lattice under set-inclusion and that this lattice is a sublattice
of the lattice (Boolean algebra) of all subsets of S. This lattice consisting
of all s-ideals in S, will always be denoted by 5. Since further the product
of two s-ideals is again an s-ideal and this product is completely distribut-
ive with respect to union we conclude as in [13]:

THEOREM 1. The set of all s-ideals in a commutative semi-group form a
completely distributive and residuated lattice under set-inclusion and multi-
plication.

In the following the usual (Dedekindian) ideals in commutative rings
are called d-ideals. We note the difference between the above theorem
and the situation for d-ideals in rings. The lattice of all d-ideals in a
commutative ring is modular but in general not distributive. The fact
that the lattice o is distributive leads to a stronger unicity statement
concerning irreducible decompositions, since the irredundant intersection
representation by irreducibles is unique in a distributive lattice, but in
general not in a modular one. (We shall return to this in sections 6 and 7.)
As usual we call an intersection representation ¢ = a, na,n...na, ir-
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redundant if wenever havea, n...na;_ na,n...a,<a;fori =1,2,...n.
An irredundant union representation is defined in a dual way.

We define a semi-group S as s-simple if § does not contain any non-
void s-ideal different from S. An s-ideal different from S cannot contain
any unit in 8. The set of non-units forms an s-ideal which therefore will
be a uniquely determined maximal s-idealin S (i. e. no s-ideal is properly
lying between a and S). From this fact we derive the following charac-
terization of groups in terms of s-ideals:

THEOREM 2. A commutative semi-group is a group if and only if it is
s-simple.

This characterization is similar to the characterization of a commutative
field as a commutative ring R with an identity element which does not
contain any d-ideal different from R and the zero ideal. We note, how-
ever, in this connection a striking difference between s-ideals and d-ideals.
In commutative rings with an identity element one proves the existence
of maximal d-ideals by means of Zorn’s lemma. (There is, however, an
important type of commutative ring with an identity element where the
non-units form a d-ideal, namely the socalled local rings.) In semi-groups
the corresponding fact about s-ideals is independent of Zorn’s lemma.

2. Semi-groups with ascending chain condition for s-ideals. We say
that the ascending chain condition (the descending chain condition is
defined in a dual way) for s-ideals holds in the semi-group S, or that S is
s-Noetherian, if there exists no infinite properly ascending chain of s-ideals

G,Cca,c...ca,cC...

where q, =+ q,,, for all 7. If 4 is a subset of the semi-group S the inter-
section of all the s-ideals containing 4 will be an s-ideal which is said
to be generated by 4. The s-ideal generated by A is uniquely determined
as the least s-ideal containing A. If the s-ideal a may be generated by a
finite set 4 = {a,, a,, . .., a,} we say that a is finitely generated and write
a = (a,, a,,...a,). An s-ideal which may be generated by a single element
a is called principal. Such an ideal (@) consists of all multiples of a. In ge-
neral the s-ideal generated by 4 consists of the elements of the product S4.

THEOREM 3. A commutative semi-group S is s-Noetherian if and only if
every s-ideal in S is finitely generated.

The proof of this theorem is quite similar to the proof of the corre-
sponding well-known theorem on d-ideals and may therefore be omitted.
(See for instance [4], p. 169.) We note in passing that this theorem may be
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generalized considerably. WWe may for instance prove the following state-
ment: The lattice of all subalgebras of an algebra A satisfies the ascending
chain condition if and only if every subalgebra of A is finitely generated.
(An even more general formulation of Theorem 3 is found in [3], p. 328,
Theorem 2.1.)

The ascending chain condition for s-ideals is much more restrictive
than the usual ascending chain condition for d-ideals in ring theory. In
order to give an illustration of this let us consider the multiplicative
semi-group N consisting of all rational integers. Here for instance

(2) ©(2,3) ©(2,3,5)c...©(2,3,5,...,p) <

constitutes an infinite properly ascending chain of s-ideals where the n’th
s-ideal in the chain is generated by the n first prime numbers. (Consider-
ing N as a ring, however, every d-ideal is not only finitely generated but
even principal.)

3. Determination of the commutative semi-groups satisfying both
chain conditions. We shall now determine the semi-groups which satisfy
both the ascending and the descending chain condition for s-ideals. To
this end we shall first give some definitions and prove a lemma. As re-
marked in the first section we shall write a ~ b when a and b are associate.
The relation ~ is an equivalence relation and if @ ~ b, ¢ ~ d then ac ~ bd.
Hence if we denote by a the class of elements of S associate to a, we can
define the product of two classes @ and b by @ b = ab. The classes of as-
sociate elements of S constitute a semi-group S homomorphic with S
under the mapping @ — @. S has the property that if @ and b are associate
in S then they are equal. Any semi-group having this property will be
called reduced and S is called the reduced semi-group of S. S is isomorphic
to the semi-group consisting of all principal s-ideals of S, the composition
being multiplication.

A family of sets will be called a ring of sets when it contains the union
and intersection of any two of its sets. We now prove the following

Lemma 1. If R is an infinite ring of sets consisting of subsets of a given
set A then R contains an infinite chain.

Proor: We shall prove this lemma by showing that every maximal
chain in R is necessarily infinite if i is infinite. Assuming the axiom of
choice R certainly contains a maximal chain M (cf. [1], pp. 42—44). If M
were finite we might assume it to have the form

MicMy=...<c M,.
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If M, is different from the void set of 4 we shall denote this void set by
M, and if the set M, is different from A we shall put M, , = 4. The
sets M, induce a partition of 4 in which the difference sets M, ,—M,
(i = 0,1,2,...n) form the blocks. Since R is infinite R will certainly
contain a set B which is different from a union of such blocks. There will
therefore be a certain block M, ,— M, which contains both elements
belonging to B and elements not belonging to B. This implies that the set
(M., n B) u M, which belongs to 3 can be properly intercalated between
M, and M, in contradiction to the fact that I is a maximal chain.

THEOREM 4. A commutative semi-group S satisfies both the ascending and
the descending chain conditions for s-ideals if and only if the reduced sems-
growp of S is finite.

Proor: If S is finite S will only contain a finite number of principal
s-ideals and since every s-ideal is a union of principal s-ideals, § will also
be finite and hence satisfy both chain conditions. Conversely if both
chain conditions are satisfied in o§ then every chain in o is finite and since
J is a ring of sets, the above lemma implies that § must be finite which
in turn implies that S contains only a finite number of principal s-ideals;
i. e. § is finite.

4. s-principal semi-groups. The assumption that all s-ideals in S shall
be principal is also much more restrictive than the corresponding as-
sumption about d-ideals in rings. We should, therefore, expect that the
semi-groups where all s-ideals are principal have a particularly simple
structure. We call such a semi-group s-principal. In s-principal semi-
groups the ascending chain condition takes the form of the divisor chain
condition: There exists no infinite sequence of mutually non-associate
elements a,, a,, . . .,a,,...in S such that a;,,|a, for all 7. In an s-principal
semi-group the s-ideals are linearly ordered by set inclusion; i.e. the
lattice o is a chain. Otherwise expressed, for any two elements a, b € S
we have either a|b or bja. It is, however, easy to show that the fact that
J is a chain does not imply conversely that S is s-principal. Take for
instance, the set S, consisting of the real numbers > 1. 8, forms a semi-
group under multiplication and we observe that the s-ideals of §, fall into
two different classes: On the one hand the closed intervals [a, —[ consist-
ing of all real numbers > @ > 1 and on the other hand the open intervals
]a, —[ consisting of all real numbers > a > 1. In this case of is a chain
but the s-ideals of the latter kind are neither principal nor even finitely
generated. (The s-ideal ]a,—[ may, however, be generated by a countable
set, namely by a sequence a,,a,, . ..,a,, ... with a; > a which converges
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toa.) But if every s-ideal in a semi-group S is finitely generated and Sisa

chain then S is s-principal. Forlet a = (a,, a,, ..., a,) denote the s-ideal
generated by the finite set {a,, a,, .. ., a,}. Since Jis a chain, the principal
ideals (a,), (@), - . .,(a,) will also form a chain. With a suitable enumera-

tion we may assume that
(@) S (@) s...< (a,)
and we get a = (a,,), proving that a is principal. We may set this down as

THEOREM 5. An s-Noetherian semi-group is s-principal if and only if its
lattice of s-ideals is a chain.

There are further particularities about s-ideals in s-principal semi-
groups. We only mention the fact that any s-ideal in such a semi-group
will be quasi primary, i. e. have a radical which is prime.

5. Basis representation of s-ideals. If the s-ideal a may be generated by
the set 4 but by no proper subset of A we say that 4 forms a basis for a.
A subset A of S is said to be independent if for any two different elements
a, b € A we have neither a|b nor bja. We note first the following simple

LemMma 2. A set A forms a basis for the s-ideal a if and only if A is an
independent set which generates a.

Proor: If A generates a and is not independent there exist elements
a, b € A such that a|b. Then the difference set 4 —{b} still generates a and
A cannot form a basis for a. Conversely, if 4 is independent and generates
a then no proper subset A’ of 4 can generate a since SA’ does not contain
any element from the difference set A — A’ according to the independence
of A. Hence A forms a basis for a.

THEOREM 6. A basis for an s-ideal is uniquely determined apart from
associates; t. e. if A and B are bases for the s-ideal a there exists a one-to-one
correspondence between A and B such that if a corresponds to b then a and b
are associate. Otherwise expressed: A representation of an s-ideal as an irre-
dundant union of principal s-ideals is unique.

Proor: If 4 = {a,};.; and B = {b;},.; are bases for a we have
a=U@)=Uap,.

iel jed
Thus we have in particular for each ¢

(@) = U ;)

JjedJ

which obviously implies that (a;) = (b;) for a certain j. By symmetry
(b;) < (@) for a certain k. Hence (a;) < (a;) or, equivalently, a,|a;, which



ON THE IDEAL THEORY OF COMMUTATIVE SEMI-GROUPS 45

implies a; = a; according to Lemma 2 since A is independent. This in
turn gives (a;) = (bj), i. e. the elements a; and b]- are associate. This
evidently proves the theorem.

At first sight one might perhaps expect that every s-ideal has a basis.
It would in fact be natural to expect that a maximal independent subset
of a should form a basis for a. Such a maximal independent subset exists
because the set U of independent subsets of a forms an inductive set
under set-inclusion (i. e. every linearly ordered subset of 9 has an upper
bound in A) so that Zorn’s lemma may be applied. As we shall see such
a maximal independent subset of a need not, however, generate a. On the
other hand one might try to prove the existence of minimal sets in the
set B, constisting of subsets generating a. Such a minimal subset is, by
definition, a basis for a. But here Zorn’s lemma cannot be applied because
the set B need not be inductive. This stems from the fact that the multi-
plication is not completely distributive with respect to the operation of
intersection, not even if the intersection is only taken over a linearly or-
dered subset of 8.

We have already considered an example of a semi-group where certain
s-ideals do not possess a basis, namely the multiplicative semi-group of
all real numbers > 1. A more general example of this kind is found in
valuation theory. (Basic information on general valuation theory may
be found in § 5 of [6],in [10], and in [5].) Let us consider the multiplicative
semi-group S of a valuation ring R defined by a valuation with a non-
discrete value group I'. In such a valuation ring we have for arbitrary
elements a, b either alb or bla so that the only independent sets that exist
are the sets consisting of a single element. Therefore, if every s-ideal in S
could be generated by an independent set we should have that every
s-ideal in 8 is principal. This is far from being the case. The elements in
S mapped by the given valuation on those elements of I" which are
> o (o € I') form an s-ideal in S which cannot be principal, not even fi-
nitely generated.

For a given s-ideal a there may a priori arise three situations (For gene-
ral information see [11], in particular 177-179): 1. a does not have a basis.
2. a has a basis but not every maximal independent subset of a is a basis.
3. Every maximal independent subset of a forms a basis for a.

Actually all three situations may arise. Examples of s-ideals of the type
1. have been given above. The examples that may be given of the situa-
tion 3. are characterized by the following

THEOREM 7. A commutative semi-group S is generated by any of its
maximal independent subsets if and only if S is a group.
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Proor: The «“if”’-part of the theorem is obvious. Since S = (e) where ¢
denotes the identity element of S, any basis for § must according to Theo-
rem 6, consist of a single element. Let 4 be a maximal independent subset
containing a given element @ € §. Such a maximal independent set exists
because the family of independent sets in S which contain the element
a is inductive and Zorn’s lemma may be applied. According to the condi-
tion in the theorem, A is a basis and thus reduces to the single element
a. But (@) = S, for any a € § implies that S is a group.

It is also easy to find semi-groups which have s-ideals of type 2. In
fact, the s-principal semi-groups which are not groups will be of this kind.
For in such a semi-group S there will exist a principal ideal (a) & S. The
element a constitutes a maximal independent subset of S but does not
generate S. Valuation rings with a discrete value group form an important
example of s-principal semi-groups of this kind. We shall return to valua-
tion rings and valuation semi-groups in a later section. In this section we
shall consider instead another example of s-ideals of type 2. Let N, be the
multiplicative semi-group consisting of all integers > 1. In this semi-
group there is a much greater variety of s-ideals than in the semi-group
consisting of all real numbers > 1 considered in the foregoing section. It
is in fact not quite easy to give a simple and complete classification of
all the s-ideals in V,. We shall here consider only the s-ideals a,, consisting
of all integers > n > 1. One verifies easily that a, has a uniquely deter-
mined basis consisting of all integers a such that

(1) alp<n <a

for any prime number p|a. On the other hand the set of all products of
two primes p, and p, such that p,p, > n together with the set of all inte-
gers a containing at least three prime factors and satisfying (1) for all
primes p|a will constitute a maximal independent subset 4 of a,. But 4
does not form a basis for a,, since the primes > n cannot be generated from 4.

6. Irreducible and primary intersection decompositions of s-ideals
in s-Noetherian semi-groups. In the paper [14] by Ward and Dilworth
a theory of Noether lattices was developed with the purpose of
giving a lattice translation of the ideal theory of Noetherian
rings. (A Noether lattice is a residuated ideal lattice satisfying
the ascending chain condition and in which every intersection irre-
ducible element is primary. By a Noetherian ring we mean a commu-
tative ring satisfying the ascending chain condition for d-ideals.) In this
theory of Ward-Dilworth the basic fact that an irreducible d-ideal is pri-
mary had to be postulated since it cannot be proved in the general
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lattice translation if only the ascending chain condition is assumed. Ward
and Dilworth, however, state a theorem ([14], Theorem 11.2) which gives
a sufficient condition for a residuated lattice to be a Noether lattice. In
[13] this condition is used to show that the lattice § of all s-ideals of a semi-
group S is a Noether lattice if the reduced semi-group &S is finite. As we
have seen (Theorem 4) this means that S satisfies both the ascending and
the descending chain condition for s-ideals. The descending chain condi-
tion is, however, not necessary for the development of a Noether theory
for s-ideals. An important example of a semi-group satisfying the ascend-
ing but not the descending chain condition for s-ideals is the multiplica-
tive semi-group of a discrete valuation ring.

Here we shall content ourselves with giving the basic definitions of the
Noether theory and a direct proof (making no appeal to the aforemention-
ed theorem in [14]) of the fact that every s-irreducible s-ideal in an s-Noe-
therian semi-group is primary. Some of the other fundamental results of
the Noether theory will only be stated without proofs since in the case
of s-ideals these are just the same as in the case of d-ideals.

The s-ideal a is said to be s-irreducible if a = b n ¢ implies a = b or
a = ¢, b and ¢ being s-ideals. p is a prime s-ideal if ab € p and a ¢ p imply
beyp. The ideal q is a primary s-ideal if ab € q and @ ¢ q imply b" € q for
some integer n. The radical of the s-ideal a consists of all elements s € S
such that s" € a for a certain integer n. The radical of a primary s-ideal q
is & prime s-ideal which is said to belong to . By the quotient a:b of two
s-ideals a and b we understand the s-ideal consisting of all elements ¢
satisfying ¢b < a. We obviously have

THEOREM 8. Every s-ideal in an s-Noetherian semi-group may be written
as an intersection of a finite number of s-irreducible s-ideals.

We now prove the basic

THEOREM 9. In an s-Noetherian semi-group every s-vrreducible s-ideal is
primary.

ProoF: Let us assume that the s-ideal a is not primary. Then there
exist two elements a, b € S such that abea, a¢ a and b" ¢ a for all integers
n > 1. The ascending chain condition for s-ideals implies that we must
have a certain positive integer k for which

(2) a:b® = a:bF,
The reducibility of a will now be established by the decomposition
(3) a=(au(@)n(au@®)).

This intersection representation is a proper one since neither a nor * be-
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long to a. We thus have to prove that the right hand side is contained in
the left hand side. Using the fact that o§ is distributive (Theorem 1) the
right hand side of (3) assumes the form

(@na)u(an®®))u(an(@)u(@n @).

Since the first three terms in this union are all contained in a we have
only to prove that
(@) n (%) < a.

Now an element ¢ € (a) n (b*) belongs to (b*) and must therefore be of the
form sb* with s € S. Further, since ¢ = sb* also belongs to (a) we shall have

sb* € (a) and sb**! e (ab)<a .

Finally (2) gives ¢ = sb* € a which then completes the proof.

From the Theorems 8 and 9 and the fact that the representation of an
element of a distributive lattice as an irredundant intersection of irre-
ducible elements is unique (cf. [1], p. 142) we get the following

THEOREM 10. An s-tdeal of an s-Noetherian semi-group may be uniquely
represented as an irredundant intersection of a finite number of s-irreducible
primary s-ideals.

In particular we get as a

CoroLrARY (Ward-Dilworth [13], p. 604). By the adjunction of a finite
number of elements, every finite commutative semi-group may be embedded
in a residuated lattice in which every element, and in particular every element
of the original semi-group, may be uniquely represented as an intersection of
primary elements.

Having established that the lattice § in the case of an s-Noetherian
semi-group is a Noether lattice all the well-known decomposition theo-
rems of E. Noether may be derived in the standard way. In particular
we have that the intersection of a certain set of primary s-ideals is primary
if and only if all the primary s-ideals belong to the same prime s-ideal.
Thus contracting the primary s-ideals belonging to the same prime s-ideal
we obtain an analogue of the second main decomposition theorem of E.
Noether.

TaEOREM 11. Every s-ideal of an s-Noetherian semi-group may be re-
presented as an irredundant intersection of primary s-ideals belonging to
mutually different prime s-ideals. The prime s-ideals belonging to the pri-
mary s-ideals in such a representation are uniquely determined by the
s-ideal represented.

We shall call such a shortest intersection decomposition of a by pri-
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mary s-ideals an s-Noether decomposition of a. In rings the usual Noether
decomposition by d-ideals will be called a d-Noether decomposition. The
primary s-ideals occurring in an s-Noether decomposition of a are called a
set of primary s-components of a. The uniquely determined prime s-ideals
belonging to a set of primary s-components of a are said to belong to a.
The prime s-ideals belonging to a form a partially ordered set with re-
spect to set inclusion. A primary s-component which belongs to a minimal
prime s-ideal of this set is called an isolated primary s-component of a.
Just as for d-ideals one may prove

THEOREM 12. An tsolated primary s-component of a is uniquely deter-
mined by the prime s-ideal to which it belongs.

We note that in contradistinction to the irredundant irreducible de-
compositions the s-Noether decompositions are not unique. This proves
in particular that not all s-Noether decompositions of an s-ideal may in
general be obtained from the irreducible decomposition by the contrac-
tion process.

7. Application to rings. Let R be a commutative ring with an identity
element and let S be its multiplicative semi-group (i. e. S is composed of
the same elements as R and organized by a single operation, called multi-
plication, which is the multiplication of R). In the rest of the paper the
prefix s always refers to the s-concepts in § while the prefix d refers to
the ordinary (Dedekindian) ideal concept in R. The use of the prefix «
shall mean that the sentence in which it occurs is valid both for x = d
and & = s.

The lattice of all d-ideals in R is always modular but in general not
distributive. On the other hand a theorem of Dilworth [2] says that every
element of a lattice L admits of a unique irredundant representation as
an intersection of irreducibles if and only if L is a semi-modular lattice
in which every modular sublattice is distributive. Combining these two
facts it follows from pure lattice-theory that the irredundant decomposi-
tion of a d-ideal as an intersection of d-irreducible d-ideals is not always
unique. Since the corresponding decomposition by means of s-ideals is
unique, it follows that the irredundant decomposition of a d-ideal into an
intersection of d-irreducible d-ideals will in general contain fewer terms
than the irredundant decomposition of the same d-ideal into an inter-
section of s-irreducible s-ideals. Otherwise expressed a d-irreducible d-ideal
may be s-reducible. In an s-Noetherian ring we therefore have that two
irredundant d-irreducible decompositions of a d-ideal always possess a
common refinement by the introduction of s-ideals. Thus if R is s-Noether-

Math. Scand. 1. 4
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ian we may in general attach two different integers to a given d-ideal:
I, = the number of terms in an irredundant intersection representation
by d-irreducible d-ideals and I, = the number of terms in an irredundant
intersection representation by s-irreducible s-ideals. I; < I, and in gene-
ral I; < I,. It is of some interest to note that the situation is different
as concerns the Noether decompositions. If we denote the number of
terms in a d-Noether decomposition of a given d-ideal by N, and the
number of terms in an s-Noether decomposition of the same d-ideal by
N,, we have N; = N,. For it is clear that any d-Noether decomposition
of a d-ideal a in R is also an s-Noether decomposition of a. This gives

THurEoREM 13. The prime s-ideals belonging to a given d-ideal in a d-Noe-
therian ring are all d-ideals. Further an isolated primary s-component is also
a d-ideal.

In particular the minimal prime s-ideals containing a given d-ideal in
a d-Noetherian ring is itself a d-ideal. More generally any minimal prime
set (i.e. a subset 4 of R with the property that abe A, a € 4 imply
b € A) containing the z-ideal a in a d-Noetherian ring will be an z-ideal.
Similar remarks also apply to minimal ‘half prime sets’ in their relation
to half prime z-ideals (a is half-prime if a is identical with its radical).

We shall now give a simple illustration of a ring B where we actually
have I; < I,. According to the above-mentioned theorem of Dilworth
concerning the unicity of irreducible decompositions we should seek an
s-Noetherian ring which has a non-unique irredundant intersection de-
composition of d-ideals into d-irreducible d-ideals among those rings
whose lattice of d-ideals is non-distributive. To find for instance a finite
ring with this property is simple. The simplest non-distributive but mod-
ular lattice is the one represented by the following lattice diagram

G

Fig. 1. 0

and this lattice is isomorphic with the lattice of all subgroups of the
(commutative) four-group. We shall denote this additive group by G =
{o,a, b, c}; o being the zero element of G. The proper subgroups are
A = {o,a}, B= {0, b}, C = {0, ¢} and O = {o}. We therefore have only
to define a multiplication over @ in such a way that we get a commuta-
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tive ring B in which all the additive subgroups are d-ideals in R. This
can be done only in the trivial way by putting ab = 0 for all a, b € G.
In this ring R we have three distinct irredundant decompositions of the
zero ideal as an intersection of d-irreducible d-ideals

(4) O=AnB=AnC=BnC.

In R a subset 7' is an s-ideal if and only if 7' contains the zero element
of R. In addition to the d-ideals we therefore have that the following
subsets of R form s-ideals: D = {0, a, b}, E = {0, a, c} and F = {0, b, c}.
The lattice of all s-ideals in R therefore takes the form

G
D F
A. c
Tig. 2. (0]

which is a Boolean algebra isomorphic with the lattice of all subsets of a
set with three elements. The unique irreducible decomposition of O in
this lattice will be

O=DnEnF

which just represents the common refinement of the three decomposi-
tions (4). In this example /; = 2, I, = 3 and N; = N, = 1 since O is
primary. It is however not clear from this example that in an s-Noether

decomposition of a d-ideal there may really occur terms that are not
d-ideals.

8. Remarks on valuation theory. Integral domains where every
S-ideal is a d-ideal. In the foregoing we referred on various occasions to
examples from valuation theory. In the present section we shall give
some general remarks on valuations of groups in connection with the
problem of characterizing the rings where every s-ideal is a d-ideal.

The classical examples of an exponential valuation in ring theory are
those associated with the prime ideals of a Dedekindian domain 7, i. e.
an integral domain, where every proper d-ideal admits a unique fac-
torization into a finite product of prime d-ideals. In the valuation v,
(defined by the prime ideal p < I) the value attached to the element

4*
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a = bc~! lying in the quotient field K of I (b, c ) is the difference between
the exponents of p in the unique prime ideal decompositions of the prin-
cipal ideals (b) and (c). These valuations have the three well-known prop-
erties: 1° v is a univalued mapping of the non zero elements of K onto the
additive group Z of rational integers. 2° v(ab) = v(a)+v(b). 3° v(a+b) >
min (v(a), v(b)). These three properties are then taken to be the defining
properties of a general (exponential) valuation of a field K when the value
group Z is replaced by an arbitrary linearly ordered group I'. If P is a
partially ordered set with respect to an order relation < (i.e. if it satisfies
the conditionsx < o, s < B & < y-oa<p,anda <P &< a—-a=4)
we say that P is a partially ordered abelian group if P is at the same time
an abelian group (under an operation denoted additively) and satisfies
the homogeneity condition &« < § - ax+y < f+y for every y € P. P is
linearly ordered if for any «, f € P either & < f or § < « holds good.

The most important example of an exponential valuation in the theory
of groups and semi-groups is afforded by the following consideration
(which is slightly more general than the situation arising from prime
ideals in Dedekindian domains). Let S be a regular commutative semi-
group which may be embedded in a Gaussian semi-group 7'; i.e. S is
isomorphic with a subsemi-group S’ of a semi-group 7' admitting an essen-
tially unique factorization of its elements into products of multiplica-
tively irreducible elements. (For a precise definition of a Gaussian semi-
group see [4], p. 115.) If a € S corresponds to a’ € 8§’ by this isomorphism
we shall write @ <— a’. With respect to an irreducible element p, € T we
may now define a valuation v, of the quotient group & of S (defined in
the usual way by means of formal quotients ab-1,a € 8, b € S) onto the
additive group Z of rational integers. The value of a € 8 is defined as the
exponent belonging to the irreducible element p; in the unique decom-
position of ¢’ within 7'. Thus, if

a<—a' = p;"ip,"2. .. p, "

is the decomposition of a’ into irreducibles, we define v, (a) = «,. Now an
element @ = bc~! = b/c in G corresponds to an element b’/c’ in the quo-
tient group @’ of S’ by the isomorphism which extends the isomorphism
between S and S’. The element b’/c’ may be written uniquely as

b B p1ﬁ1p2(32' . 'pnﬂn

!’

¢’ ppte . p"

where p,, p,, ..., p, may be taken to be the irreducible factors of the pro-
duct b’c¢’. Here 8; > 0, v, > 0 and we put p,° = ¢’ (the identity element
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of §'). We may therefore write each element of G’ symbolically as a
unique product

a—sa’ = b'¢’ = plﬁl—ylpzﬁz-yz. . _pnﬁn—V" = p,1P,"2. .., "

and define v, (@) = «;. Evidently v, is a univalued mapping of G onto Z
which satisfies v, (ab) = v,.(a)+v,(b).

We now define a valuation of an abelian group @ as a univalued homo-
morphic mapping of G onto a linearly ordered group I'. Denoting the
operation in G' multiplicatively and the operation in I" additively this
means that the mapping v defines a valuation of G if: 1° The range of v is
a linearly ordered group I'. 2° v(ab) = v(a)-+v(b). The valuation v is said
to be non-trivial if I consists of at least two elements. According to a well-
known theorem an abelian group @ may be linearly ordered if and only if
every element different from the identity element e of G has an infinite
order. Thus an abelian group G admits a non-trivial valuation if and only
if G has a homomorphic image consisting of at least two elements and in
which every element = ¢ has an infinite order. In particular the finite
groups do not possess non-trivial valuations.

If P is a partially ordered set we call a subset 4 of P an upper class if
a € A implies f € A whenever § > «. The upper class 4 is said to be
generated by the set {x;};.;if A consists of all elements g such that § > «;
for at least one «; and we shall write 4 = P{x;}. If the set {x;};,.; =
{oy, &g, . .., &, } is finite we shall write 4 = P{«,, «s,. . ., } and say that 4
is finitely gemerated. An element x > 0 is said to be non-negative. The
valuation semi-group S of G with respect to the valuation v of @ is the set
of all elements in G mapped on non-negative elements of I" by ». In ana-
logy with the situation in ring theory there is a one-to-one correspondence
between the s-ideals of S and the upper classes of non-negative elements
of I More generally there is a one-to-one correspondence between the
fractional ideals of S and the upper classes of P. If the s-ideal a corre-
sponds to the upper class 4, a set of generators for a is mapped
by v on a set of generators for 4, and conversely any set of elements
of a which has a set of generators of 4 as its range will form a set
of generators for a. Since every upper class in I" either may be generated
by a single element or is not finitely generated, it follows that an s-ideal
in a valuation semi-group S is either principal or cannot be finitely gene-
rated. If I"is discrete in its order topology every s-ideal in S is principal.
In the case that I" is non-discrete the principal s-ideals correspond to the
closed upper classes (i. e. the upper classes possessing a least element) in
I' while non-finitely generated s-ideals correspond to the open upper
classes in I



54 KARL EGIL AUBERT

We have already remarked that in a valuation ring all s-ideals are
d-ideals. (If K is a field over which a valuation v is defined the valuation
ring in K with respect to v is the set consisting of the zero element of K
and all elements of K mapped upon non-negative elements of I" by v.)
We shall now show that, conversely, if I is an integral domain in which
every s-ideal is a d-ideal then [ is a valuation ring. In fact this will be an
immediate consequence of the following slightly more general

THEOREM 14. 4 necessary and sufficient condition that every s-ideal of a
commutative ring R with an identity element be a d-ideal is that for any two
elements a, b € R either a|b or bla holds.

Proor: If neither a|b nor b|a the set-theoretical union of the two prin-
cipal ideals (¢) and (b) forms an s-ideal which is not a d-ideal since
(@) U (b) cannot contain the element a+b. Conversely, let @ and b be two
elements of an s-ideal a of R. If for instance we suppose that alb, i. e.
b=ac(ceR), we get a—b = a—ac = a(e—c) € a and qa is a d-ideal.

It is a fundamental fact in the general valuation theory that an inte-
gral domain I is a valuation ring if and only if for any two elements
a, b € I either a|b or bja holds (cf. for instance [5], p. 165, Satz 1). We thus
get the following

COROLLARY. An integral domain I is a ring where all s-ideals are d-ideals
if and only if I is a valuation ring.
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