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PROJECTION OPERATORS ON MATRIX WEIGHTED
Lp AND A SIMPLE SUFFICIENT MUCKENHOUPT

CONDITION

MORTEN NIELSEN and MORTEN GRUD RASMUSSEN∗

Abstract
Boundedness for a class of projection operators, which includes the coordinate projections, on
matrix weightedLp-spaces is completely characterised in terms of simple scalar conditions. Using
the projection result, sufficient conditions, which are straightforward to verify, are obtained that
ensure that a given matrix weight is contained in the Muckenhoupt matrix Ap class. Applications
to singular integral operators with product kernels are considered.

1. Introduction

Singular integral operators form a natural generalisation of the classical Hilbert
transform, and the action of such operators onLp(R) has been studied in great
detail. The theory was extended in the ’70s to include weighted Lp-spaces,
with the seminal contribution being the paper by Hunt, Wheeden, and Mucken-
houpt [7], where the Hilbert transform is shown to be bounded on weighted
Lp, 1 < p < ∞, if and only if the weight satisfy the so-called Muckenhoupt
Ap-condition. Even though theAp-conditions are quite involved, the results of
Hunt, Wheeden, and Muckenhoupt are still very much operational since quite
large classes of, e.g. polynomial, weights are known to satisfy the respective
conditions, see [9].

A further generalisation of the Hilbert transform result to a vector valued
setup is straightforward in the non-weighted case, but it posed a long-standing
challenge to find a suitable generalisation in the (matrix-)weighted setup. A
breakthrough came with the results [12], [11] of Treil and Volberg for p = 2.
This lead to a correct definition of matrixAp weights for 1 < p < ∞, see [13].
The reader may consult [8] for an application of the Treil-Volberg result and
the A2-matrix condition to applied harmonic analysis.
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The matrix Ap condition is considerably more complicated than the scalar
condition, and there are no known straightforward sufficient conditions on a
matrix weight to ensure membership in the Ap class except in very special
cases (e.g., for diagonal weights and for weights with strong pointwise bounds
on its spectrum). Bloom [1], [2] has considered sufficient conditions for the
matrix A2-condition in terms of certain weighted BMO-spaces.

It was first noticed in [8] that matrix A2 weights on product domains can
be used to study stability of multiply generated shift invariant systems. This
provides a natural motivation to extend the study of matrix weights to the
product domain setting. Furthermore, in the scalar valued case, Ap weights on
product domains appear naturally in the study of singular integral operators
with product type kernes, see [4].

In the present paper, we study matrixAp-weights on general domains, with
a particular focus on product domains. In Section 2 we study and characterise
a family of projection operators on matrix weighted Lp on general domains.
The family contains the coordinate projections as special cases. The charac-
terisation is given in terms of simple scalar conditions.

Matrix Ap-weights on product domains are introduced in Section 3, and
some fundamental properties of such weights are derived. The projection result
from Section 2 is then applied in Section 4, in conjunction with the Treil-
Volberg characterisation of matrix Ap-weights, to obtain a simple sufficient
condition for a matrix to satisfy the product Ap-condition.

We show that the new sufficient condition covers many known examples of
non-trivial matrix Ap weights, such as the ones considered by Bownik in [3].
However, we do provide an example of an A2 matrix weight violating our
condition so the condition is not exhaustive.

Finally, as an application of the theory, we consider a family of singular
integral operators with product type kernels in the matrix weighted setup.

2. Projection operators

Consider a measure space, (D,�, μ) and recall that a scalar weight is a meas-
urable function which is positive a.e. Ifw:D → C is a scalar weight, we define
the weighted space Lp(w) as the set of measurable functions f :D → C for
which

‖f ‖Lp(w) :=
(∫

D

|f |pw dμ

)1/p

is finite, where μ is the measure on D. Likewise, if W :D → CN×N is a
matrix-valued function which is measurable and positive definite a.e., then the
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space Lp(W) is the set of measurable functions f :D → CN with

‖f ‖Lp(W) :=
(∫

D

∣∣W 1/pf
∣∣p dμ

)1/p

< ∞.

Obviously, in order to turn Lp(w) and Lp(W) into Banach spaces, one has to
factorize over {f :D → C : ‖f ‖Lp(w) = 0} and {f :D → CN : ‖f ‖Lp(W) =
0}, respectively. We can now state our main result giving a full characterization
of a certain class of projections from Lp(W) to Lp(w).

Theorem 2.1. Let W = [Wij ]Ni,j=1:D → CN×N be a matrix-valued func-
tion which is measurable and positive definite a.e., let w:D → C be a scalar
weight and let r:D → CN be a unit vector valued function. Then the projec-
tion in the direction of r , Pr :Lp(W) → Lp(w) given by Pr(f ) = 〈f, r〉, is
bounded if and only if

w1/p‖W−1/pr‖ ∈ L∞. (1)

In particular, if we denote the entries of powers ofW byWs = [(Ws)ij ], where
s is any real number, then Pk = Pek :L

p(W) → Lp(Wkk) is bounded if and
only if

(Wkk)
2/p(W−2/p)kk ∈ L∞, (2)

and if λi :D → R and vi :D → CN are eigenvalues and eigenvectors, respect-
ively, of W , then the projection Pvi :L

p(W) → Lp(λi) is always bounded.

Proof. We begin with necessity. Assume therefore that Pr is bounded.
Then there exists a constant C such that C‖f ‖pLp(W) ≥ ‖Prf ‖pLp(w). Now let
{fε}ε>0, fε:D → C be an approximate identity and Tk the translation operator,
Tkf = f ( · − k). Then

C = C

∥∥∥∥Tkf 1/p
ε

W−1/pr

‖W−1/pr‖
∥∥∥∥
p

p

= C

∥∥∥∥Tkf 1/p
ε

W−2/pr

‖W−1/pr‖
∥∥∥∥
p

Lp(W)

≥
∥∥∥∥Tkf 1/p

ε

〈
W−2/pr

‖W−1/pr‖ , r
〉∥∥∥∥
p

Lp(w)

= ∥∥Tkf 1/p
ε ‖W−1/pr‖∥∥p

Lp(w)

= ∥∥Tkf 1/p
ε w1/p‖W−1/pr‖∥∥p

p
.

Letting ε → 0 we get that w1/p(k)‖W−1/p(k)r(k)‖ ≤ C1/p for a.e. k.
We now show that essential boundedness of w1/p‖W−1/pr‖ implies

boundedness of Pr . Assume therefore that w1/p‖W−1/pr‖ ≤ C a.e. Write
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q for the Hölder conjugate of p. Then for every ψ ∈ Lq(w):

C‖f ‖Lp(W)‖ψ‖Lq(w) ≥ ‖f ‖Lp(W)
(∫

|ψw1/q |q(|w|1/p‖W−1/pr‖)q dμ

)1/q

= ‖f ‖Lp(W)
(∫

|ψw|q‖W−1/pr‖q dμ

)1/q

≥
∫

‖W 1/pf ‖‖W−1/prψw‖ dμ

≥
∫

|〈W 1/pf,W−1/prψw〉| dμ

=
∫

|Prfψw| dμ,

so Pr :Lp(W) → Lp(w) is bounded.
Note that (1) reduces to (2) when r ≡ ek , the constant function with all

coordinates except the k’th being zero, and w = wkk . Indeed,

‖W−1/pek‖2 = 〈W−1/pek,W
−1/pek〉 = 〈ek,W−2/pek〉 = (W−2/p)kk.

We finish the proof of the theorem by noting that

λ
1/p
i ‖W−1/pvi‖ = 1 a.e.,

which is clearly in L∞.

3. Muckenhoupt matrix weights

Let us first give a brief review of theAp condition following [13]. We consider a
domainD ∈ {Rd ,Rm×Rn,Td ,Tm×Tn}, whereTd denotes the d-dimensional
torus, and an associated measurable map W :D → CN×N , with values in the
non-negative definite matrices.

We introduce a family SD of subsets of D. For D ∈ {Rd ,Td}, SD is the
collection of all Euclidean balls in D, while in the product case, i.e. when
D ∈ {Rm × Rn,Tm × Tn}, SD is the collection of all product sets Br × Br ′ ,
where Br is a ball in Rm [Tm] and Br ′ is a ball in Rn [Tn]. We define the
following family of metrics:

ρt (x) = ‖W 1/p(t)x‖, x ∈ CN, t ∈ D,
with the dual metric given by

ρ∗
t (x) := sup

y 
=0

|〈x, y〉|
ρt (y)

= ‖W−1/p(t)x‖, x ∈ CN, t ∈ D.
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Assuming suitable local integrability of ρt , we now average

ρp,E(x) :=
(

1

|E|
∫
E

[ρt (x)]
p dt

)1/p

,

and likewise for the dual metric

ρ∗
p,E(x) :=

(
1

|E|
∫
E

[ρ∗
t (x)]

q dt

)1/q

,

with q being p’s Hölder conjugate, 1 = p−1 + q−1.
The Ap condition can then be stated as follows.

Definition 3.1. For 1 < p < ∞, we say that W is an Ap(N,D,SD)

matrix weight if W :D → CN×N is measurable and positive definite a.e. such
that W and W−q/p are locally integrable and there exists C < ∞ such that

ρ∗
q,E ≤ C(ρp,E)

∗, E ∈ SD, (3)

where the integrability assumptions ensure that both ρp,E and ρ∗
p,E are well-

defined.

Remark 3.2. Notice that ρ∗
t (x) = ‖(W−q/p)1/q(t)x‖, so

W ∈ Ap(N,D,SD) if and only if W−q/p ∈ Aq(N,D,SD). (4)

In the following, we will sometimes relax the notation Ap(N,D,SD) by
leaving out the N , the D, and/or the SD if their values are clear from the
context. Note that Ap(1) is simply the set of scalar Muckenhoupt weights.

Roudenko introduced an equivalent condition to (3) in [10] which is often
more straightforward to verify. In fact, Roudenko only considered the case
D = Rd , but the reader can easily verify that her proof in [10] works verbatim
in the product and/or torus setup too. Condition (3) holds if and only ifW :D →
CN×N is measurable and positive definite a.e. such that W and W−q/p are
locally integrable and there exists C ′ < ∞ such that

∫
E

(∫
E

∥∥W 1/p(x)W−1/p(t)
∥∥q dt

|E|
)p/q dx

|E| ≤ C ′, E ∈ SD. (5)

For scalar weights defined on Rm × Rn, it is well-known that a product
Muckenhoupt condition implies a uniform Muckenhoupt condition in each
variable, see [4]. Condition (5) can be used to prove a similar result for product
matrix weights. We have the following result.
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Proposition 3.3. Suppose W ∈ Ap(Rm × Rn). Then the weight x �→
W(x, y), obtained by fixing the variable y ∈ Rn is uniformly in Ap(Rm) for
a.e. y ∈ Rn.

Proof. Given a ball B ⊂ Rm, we let Bε := Bε(y) ⊂ Rn be the ball of
radius ε about y ∈ Rn. First suppose p ≤ q. Since W ∈ Ap(Rm × Rn) there
exists a constant cW independent of B × Bε such that

1

|Bε|2
∫
Bε

∫
Bε

[∫
B

(∫
B

‖W 1/p(x, y)W−1/p(x ′, y ′)‖q dx ′

|B|
)p/q dx

|B|
]

dy dy ′

≤
∫
Bε

∫
B

(∫
Bε

∫
B

‖W 1/p(x, y)W−1/p(x ′, y ′)‖q dx ′ dy ′

|B| · |Bε|
)p/q dx dy

|B| · |Bε|
≤ cW ,

where we have used Hölder’s inequality. Now we let ε → 0 and use Lebesgue’s
differentiation theorem to conclude that for almost every y ∈ Rn,

∫
B

(∫
B

‖W 1/p(x, y)W−1/p(x ′, y)‖q dx ′

|B|
)p/q dx

|B| ≤ cW .

Since cW is independent of B, it follows that x �→ W(x, y) is uniformly in
Ap(Rm) for a.e. y ∈ Rn. In the case q < p, we use thatW−q/p ∈ Aq(Rm×Rn)
by (4), which implies the following estimate

∫
Bε

∫
B

(∫
Bε

∫
B

‖W 1/p(x, y)W−1/p(x ′, y ′)‖p dx ′ dy ′

|B| · |Bε|
)q/p dx dy

|B| · |Bε| ≤ cW .

By repeating the argument from the p ≤ q case, we conclude that the map
x �→ W−q/p(x, y) is in Aq(Rm) for a.e. y ∈ Rn which again by (4) implies
that x �→ W(x, y) is in Ap(Rm) for a.e. y ∈ Rn.

A similar result clearly holds true for the weight y �→ W(x, y). The periodic
case, i.e. the case W ∈ Ap(Tm × Tn), is also similar.

4. A sufficient matrix Muckenhoupt condition

Here we consider an application of the projection result to derive operational
sufficient conditions for a matrix weight to be in the Muckenhoupt Ap class.
The matrixAp condition introduced in [13] is rather involved and it may be dif-
ficult to verify for a given matrix. The simplerA2-case was settled in [12], [11].
An additional advantage of the projection approach is that it applies to both
the regular matrix Ap condition and to the corresponding product setup.
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We will need a characterization of the matrix condition Ap. Recall that the
Riesz transform Rj :Lp(Rd) → Lp(Rd) is given by

F (Rjf )(ξ) = i
ξj

ξ
Ff (ξ), j = 1, 2, . . . , d.

The operator Rj lifts naturally to vector-valued functions by defining

Rjf := (Rjf1, . . . , RjfN), for f = (f1, . . . , fN) ∈ (Lp(Rd))N .
We have the following fundamental characterization of the matrix condition
Ap based on Goldberg’s results on vector valued singular integral operators,
see [6, Theorems 5.1 and 5.2].

Theorem 4.1. Let W = [Wij ]:Rd → CN×N be a matrix-valued function
which is measurable and positive definite a.e., and let 1 < p < ∞. Sup-
pose W ∈ Ap(N,Rd). Then the Riesz transforms Rj :Lp(W) → Lp(W) are
bounded for all j = 1, 2, . . . , d. Conversely, if Rj :Lp(W) → Lp(W) is
bounded for some j ∈ {1, 2, . . . , d}, then W ∈ Ap(N,Rd).

Proof. Suppose W ∈ Ap(N,Rd). It is well-known that the Riesz integral
kernel associated with Rj , j = 0, 1, . . . , d, is given by the function

Kj(x) = cd
xj

|x|d+1
, x ∈ Rd \ {0},

which is homogeneous of degree −d. Using the homogeneity one easily checks
that |∇Kj(x)| ≤ c′d |x|−d−1, x ∈ Rd \ {0}.
We can then call on [6, Theorems 5.1] to conclude that Rj :Lp(W) → Lp(W)

is bounded.
Conversely, ifRj :Lp(W) → Lp(W) is bounded, one easily checks that the

kernelKj satisfies the non-degeneracy condition in [6, Theorems 5.2], and we
may conclude that W ∈ Ap(N,Rd).

We now consider the product setup. For simplicity we focus on the case
D = Rm ×Rn. The caseD = Tm ×Tn can be treated in a similar fashion. We
write z = (x, y) ∈ D with x ∈ Rm and y ∈ Rn. Let R̃xi denote the operator
Rxi ⊗ Idy , where Rxi is the Riesz transform acting on Rm. Similarly, we let R̃yj
denote the operator Idx ⊗ R

y

j , where Ryj is the Riesz transform acting on Rn.
We have the following Corollary to Theorem 4.1.

Corollary 4.2. Let D = Rm × Rn and let W = [Wij ]:D → CN×N be
a matrix-valued function which is measurable and positive definite a.e., and
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let 1 < p < ∞. Then W ∈ Ap(N,D,SD) implies that the Riesz trans-
forms R̃xi , R̃

y

j :Lp(W) → Lp(W) are bounded for i = 1, 2, . . . , m and j =
1, 2, . . . , n. Conversely, suppose R̃xi , R̃

y

j :Lp(W) → Lp(W) are bounded for
some i ∈ {1, 2, . . . , m} and some j ∈ {1, 2, . . . , n}, thenW ∈ Ap(N,D,SD).

Proof. SupposeAp(N,D,SD). Then Proposition 3.3 shows thatW(x, y)
is uniformly Ap in each variable separately (a.e.). We can then use The-
orem 4.1 together with a simple iteration argument to deduce that the op-
erators R̃xi , R̃

y

j :Lp(W) → Lp(W) are bounded for i = 1, 2, . . . , m and

j = 1, 2, . . . , n. Conversely, suppose R̃xi , R̃
y

j :Lp(W) → Lp(W) are bounded
for some i ∈ {1, 2, . . . , m} and some j ∈ {1, 2, . . . , n}. Take any f = (fi)

N
i=1

with fi ∈ C∞
c (R

n), i = 1, . . . , N , and fix x0 ∈ Rm. Let ϕε ∈ C∞
c (R

m) be
an approximation to the identity centered at x0 ∈ Rm. We let Rjf denote the
vector (Rjfi)mi=1. Then using the boundedness of R̃yj ,

∫
Rm

∫
Rn
ϕε(x)

∣∣W 1/p(x, y)Rjf (y)
∣∣p dx dy

≤ C

∫
Rm

∫
Rn
ϕε(x)

∣∣W 1/p(x, y)f (y)
∣∣p dx dy.

We let ε → 0 to conclude that almost surely∫
Rn

∣∣W 1/p(x0, y)Rjf (y)
∣∣p dy ≤ C

∫
Rn

∣∣W 1/p(x0, y)f (y)
∣∣p dy, x0 ∈ Rm.

We now use Theorem 4.1 to conclude that y → W(x, y) is uniformly in Ap
for a.e. x. A similar argument using R̃xi shows that x → W(x, y) is uni-
formly in Ap for a.e. y. Using these uniform bounds it follows easily that
W ∈ Ap(N,D,SD).

We can now give a sufficient condition for membership in Ap(N,D,SD).

Theorem 4.3. Let D = Rm × Rn and let W = [Wij ]:D → CN×N be a
matrix weight which is invertible a.e. Fix 1 < p < ∞ and denote the entries
of powers of W by Ws = [(Ws)ij ], where s is any real number. Suppose that

(Wkk)
2/p(W−2/p)kk ∈ L∞, k = 1, 2, . . . , N

and that (W 2/p)
p/2
kk ∈ Ap(1) for k = 1, 2, . . . , N . Then W ∈ Ap(N,D,SD).

Proof. Take f ∈ Lp(W) ∩ C∞
c (D). We write f = ∑N

j=1 fjej =∑N
j=1 Pj (f )ej , and note that by definition the vector-valued operators R̃xi and
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R̃
y

j act coordinate-wise on f , so it follows that for K ∈ {R̃xi }mi=1 ∪ {R̃yj }nj=1,

Kf :=
N∑
j=1

(Kfj )ej .

According to Corollary 4.2, the scalar-valued transform K is bounded on
Lp
((
w
(2/p)
kk

)p/2)
for k = 1, 2, . . . , N , so we obtain

‖Kf ‖Lp(W) ≤
N∑
j=1

‖(Kfj )ej‖Lp(W) =
N∑
j=1

‖Kfj‖Lp((W 2/p)
p/2
kk )

≤ C

N∑
j=1

‖fj‖Lp((W 2/p)
p/2
kk )

≤ C ′‖f ‖Lp(W),

where we used thatPj :Lp(W) → Lp
(
(W 2/p)

p/2
kk

)
is bounded by Theorem 2.1.

Now we use Corollary 4.2 to conclude that W ∈ Ap(N,D,SD).

Note that Theorem 4.3 gives us an easily verifiable (at least for p = 2)
sufficient condition for W ∈ Ap(N). It is known that W ∈ Ap(N) implies
that (W 2/p)

p/2
kk ∈ Ap(1) for k = 1, 2, . . . , N , indicating a possibility that the

conditions of Theorem 4.3 in fact characterizeAp(N). However, this is not the
case as the following example illustrates.

Example 4.4. Let W be given by

[0, 1] � x �→ W(x) =
(√

x + 1√
x

i√
x

− i√
x

1√
x

)
.

Then W ∈ A2(2) but (2) with p = 2 fails to hold. Indeed, det(W) ≡ 1, so

W11(W
−1)11 = W22(W

−1)22 = 1 + 1

x

∈ L∞,

but

Wa,b =
∫ b

a

W(x) dx

=
( 2

3 (b
3/2 − a3/2)+ 2(

√
b − √

a ) 2i(
√
b − √

a )

−2i(
√
b − √

a ) 2(
√
b − √

a )

)
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and

W
(−1)
a,b =

∫ b

a

W−1(x) dx

=
(

2(
√
b − √

a ) −2i(
√
b − √

a )

2i(
√
b − √

a ) 2
3 (b

3/2 − a3/2)+ 2(
√
b − √

a )

)

so

Wa,bW
(−1)
a,b = 4

3

(
(b − a)2 − √

ab
(√
b − √

a
)2)
I2

and hence∥∥∥∥
(

1

b − a
Wa,b

)1/2( 1

b − a
W

(−1)
a,b

)1/2∥∥∥∥
F

= 1

b − a

√
tr
((
W

(−1)
a,b

)1/2
Wa,b

(
W

(−1)
a,b

)1/2
)

= 1

b − a

√
tr
(
Wa,bW

(−1)
a,b

)

= 1

b − a

√
8

3
(b − a)2 − √

ab
(√
b − √

a
)2 ≤ 2

√
2√

3
,

where the Frobenius norm was used for convenience.

5. An application to vector valued singular integral operators

Let us consider singular integral operators on the Euclidean product spaceRn×
Rm. Recall that a scalar weight w(x, y) satisfies the (product) Muckenhoupt
Ap(1,Rn × Rm)-condition precisely when w is uniformly in Ap(1) for each
variable x and y separately. This makes it very easy to study singular integral
operators with a corresponding product structure on Lp(Rn ×Rm,w) using a
simple iteration argument.

For example, the product Hilbert transform

f → p.v.
1

xy
∗ f

is bounded on Lp(R× R, w), 1 < p < ∞, whenever w ∈ Ap(R× R).
The case when the kernel is not separable but otherwise resemble a product

Hilbert transform is much more complicated and has been studied in e.g. [5].
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Suppose that K is locally integrable on Rn × Rm away from the cross
{x = 0} ∪ {y = 0}.

We let
�1
hK(x, y) = K(x + h, y)−K(x, y),

�2
kK(x, y) = K(x, y + k)−K(x, y),

and
�

1,2
h,kK(x, y) = �1

h(�
2
k(K)).

The following 5 technical conditions for some A < ∞ and η > 0 turn out to
be important for establishing boundedness of the operator induced by K:

(C.1)
∣∣∫∫

α1<|x|<α2,β1<|y|<β2
K(x, y) dx dy

∣∣ ≤ A for all 0 < α1 < α2 and

0 < β1 < β2,

(C.2) For K1 given by K1(x) = ∫
β1<|y|<β2

K(x, y) dy then |K1(x)| ≤
A|x|−n for all 0 < β1 < β2, |�1

hK1(x)| ≤ A|h|η|x|−n−η for |x| ≥
2|h|, with a similar condition for K2(y) = ∫

α1<|x|<α2
K(x, y) dx,

(C.3) |K(x, y)| ≤ A|x|−n|y|−m,

(C.4) |�1
hK(x, y)| ≤ A|h|η|x|−n−η|y|−m if |x| ≥ 2|h| with a similar con-

dition on �2
kK(x, y),

(C.5) |�1,2
h,kK(x, y)| ≤ A(|h||k|)η|x|−n−η|y|−m−η if |x| ≥ 2|h| and |y| ≥

2|k|.
Theorem 5.1 ([5]). Let 1 < p < ∞. Suppose K is locally integrable on

Rn × Rm away from the cross {x = 0} ∪ {y = 0}. Assume that K satisfies
(C.1)–(C.5). Then the truncated kernels

KN
ε (x, y) = K(x, y)χε1<|x|<N1(x)χε2<|y|<N2(y)

induce a uniformly bounded family of operators

T Nε (f ) := f ∗KN
ε

on Lp(Rn × Rm,w) whenever w ∈ Ap(1,Rn × Rm). Moreover, if∫∫
α1<|x|<α2,β1<|y|<β2

KN
ε (x, y) dx dy,

∫
α1<|y|<α2

KN
ε (x, y) dy, and

∫
β1<|x|<β2

KN
ε (x, y) dx
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converge a.e. to limits as ε → 0 and N → ∞ for all 0 < α1 < α2, 0 <
β1 < β2, then for every f ∈ Lp(Rn×Rm,w), TK(f ) := limε→0,N→∞ T Nε (f )
defines a bounded operator on Lp(Rn × Rm,w) for w ∈ Ap(1,Rn × Rm).

A natural extension of Theorem 5.1 would be to lift the operator TK to
the matrix-weighted case. There are at present some technical obstacles that
prevent us from carrying out this program in full generality, but we can use the
results in the previous sections to obtain a partial result.

Corollary 5.2. Let 1 < p < ∞ and let K:Rn × Rm → C be a kernel of
the type considered in Theorem 5.1. Suppose W = [Wij ]:Rn × Rm → CN×N
be a matrix weight which is invertible a.e. Then the operator TK lifted to the
vector valued setting is bounded on Lp(Rn × Rm,W) provided that

(Wkk)
2/p(W−2/p)kk ∈ L∞, k = 1, 2, . . . , N

and that (W 2/p)
p/2
kk ∈ Ap(1) for k = 1, 2, . . . , N .

Proof. Take f ∈ Lp(Rn × Rm,W) ∩ C∞
c (R

n × Rm), and write write the
function as f = ∑N

j=1 fjej = ∑N
j=1 Pj (f )ej . It follows that

TKf :=
N∑
j=1

(TKfj )ej ,

so

‖TKf ‖Lp(W) ≤
N∑
j=1

‖(TKfj )ej‖Lp(W) =
N∑
j=1

‖TKfj‖Lp((W 2/p)
p/2
kk )

≤ C

N∑
j=1

‖fj‖Lp((W 2/p)
p/2
kk )

≤ C ′‖f ‖Lp(W),

where we used Theorem 5.1, and the projection result, Theorem 2.1.

We conjecture that the conclusion of Corollary 5.2 holds true for any matrix
weight W = (wij ):Rn × Rm → CN×N in the set of Muckenhoupt weights
Ap(N,Rn × Rm), 1 < p < ∞.
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