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A MAJORANT PRINCIPLE IN THE THEORY
OF FUNCTIONS

OLLI LEHTO

Introduction

1. This paper is devoted to the establishment of a majorant principle
which illustrates the interrelation between multivalency and set of values
of a meromorphic function. In addition to the information contained in
the inequality obtained, the principle yields a simple and unified treat-
ment of various problems in the theory of distribution of values of mero-
morphic functions. )

In order to elucidate the underlying idea of the principle let us consider
a function w = f(z), meromorphic in the unit circle |z| < 1 of the complex
z-plane. Denoting by n(r, @) the number of zeros of f(z)—a in the circular
disk |z| =< r < 1, multiple zeros being counted with their multiplicity, we
introduce the well-known function (see Nevanlinna [3], p. 157)

N(r,a) = dt

(Sn(tt, a)

which characterizes the average density of the roots of the equation
f(z) = a. By an easy reasoning, we can prove that this function N(r, a)
is subharmonic in a.

Starting from this property of N(r,a) we can establish the desired
majorant principle. The result is expressed as follows: Let w = f(z) be a
meromorphic function in the unit circle whose values lie in a plane domain
G with at least three boundary points. Let the w-plane be covered with a
non-negative mass u, and let 2(r) denote the total mass lying on the
image of |z| < r by f(z). Then the integral
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is at most equal to the corresponding integral of a function xz(z) which
maps the unit circle onto the universal covering surface of ¢ and satisfies
2(0) = £(0).

By virtue of the subharmonicity of N(r, @) it can be readily shown that,
as a special case, this majorant principle yields a sharpened version of
the classical principle of Lindelsf.

As for earlier investigations related to this paper, we refer above all
to certain results of Littlewood [1], [2] closely related to the above prin-
ciple and to some other results given below. A paper of F. Riesz [4] must
be mentioned here too. In this connection I also wish to express my ac-
knowledgement to Dr. K. I. Virtanen, whose suggestions constitute an
essential contribution to this paper.

2. Owing to the great arbitrariness of the mass distribution ¢ numerous
special results follow from the above general theorem.

If the boundary of the domain G which contains the set of values of
f(z) is of positive capacity and if the mass is concentrated at a single point
we obtain the improvement of Lindel6f’s principle referred to above. In
case (G is the unit circle the result sharpens the classical lemma of Schwarz.

If the mass y is defined as some Euclidean measure, e. g. as the Euclid-
ean area or as the Euclidean length of some plane curve, the results
obtained frequently have an intuitive geometric interpretation. This is
especially true if the comparison domain G is simply connected.

An important application arises if du equals the spherical element of
area. By Shimizu-Ahlfors’s theorem, the majorant principle then gives an
estimate of Nevanlinna’s characteristic function 7'(r). A very simple proof
is obtained of the fact that a function is of bounded characteristic if it is
meromorphic in the unit circle and omits a set of values of positive capac-
ity.

Interesting conclusions may also be drawn if du is a hyperbolic element
of area defined with respect to the domain @. In this way it is possible
to establish e. g. the classical Picard-Landau theorem and also to obtain
more general information about the value distribution of meromorphic
functions.

The majorant principle

3. Let w = f(z) be meromorphic in the unit circle |2| < 1, and let n(r, a)
denote, as above, the number of zeros of f(z)—a in the disk |z|] =r < 1,
multiple zeros being counted with their multiplicity. We begin this sec-
tion by studying the function
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n(t,a) it

(1) N(r, ) =S :

By partial integration it follows that

3

N(r,a) = log;dn(t, a).

oe

Hence, N(r, a) can also be represented in the form

k r
(2) N(r,a) = X'log —,

i=1 |2l

where z;, 2,,..., 7, denote all points in |z| < r at which f(z) takes the
value a, counted according to their multiplicity.

The function log(r/|z|) is the Green’s function g(z, 0) of the circle |2| = r
whose pole lies at z = 0. Since Green’s function remains invariant under
conformal transformations we can also write

k
(3) J\T(T’ a) = ;11 g(Pz’ f(()), Fr)’

where F, is the image of 2| =< r by w = f(2), and Py, P,,..., P, denote
all points of the surface F, having the point a as their projection in the
w-plane. It follows from the original definition (1) that we must complete
(2) and (3) by defining N(r, a) = 0 if f(z)Fa in |z| < 7.

The representation formula (3) is important because it reveals the sub-
harmonicity of N(r, @). For convenience of later reference we formulate
this statement as a

LemMmA. The function N(r, a) is subharmonic in a, except for the logarith-
mic singularity at a = f(0).

In order to establish this lemma we make use of the following two well-
known facts: Firstly, a function satisfying certain regularity conditions
obviously fulfilled here is subharmonic if its value at every point is at
most equal to its mean value on a sufficiently small circular disk with
the point in question as center. Secondly, for a harmonic function the
value at every point coincides with this mean value. With these two pro-
positions in mind, the validity of the lemma is immediately seen from the
representation (3) of N(r, a).

4. We now apply the lemma to a simple special case which will be im-
portant for later considerations. Let w == f(z) be regular in the unit circle
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|z| < 1 and satisfy the conditions f(0) = 0, |f(z)] < 1 there. By Schwarz’s
lemma, the set of values taken by f(z) in |2| < r lie in the disk |w| < 7.
Hence, in |w| < r the function N(r, w) has boundary values zero. More-
over, at w = 0 the function N(r, w) becomes infinite like the Green’s
function of |w| < r. By the lemma we thus have for jw| < r

(4) N(r,w) = logL.
||

Let us now suppose that in |z| < r the function f(z) takes a given value
a (==0) at the points z;, 2,,. . ., 2,,. Then, by (2) and (4),

(5) ; <log .

z| la|

Letting here r —~ 1 we obtain the following result, which is actually Jen-
sen’s inequality in a slightly modified form. (Cf. also Littlewood [1], p. 487.)

Let f(z) be regular in the unit circle, |f(z)] < 1 and f(0) = 0. Then, if f(z)
takes the value a at the points z,, z,. . .,
(6) la| <11z,
where each z; appears with its multiplicity.

The inequality (6) is a direct improvement of Schwarz’s lemma accord-
ing to which

la| = |2

for each separate z;. From (6) we also immediately infer the well-known
theorem that if @ % 0, then the product I7|z,| cannot diverge to zero.

Since the inequality (5) holds for every value a taken by f(z) we imme-
diately get the following corollary which will be used below.

Let f(2) be regular in the unit circle, |f(z)| < 1, and f(0) = 0. Further, let
Ay, Ay, . . ., @, be an arbitrary set of m complex numbers each of modulus at
most equal to r (< 1). Then, if z,, z,,. .., z, denote points in |z| < r at

each of which the value of f(z) is one of the numbers a,, a,,. .., a,, we have
(7) 7% =
J=1 r =1 |2]

5. The above results admit a far-reaching generalization which illu-
strates the value distribution of meromorphic functions and offers a con-
venient starting point for several applications.
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Let us consider a meromorphic function w = f(z). For the sake of sim-
plicity, we again assume that f(z) is defined in the unit circle. Instead of
requiring boundedness, as in section 4, we now suppose that the values
taken by f(z) in the unit circle lie inside a given plane domain G. The only
condition imposed on @ is that its boundary must contain at least three
points. As is well known, we can then perform a one-to-one conformal
mapping of the unit circle onto the universal covering surface G* of G.
Let x(z) denote such a mapping function normalized by the requirement
x(0) = f(0). By this normalization z(z) is uniquely determined up to the
value of the argument of 2'(0). For the following it is immaterial how this
parameter is chosen. The inverse function of x will be denoted by x-1.

We now form the function

& (f())

and consider the uniquely determined branch which vanishes for z = 0.
Since the values of f(z) lie in @, this branch can be continued in the whole
unit circle. By the monodromy theorem, the function ¢(z) thus obtained
is single-valued. By definition, it satisfies the conditions |p(z)] < 1 and

@(0) = 0.
Let
(8) 815 895 v vy Sy
and
(9) tystoye sy by

denote all points in |z| =< r where (z) and f(z), respectively, take a given
value a (:;:f(O)). If ¢; is one of the points (9) we have

o) = 7 (f(t;) = 2 Y(a) .

By Schwarz’s lemma,

so that x~1(a) must necessarily coincide with one of the points (8). In
other words, all values that ¢(z) assumes at the points (9) are among the
numbers (8). Thus the inequality (7) applies to ¢(z) and yields (cf. Little-
wood [1], 487)

lo
sz ®1t, It = 21 B
The left-hand side of this relation is the function N(r, a) belonging to
f(z), whereas the right-hand term is the N (r, @) of x(z). Hence, the func-
tion N(r,a)(a = f (0)) belonging to f () is at most equal to the N (r, a) of the func-
tion x(z) which maps the unit circle onto the universal covering surface of G
and satisfies x(0) = f(0).
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We shall now integrate the above inequality with respect to a. For
this purpose, we consider a closed point set £ in the plane and cover it
with a non-negative mass y, i. e., u is a completely additive set function
defined for every Lebesgue measurable subset of E. The mass distribution
u is assumed to be such that the integral

QN(r, a)du
E
is finite for every r < 1.

By the definition (1) of N(r, a), the above integral can be written

(10) SN(r, a)d,u=§?$n(t,a)d,u=§@dt.
0o E 0

Here
Q(r) = gn(r, a)du

E
can evidently be interpreted as follows: £2(r) denotes the total mass on the
Riemann surface F, onto which f(z) maps the disk |z| < r. Hereby every
surface element e of F, is furnished with the mass u(e).
On the basis of formula (10) we can now summarize our results in the
following theorem which contains all previous results as special cases.

THEOREM. Let f(z) be meromorphic in the unit circle and let its values lie
inside a plane domain G with at least three boundary points. Then the inte-
gral

—dt

5

0

belonging to f(2) s at most equal to the corresponding tntegral of the function
x(z) which maps the unit circle onto the universal covering surface of G and
satisfies x(0) = f(0).

6. In order to compare the above majorant principle with classical prin-
ciples in the theory of functions we return to the lemma of section 3. Let
the values of f(z) fall inside a domain G whose boundary is of positive
capacity, i. e., which possesses a Green’s function. As an immediate con-
sequence of the lemma, we then obtain the inequality

(11) N(r, a) = g(a, f(0), G),

which is true for every r < 1.
Using the representation formula (3) for N(r, a), and letting r tend to 1,
we get
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(12) S 9(P; f(0), F) = g(a, £(0), G).

Here F is the image of the unit circle by f(z), and P; denote all points of
F over a. This inequality is sharp, since it is well known that equality
oceurs if f(z) is the function mapping the unit circle onto G*.

From the inequality (12) the relation to the classical principle of
Lindelsf is immediately seen; Lindeléf’s principle yields the inequality

g(Pi’f(0)7 F) = g((l,f(()), G)

for each separate point P;.

7. It may be noted that the above theorem can be expressed in a slight-
ly more general form. In fact, since the function

N(r,a) = Zg(PVf(O)5 Fr)

is at most equal to the N(r, a) of z(z) for each a, it follows that for every
¢ = r the integral

\o(P.5(0), F)du
F,

cannot be greater than the corresponding integral belonging to z(z). Now

0 0 r
Sg(P, £(0), F)du = S log - dyu(w(2)) = S log ~du + \ log — du
Fy lz|sr ‘Z| |:|'§r 4 |z|._S_r |Z|

- Q(r)log—f— + S g(P, £(0), F,)du = Q(r) log% n Sgt@dt -
Fr h

Thus the above theorem holds if the integral

cQ(
(13) \ —i(“) dt
0
is replaced by the expression
cQ
(14) Q(r)log-‘i+g¥dt
’
0

where ¢ is any number satisfying the inequalities r < ¢ < 1.
If the integral (13) increases sufficiently slowly when 7 — 1, then

.Q(r)log%: 0 (ggt(i)dt )
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In such cases, therefore, no essential improvement is attained by replacing
(13) by (14). If, however, (13) tends rapidly to infinity, the use of (14)
instead of (13) can give a more accurate estimate.

Applications

8. In this section we briefly deal with certain applications of the above
theorem. We begin by considering cases where the mass y is connected
with certain Euclidean measures.

A simple mass distribution is obtained if x is of constant density 1,
i. e. if du equals the element of area in the Euclidean plane metric. If the
functions f(z) considered are regular in the unit circle, in which case their
values lie in a domain G not containing the point at infinity, we can take
E to be the whole plane. Q2(r) = A(r) then denotes the Euclidean area
of the image of |z| < r by f(?).

We note incidentally that the results concerning the integral
i A@)

(15) =t

0

may be formulated so as to apply to the integral

2n

(16) {1rem i

0

This follows from the known formula

o

2n
at = \I17eeeap — 2 0y,
0
readily established, e. g. by means of the principle of the argument.

Let us suppose, in particular, that ¢ is simply connected. Then the
function x(z), maximizing the integral (15), is schlicht and performs a
one-to-one mapping of the unit circle onto G. This fact enables us to give
simple criteria ensuring the boundedness of (15) (or (16)). For instance,
since for a schlicht function

A(r) < M (r)?

where M(r) denotes the maximum modulus of the function on the circle
|z| = r, we immediately get the following criterion: The integral (15) (or
(16)) is bounded for a regular f (2) if the values of f(z) lie in a simply connected
domain G with more than one boundary point and if the function xz(z) map-
ping the unit circle onto G satisfies the condition
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o -

(17) M@t)2dt < .

ce

We illustrate this criterion by an example which, although quite
simple, leads to certain considerations of a more general nature.

Let G be the angular domain |arg w| < v = z. We then have, with the
normalization x(0) == 1,
1 +z>2w/n

1—=2

z(z) = (
Choosing o = n/4—0 where ¢ is an arbitrarily small positive number, we

have for z(z)
14 1/2 —26/n
M(r) = (*_”) .
l1—r

Hence, for this o the condition (17) is fulfilled. Thus the criterion implies
that if the values of f(z) lie in the interior of an angle smaller than =/2,
then (15) (and (16)) are bounded. This is no longer true if the angle equals
7/2 as is shown by the counter-example

1+z)1/2

1—=2

7 =

The criterion ensuring the boundedness of (15) was to be applied to
the maximum modulus of the majorant function x(z). This is essential,
for we can construct a function f(z) for which (15) is not bounded in spite
of the fact that the maximum modulus of f(z) satisfies the relation (17).

To prove this, consider the function

f(z) = (Ejz_gr_@g)uz

1—m(2)
where
> [ z—a,
n) = I (=) (@ = 0,la, < 1
v=1 _a”z

is a convergent Blaschke product. This function maps the unit circle onto
the angle |arg w| < n/4.

First it is easily seen that the integral (15) is unbounded for this f(z),
irrespective of the special form of the Blaschke product. In fact, if (15)
were bounded we should have a finite number M such that

27 2.

(18) limg \f (rei®) 2dep — S f(e)2dep < M .

r—>1¢
0
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Now
2n 2n

a9)  {iferap = | 11 g = tim (i Fdp+0(1) (1 > 0).
0 IfI>1 '7—>00

From the identity Re{w} = |w| cos (arg w) it follows, since x(z) has
boundary values of modulus 1 almost everywhere, that

Re{f(0)>™} 27
27 =S

7 7’
sin kidd sin i
4 4

?vwmww=

By (19), this contradicts (18).

We now choose the zeros a, such that there are », zeros, equally spaced,
on the circumference of the circle |2| = 1—»7® where n,~*%. This
choice is legitimate since it implies the convergence of the Blaschke-pro-
duct. On the other hand, an easy estimate shows that the maximum
modulus of f(z) then satisfies the relation

(20) M(r) = O((1—r)"") .

Hence, this f(z) furnishes a counterexample of the desired kind.

The zeros a, were chosen in the above manner in order to simplify the
computations as much as possible. The order of magnitude in (20) could
undoubtedly be lowered.

9. As a second application of the theorem of section 5, very similar
to the above, let E be the imaginary axis and du equal to the Euclidean
element of length. In this case too, we must assume that the functions
considered are regular. Now 2(r) = L(r) denotes the total length of the
line segments belonging to the image of |z| = r by f(z) = u+w and
lying above the imaginary axis.

By virtue of the formula

r

S%?M=%&mmww—nwwh

resulting e. g. from the principle of the argument, we may formulate the
results concerning the integral

—dt

Lit
(21) S t()

0

equally well in terms of the integral
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2n
(22) \ |u(re’)|dg .
0
Since for every schlicht function we have

L(r) = 2M(r),

the criterion corresponding to that of section 8 reads as follows: The in-

tegral (21) (or (22)) is bounded for a regular f(z) = u+iv if the values of

f(2) lie in a simply connected domain G with more than one boundary point

and if the function x(z) mapping the unit circle onto G satisfies the condition
1

SM(t)dt <.

0

Again, concrete examples can easily be given.

10. An important application of our theorem is obtained if X is the
whole plane and du is defined as the spherical element of area divided
by =, i. e.,

(23) du(a) = (HAeltaree.

n(1+al?)®

This mass distribution is so regular that the theorem of section 5 can be
applied to meromorphic f(z) also. Now Q(r) = S(r) denotes the area of
the image of |z| =< r by the mapping f(z) onto the Riemann sphere.

By a well-known theorem of Shimizu and Ahlfors (see e. g. [3], p. 166),
we have

(24)

where T'(r) is the characteristic function of f(z). Thus in this case the theo-
rem of section 5 enables us to majorize the important function 7'(r).

A question often arising in the theory of the distribution of values of
meromorphic functions is the following: Consider all functions f(z) mero-
morphic in the unit circle and omitting a given set of values. How rapidly
can the characteristic 7'(r) increase for this class of functions? By our
theorem, we immediately get a partial solution of this problem since we
are able to determine the extremal function for which 7'(r) is maximal.
Whether the remaining part of the problem can be solved depends on
the extent to which this extremal function is numerically mastered. We
shall see in section 11 that our theorem also provides another means of
obtaining information about the order of magnitude of 7'(r).
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In this connection we mention a simple consequence of the inequality
(11). Suppose f(z) is meromorphic in the unit circle and omits a set of
values of positive capacity there. The complement of this set is a domain
G which, by hypothesis, possesses a Green’s function. At every point of
G we have, by (11),

(25) N(r, a) < g(a, f(0), G),
whereas N(r, a) = 0 if a is not in G.
By (10) and (24),

SN(r, a)dy = T(r)

if du is defined by (23) and the integral is extended over the whole plane.
Hence, by (25),

7(r) < g(a, £(0), G .
¢

The right-hand integral being evidently finite and independent of r we
have thus established in a simple manner the following well-known theo-
rem: If a function f(z) meromorphic in the unit circle omits a set of values
of positive capacity, then f(z) is of bounded characteristic.

By an easy modification of the above reasoning, this result can be ex-
tended to the case where N(r, a), instead of being zero, is bounded in a
set of positive capacity.

11. As a last example we take £ = G and put du = do equal to a
hyperbolic element of area in . This hyperbolic metric in G is introduced
in the following well-known manner: If z denotes an image of the point
w of G in the mapping z = 2~ (w), where 2" is a function (no matter which
one) mapping the universal covering surface G of G onto the unit circle,
we define

|dz|
(1—|z[3)?

It is well-known that in this manner a metric is induced not only in G*
but also in G. Now Q(r) = H(r) denotes the area of the image of |2| < r
by f(z) in this hyperbolic metric.

From the point of view of our considerations this choice of x represents
a very simple mass distribution. In fact, by the theorem of section 5 we
immediately get the following estimate for any function f(z) which omits
at least three values in the unit circle:

do(w) =

r r t2n

H(t) dt tdtde 1 1
26 20 sS—SS =7 .
(26) S e TS e a—er T 2 B
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This estimate is sharp since equality occurs if f(z) is a function which
maps the unit circle conformally onto G*.

Without analyzing the relation (26) in more detail we remark that,
e. g., Picard-Landau’s theorem (See [3], p. 56) can easily be established
by means of (26). Also, since it is possible ([3]) to estimate the integral

in terms of 7'(r), the relation (26) can give us information about the
growth of 7'(r).

REFERENCES
1. J. E. Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc.
(2) 23 (1924), 481-519.
2. J. E. Littlewood, Lectures on the theory of functions, Oxford, 1944.
3. R. Nevanlinna, Eindeutige analytische Funktionen, Berlin, 1936.
4. F. Riesz, Sur une inégalité de M. Littlewood dans la théorie des fonctions, Proc. London
Math. Soc. (2) 23 (1924), Rec. xxxvi-xxxix.

UNIVERSITY OF HELSINKI, FINLAND

Math. Scand. 1.

(3



