MATH. SCAND. 1 (1953)

ON INFINITE DIFFERENTIAL EQUATIONS WITH
CONSTANT COEFFICIENTS. I

LENNART CARLESON

1. The theory of infinite differential equations with constant coeffi-
cients is quite complete as far as analytic solutions are concerned!. How-
ever, no general theory for non-analytic solutions seems to have been
developped?. The first problem which arises in such a general theory is the
following: what is to be meant by a solution of the given equation

[e 9]
Ly = XY a,y™(@) =01

0
In order to avoid pathological solutions y(z), it is necessary to require
more than uniform convergence of the series X'a,y™ (x). In section 2 we
shall give a definition which seems to fulfil two important require-
ments: it allows us to develop a general theory which is simple and suit-
able for application to specific problems, and it is not so restricting that
1t excludes interesting problems. We cannot, for example, differentiate
the series term by term, i. e. use the left translations

Sa, k), p=1,2,..;

our main method of approach consists in replacing these translations by
translations to the right (see the first formula of section 3). We shall
prove that every solution has a formal development in fundamental solu-
tions of the form a*e*; this development is unique, and operations on
the function are reproduced in a natural way on the formal series.
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! For the literature on this subject, see e. g. Muggli, H., Differentialgleichungen unendlich
hoher Ordnung mit konstanten Koeffizienten, Comment. Math. Helv. 11 (1938), 151-179.

% For a very general approach to the theory of infinite differential equations, see Arley,
Niels and Borchsenius, Vibeke, On the theory of infinite systems of differential equations
and their application to the theory of stochastic processes and the perturbation theory of quantum
mechanics, Acta Math. 76 (1944), 261-322.
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As an application of the above-mentioned theory, we then determine
the class of differential equations for which it is true that every solution
is analytic in a certain region. The solution of this problem is important
since it exhibits the limits of the existing theory of infinite differential
equations.

2. Let F(z) be an integral function,
F(z) = 3 a,2",
0

and assume that F(0) = 1. We shall also suppose that F(z) is of at most
order 1, convergence type, which means that F(z) can be factorized

oo

Fo) = IT (1—2/3,), 2°° wlld) < oo,

1

where y, = 1 are integers. The equation which will be studied is then
(1) Ly=FD)y =23 a,y"x) =0.
0

To define what we shall mean by a solution of the infinite differential
equation (1), we introduce the sequence {4,} of Taylor coefficients of
the integral function

o0

Fxz) = JI (1+2/14))y» =3 4,2".
1 0
We then call y(x) a solution of Ly = 0 in the interval (e, b) if (1) holds
fora < x < b and if

) 2“ A,ly"@)|

converges uniformly in a4¢ < x < b—¢ for every ¢ > 0. The uniform
convergence of (2) defines a linear class of functions which we shall denote
by C = C(a, b). Let us observe here that the class C is in general not
quasi-analytic.

Before we proceed further, we set down two simple but fundamental
properties of the sequence {4,}, which we formulate in a lemma.

LemMA 1. For the sequence {4,} it holds true that

(3) la,| = 4,
and
(4) 4,,,=4,-4, np=0.
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3. Let us now assume that y(x) is a solution of Ly =0 ona <z < b
and to simplify the notations, suppose, that the origin belongs to this
interval. For a < & < b we define

bT} = bT)(E) —)./ n+py(n)(5) p=12,...,

0

and
o0
_ p—1
=2 bpz .
p=1

If £ = 0, we write simply G(z). On account of (4) wehave |b,(§)] = M (§)4,,
and G(z; &) is an integral function of order less than 1 or of order 1, mini-
mal type. The importance and significance of these functions G is clear
from the following heuristic reasoning. If y(«) is a formal solution of our
equation (1), this is also true for every derivative y*(x). If we use this,
it follows that

Y(z; 5) — %7 y(n)(‘s)z—n — z_ﬁf:z)f)

(formally).

In particular, if y(x) = 2¥¢* is a solution, then the series defining ¥ con-

verges for |z| > [1] and we have
k!
Y(Z; O) =2z m .

With a given solution y(x) we now associate the formal development

o0 pip—1 00
(5) ~ 2 Yeate = 3 P (x)e!
v=1 k=0 1

the constants ¢, are determined from the principal part of the mero-
morphic function G(z)/F(z) at the pole 4,, which by assumption is of order
u, at most, i. e. such that

G) k!

PG 5t )t

v

is regular at 4,. From what was said above, it is clear that for a finite sum
y(x) of fundamental solutions the formal development is finite and has
the sum y(x).

4. We shall now prove the following fundamental theorem.

TurorEM 1. If y(x) and 2(x) are solutions of the equation (1) on the interval
(a, b) and if P, (x) and Q,(x) denote the polynomials which by (5) are asso-
ciated with y(x) and 2(x), then

Math. Scand. 1. 3
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(6) oy () + pz(x Z(aP () + BQ, (x))e™
and
(7) Y@+ &)~ Zelv‘ (x4 &)eM, a<&<b.

The relation (6) is an immediate consequence of the definition since
G(z) depends linearly on the function y(x).
For the proof of (7), we need two lemmas.

Lemma 2. If P (x) is of degree < u,—1, then y(x) is a solution of

Fi(D)y=0
where

and conversely.

We first observe that the class C\(a, b) associated with F,(z) contains
C(a, b). We form the function

¢(x) = F1(D)y(x) .

This function can be differentiated and we get (1—D/A)p(x) = 0,
whence ¢(x) = ke™®. Furthermore, the series being absolutely convergent
by (2) and (4),

[e] n—l
®(0) = F(D)y(0 2 ATy (0) =
= o
—4, 27 mZ Ca—— (0) = —2,G(4,) .

mO

It follows from our definition that P,(x) is of degree < u,—1 if and only
if G(4,) = 0. Our assumption therefore implies G(4,) = ¢(0) = k = 0 and
hence ¢(x) = 0. The function y(x) is thus a solution of F,(D)y = 0.

Conversely, if F,(D)y=0, then in particular F,(D)y(0)=—21,G(4,)=0,
which proves the lemma.

LemMa 3. If y(z) 18 a solution of Fo(D)y = 0 and belongs to the class C
corresponding to F(z) = (1+2z/A)PFy(z), then the functions G(z), G(z),
which are associated with y(x) and F,, F respectively, are related in the same
way:

G(z) = (14+2/2)PGy(z)

For p = 1 the lemma is obvious. The general case then follows by in-
duction.
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Let us now turn to the proof of Theorem 1. We form the function
2(x) = y(v)—P,(x)e™ .

By (6), the development of z(z) does not contain e**. The function G(z)
which is associated with z(x) therefore satisfies

G(lv) = Gl(ﬂ,l’) = ,.., = G(/lp——l)(lv) -0,

Furthermore, z(x) is a solution of F,(D)z = 0 according to Lemma 2. If
(4(2) is associated with F'; and z(x), then by Lemma 3

G(A)=G/(A)= ... =G"PA)=0.
We find that z(x) is a solution of
., F(D)
FulD)2 = By =

Hence G(z; &) = (1—2/A,)"G, (z; &) by Lemma 3, and the development
of z(z+¢&) does not contain e**. This proves the desired relation (7).

5. We can now prove the following fundamental uniqueness theorem.

THEOREM 2. If the development of a solution y(x) vanishes identically,
then y(x) = 0.

It follows from the last part of the proof of Theorem 1 that
yul@) = 11 (1 —=Djh,)y"y ()
v>
vanishes identically. From assumption (2) we immediately infer that

y(x) = lim gy, (x) = 0.

k—>o0
THEOREM 3. If, at some point x,, Y™ (x,) = 0,n = 0, then y(x) = 0.

Under this assumption, G(z; &,) = 0, and so the development vanishes
identically. Theorem 3 can evidently be proved directly without any
difficulty.

The above theorem can be formulated thus: the class of solutions of
Ly = 0 is quasi-analytic. This is, however, in general not true of the
class ¢ which belongs to the equation. It is important to observe that the
restriction (2) on the solutions is essential in the proof of Theorem 3,
which probably is false, if we only require uniform convergence of the
series (1). In this connection it may be of interest to observe the simple
fact that a ‘“solution” is always determined by the values of its deriv-
atives at two points.

3*
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Let us assume that X' a,y™(x) = 0, where the series converges uni-
formly for @ < x < b, and that y™(a) = y™(b) = 0, n = 0. If we form
the function

f(8) =\ ey (x)de,

partial integrations show that

b b
F(s)f(s) = 2 g ey (x)dx = S Ly(zx)e™**dx = 0
by uniform convergence. Hence f(s) = 0 which implies y(2) =0,a <x < b.

6. As an application of the above theory, we shall now determine the
class of equations Ly = 0 for which all solutions are analytic. For these
equations, the classical theory applies to every solution.

THEOREM 4. A necessary and sufficient condition that every solution of
the equation Ly = 0, which is defined on an open interval containing the
closed interval (a, b), be analytic in (a, b) is that

&, .
>0, A, = o, 410, .

(9) lim | —=

v —>00

v

We need the following formal identity in the proof.

LemMma 4. If
H(Z; C) :2 an+m+lzncm
n,m=0
then

(z—0)H(z; {) = F(2)—F(0) .

The straightforward calculation

(2—0)H(z; ) = (2—¢

n,

n s=m
A
0

0 q
—C) 2 “q+1 2 z‘I-PCP
- p=0

S

= 3 4y (P —) = F(:)—F ()

g=0

yields the lemma.
Let us now first assume that (9) holds. Let y(x) be a solution on
a—06 < x < b+, 6 > 0, and suppose that a < 0 < b. There are two rays,
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I, and l,, issuing from the origin and lying in the right half-plane and two
rays, l; and [, in the left half-plane such that all but a finite number of
zeros of F'(z) lie in the sectors which do not contain the imaginary axis.
We may assume that there are no exceptions since we may consider the
function y(x)— 27 P, (x)e™” instead of y(x). Furthermore we may assume
that, along the rays [,

lim |z|-'log |F(2)] =

lz] = o0

Let us now form the following function, defined for @ < z < b.

2(@) = 2,(%)+25(2) =
1 3 eZ(iE—b) ez(ac-a)
= S 7‘(—2)—G(z;b) +2_7ng 70 G(z;a)dz.

hi+lp 5+l

Since the integral functions G(z; &) are of minimal type, the integrals
converge for @ < ¥ < b and represent a function z(x) which is holomor-
phic in a domain

where 7 only depends on {4,}. Since Le** = F(z)e** and

lim 7~ min log |F(z)| = 0,

r—> 00 12l=r
it follows that Lz,(x) = 0, ¢ = 1, 2, and since z;(z) is analytic, it is a solu-
tion. The main difficulty in the proof lies in the identification of the func-
tions y(x) and z(x). We shall prove that they have the same formal devel-
opment; the result then follows from Theorem 2.

It follows from the converse of Lemma 2 together with Lemma 3 that
the coefficient of ¢, &, < 0, in the development of z,(x) vanishes, and a
corresponding result holds for z,(x). It is thus sufficient to prove that
zy(x) and y(x) have identical developments with «, > 0. It is also, again
by Lemmas 2 and 3, sufficient to prove that the coefficients of z*leM®
are the same. If G,(z) is the G-function associated with z,(z), we have to
prove that G(4,) = G,(4,). We have

z(”)(()) __1_ g ie
21 S F(z)
li+lg

n,—zb

G(z; b)dz .
This gives
2 & ‘2 @y 21" (0
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since, for { fixed, H(z; ) is an integral function of minimal type. Accord-
ing to Lemma 4,
(2—A)H(2;2,) = F(z) .

Hence, by the Residue Theorem, we obtain

1 S e G (z; b)

dz = G(A,; be™M? |
z2—2A,

Gl(}'y) = 2—7Zi
ll+12

which by (7) gives G4(4,) = G(4,).

On the other hand, let us now assume that there exists a sequence
{n,} such that lim, ,(x,,/8,) = 0. We set 4, = s, = 0,417, and consi-
der sums of the form

y(x) 22 cvesvx'
1
Since

yP@) = X el s,|Pe”, —1=2=<1,
1
y(x) is a solution of Ly = O on (—1, 1) if
2 leJel T F*(|s,]) < oo
1

Since F*(z) is of minimal type and ¢,/7, - 0, the sequence {c,} can be
chosen so that the above condition is satisfied and that further

lim |s,|-11og |c,| = 0.
Y —> 00

The desired result now follows from the following elementary lemma, the
proof of which can be omitted.

LeEMMA 5. A necessary and sufficient condition on the sequence {c,} that
yx) = 2T e,ce™, e, < 1, be analytic in (—1,1) for every choice of
{e,} is that

lim |7,|log |c,| < O .

Y —> 00

UNIVERSITY OF UPPSALA, SWEDEN



