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k-SHELLABLE SIMPLICIAL COMPLEXES
AND GRAPHS

RAHIM RAHMATI-ASGHAR

Abstract
In this paper we show that a k-shellable simplicial complex is the expansion of a shellable complex.
We prove that the face ring of a pure k-shellable simplicial complex satisfies the Stanley conjecture.
In this way, by applying an expansion functor to the face ring of a given pure shellable complex,
we construct a large class of rings satisfying the Stanley conjecture.

Also, by presenting some characterizations of k-shellable graphs, we extend some results due
to Castrillón-Cruz, Cruz-Estrada and Van Tuyl-Villareal.

Introduction

Let � be a simplicial complex on the vertex set X := {x1, . . . , xn}. Denote
by 〈F1, . . . , Fr〉 the simplicial complex � with facets F1, . . . , Fr . � is called
shellable if its facets can be given a linear order F1, . . . , Fr , called a shelling
order, such that for all 2 ≤ j , the subcomplex 〈Fj 〉∩ 〈F1, . . . , Fj−1〉 is pure of
dimension dim(Fj )−1 (see [3] for probably the earliest definition of this term
and [2] for a more recent exposition). Studying combinatorial properties of
shellable simplicial complexes and algebraic constructions of their face rings
and also the edge ideals associated to shellable graphs is a current trend in
combinatorics and commutative algebra. See for example [2], [3], [4], [8],
[11], [20].

In this paper, we recall from [15] the concept of k-shellability, and extend
some results obtained previously by researchers. Actually, k is a positive integer
and for k = 1, 1-shellability coincides with shellability.

Richard Stanley [18], in his famous article “Linear Diophantine equations
and local cohomology”, made a striking conjecture predicting an upper bound
for the depth of a multigraded module. This conjecture is nowadays called the
Stanley conjecture and the conjectured upper bound is called the Stanley depth
of a module. The Stanley conjecture has become quite popular, with numerous
publications dealing with different aspects of the Stanley depth. Although a
counterexample has apparently recently been found to the Stanley conjecture
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(see [9]), this makes it perhaps even more interesting to explore the relationship
between depth and Stanley depth.

Let S = K[x1, . . . , xn] be the polynomial ring over a field K . Dress proved
in [8] that the simplicial complex � is shellable if and only if its face ring is
clean. It is also known that cleanness implies pretty cleanness. Furthermore,
Herzog and Popescu [11, Theorem 6.5] proved that, if I ⊂ S is a monomial
ideal, and S/I is a multigraded pretty clean ring, then the Stanley conjec-
ture holds for S/I . It follows that, for a shellable simplicial complex �, the
face ring K[�] = S/I� satisfies the Stanley conjecture where I� denotes the
Stanley-Reisner ideal of �. We extend this result, in the pure case, by showing
that the face ring of a k-shellable simplicial complex satisfies the Stanley con-
jecture (see Theorem 3.2). We obtain this result by extending Proposition 8.2
of [11] and by presenting a filtration for the face ring of a k-shellable simplicial
complex in Theorem 2.9.

A simple graph G is called shellable if its independence complex �G is
a shellable simplicial complex. Shellable graphs were studied by several re-
searchers in recent years. For example,Van Tuyl andVillarreal in [20] classified
all of shellable bipartite graphs. Also, Castrillón and Cruz characterized the
shellable graphs and clutters by using the properties of simplicial vertices,
shedding vertices and shedding faces [4].

Here, we present some characterizations of k-shellable graphs and extend
some results of [4], [6] and [20] (see Theorems 4.5, 4.7 and 4.10). Our idea is
to define a new notion, called a k-simplicial set, which is a generalization of
the notion of simplicial vertex defined in [7] or [13].

1. Preliminaries

For basic definitions and general facts on simplicial complexes, we refer to
Stanley’s book [19].

A simplicial complex � is pure if all of its facets (maximal faces) are of the
same dimension. The link and deletion of a face F in � are defined respectively
by

lk�(F ) = {G ∈ � : G ∩ F = ∅ and G ∪ F ∈ �}
and

dl�(F ) = {G ∈ � : F � G}.
Let G be a simple (no loops or multiple edges) undirected graph on the

vertex set V (G) = X and the edge set E(G). The independence complex of
G is denoted by �G and F is a face of �G if and only if there is no edge of
G joining any two vertices of F . The edge ideal of G is defined a quadratic
squarefree monomial ideal I (G) = (xixj : xixj ∈ E(G)). It is known that
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I (G) = I�G
. We say G is a shellable graph if �G is a shellable simplicial

complex.
In the following we recall the concept of expansion functor in a combinat-

orial and an algebraic setting from [16] and [1], respectively.
Let α = (k1, . . . , kn) be an n-tuple with positive integer entries in Nn. For

F = {xi1 , . . . , xir } ⊆ X define

Fα = {xi11, . . . , xi1ki1
, . . . , xir 1, . . . , xir kir

}
as a subset of Xα := {x11, . . . , x1k1 , . . . , xn1, . . . , xnkn

}. Fα is called the ex-
pansion of F with respect to α.

For a simplicial complex � = 〈F1, . . . , Fr〉 on X, we define the expansion
of � with respect to α as the simplicial complex �α = 〈Fα

1 , . . . , F α
r 〉 (see [16]).

In [1], Bayati and Herzog defined the expansion functor in the category
of finitely generated multigraded S-modules and studied some homological
behaviors of this functor. We recall the expansion functor defined by them
only in the category of monomial ideals and refer the reader to [1] for more
general case in the category of finitely generated multigraded S-modules.

Set Sα a polynomial ring over K in the variables

x11, . . . , x1k1 , . . . , xn1, . . . , xnkn
.

Whenever I ⊂ S is a monomial ideal minimally generated by u1, . . . , ur , the
expansion of I with respect to α is defined by

Iα =
r∑

i=1

P
ν1(ui )
1 . . . P νn(ui )

n ⊂ Sα,

where Pj = (xj1, . . . , xjk) is a prime ideal of Sα and νj (ui) is the exponent of
xj in ui .

Example 1.1. Let I ⊂ K[x1, . . . , x3] be a monomial ideal minimally gen-
erated by G(I) = {x2

1x2, x1x3, x2x
2
3 } and let α = (2, 2, 1) ∈ N3. Then

Iα = (x11, x12)
2(x21, x22) + (x11, x12)(x31) + (x21, x22)(x31)

2

= (x2
11x21, x11x12x21, x

2
12x21, x

2
11x22,

x11x12x22, x
2
12x22, x11x31, x12x31, x21x

2
31, x22x

2
31)

It was shown in [1] that the expansion functor is exact and so (S/I)α =
Sα/Iα . The following lemma implies that two above concepts of expansion
functor are related.
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Lemma 1.2 ([16, Lemma 2.1]). For a simplicial complex � and α ∈ Nn we
have (I�)α = I�α . In particular, K[�]α = K[�α].

In this paper we just study the functors α = (k1, . . . , kn) ∈ Nn with ki = kj

for all i, j . For convenience, we set α = [k] when every component of α is
equal to k ∈ N. We call I [k] (resp. �[k]) the expansion of I (resp. �) with
respect to k.

2. Some combinatorial and algebraic properties of k-shellable
complexes

The notion of k-shellable simplicial complexes was first introduced by Em-
tander, Mohammadi and Moradi [10] to provide a natural generalization of
shellability. It was shown in [10, Theorem 6.8] that a simplicial complex � is
k-shellable if and only if the Stanley-Reisner ideal of its Alexander dual has
k-quotients, i.e. there exists an ordering u1, . . . , ur of the minimal generators
of I�∨ such that if we for s = 1, . . . , t , put Is = (u1, . . . , us), then for every
s there are monomials vsi

, i = 1, . . . , rs , deg(vsi
) = k for all i, such that

Is : us = (vs1 , . . . , vsrs
).

In [15], we gave another definition of k-shellability and having k-quotients
by adding a condition to Emtander, Mohammadi and Moradi’s. In our defini-
tion the colon ideals Is : us were generated by regular sequences for all s and
in this way, all of structural properties of monomial ideals with linear quotients
were generalized. The reader is referred to [12] for the definition of monomial
ideals with linear quotients.

Definition 2.1 ([15]). Let � be a d-dimensional simplicial complex on
X and let k be an integer with 1 ≤ k ≤ d + 1. � is called k-shellable if
its facets can be ordered F1, . . . , Fr , called k-shelling order, such that for
all j = 2, . . . , r , the subcomplex �j = 〈Fj 〉 ∩ 〈F1, . . . , Fj−1〉 satisfies the
following properties:

(i) it is generated by a nonempty set of maximal proper faces of 〈Fj 〉 of
dimension |Fj | − k − 1;

(ii) if �j has more than one facet then for every two disjoint facets σ, τ ∈
〈Fj 〉 ∩ 〈F1, . . . , Fj−1〉 we have Fj ⊆ σ ∪ τ .

Remark 2.2. It follows from the definition that two concepts 1-shellability
and shellability coincide.

Remark 2.3. Note that the notions of 1-shellability in our sense and Em-
tander, Mohammadi and Moradi’s coincide. Although, for k > 1, a simplicial
complex may be k-shellable in their concept and not in ours. For example,
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consider the complex � = 〈abc, aef, cdf 〉 on {a, b, . . . , f }. It is easy to
check that � is 2-shellable in the sense of [10] but not in ours.

In the following proposition we describe some the combinatorial properties
of k-shellable complexes.

Proposition 2.4. Let � be a d-dimensional (not necessarily pure) simpli-
cial complex on X and let k be an integer with 1 ≤ k ≤ d + 1. Suppose that
the facets of � can be ordered F1, . . . , Fr . Then the following conditions are
equivalent:

(a) F1, . . . , Fr is a k-shelling of �;

(b) for every 1 ≤ j ≤ r there exist the subsets E1, . . . , Et of X such
that the Ei are mutually disjoint and |Ei | = k for all i and the set of
the minimal elements of 〈F1, . . . , Fj 〉 \ 〈F1, . . . , Fj−1〉 is {{a1, . . . , at } :
ai ∈ Ei for all i};

(c) for all i, j , 1 ≤ i < j ≤ r , there exist x1, . . . , xk ∈ Fj \ Fi and some
� ∈ {1, . . . , j − 1} with Fj \ F� = {x1, . . . , xk}.

Proof. (a) ⇒ (b): let 〈Fj 〉∩ 〈F1, . . . , Fj−1〉 = 〈Fj \σ1, . . . , Fj \σt 〉 where
|σi | = k for all i. Since for all i = i ′, Fj ⊆ (Fj \ σi) ∪ (Fj \ σi ′), we have
σi ∩ σi ′ = ∅. Hence the minimal elements of 〈F1, . . . , Fj 〉 \ 〈F1, . . . , Fj−1〉
are in the form {a1, . . . , at } where ai ∈ σi for all i.

(b) ⇒ (c): for all i, suppose that Ei = {xi1, . . . , xik}. Let 1 ≤ i < j ≤ r

and let {x1i1 , . . . , xtit } be a minimal element of 〈F1, . . . , Fj 〉 \ 〈F1, . . . , Fj−1〉.
Because {x1i1 , . . . , xtit } � Fi , we may assume that x1i1 ∈ Fj \Fi . We claim that
x11, . . . , x1k ∈ Fj \Fi . Suppose, on the contrary, that for some s, x1s ∈ Fj \Fi

then x1s ∈ Fi and so x1s ∈ 〈F1, . . . , Fj 〉 \ 〈F1, . . . , Fj−1〉. It follows that
{x1s , x2i2 , . . . , xtit } is not a minimal element of 〈F1, . . . , Fj 〉 \ 〈F1, . . . , Fj−1〉,
a contradiction. Therefore E1 ⊆ Fj \ Fi .

Now suppose that for all � < j , if E1 is contained in Fj \F� then E1�Fj \F�.
Then there exists y ∈ Fj \E1 such that {y, x2i2 , . . . , xtit } is a minimal element
of 〈F1, . . . , Fj 〉 \ 〈F1, . . . , Fj−1〉 different from the elements of {{a1, . . . , at } :
ai ∈ Ei for all i}, a contradiction. Therefore there exists � < j with Fj \ F� =
E1.

(c) ⇒ (a): let F ∈ 〈Fj 〉∩ 〈F1, . . . , Fj−1〉. Then F ⊆ Fi for some i < j . By
the condition (c), there exist x1, . . . , xk ∈ Fj \ Fi and some � ∈ {1, . . . , j −
1} with Fj \ F� = {x1, . . . , xk}. But Fj \ {x1, . . . , xk} is a proper face of
〈Fj 〉 ∩ 〈F1, . . . , Fj−1〉, because Fj \ {x1, . . . , xk} = Fj ∩ F�. Moreover, Fj \
{x1, . . . , xk} is a maximal face. Finally, since F is contained in Fj\{x1, . . . , xk},
the assertion is completed.
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Example 2.5. The Figure 1 indicates the pure shellable and pure 2-shellable
simplicial complexes of dimensions 1, 2 and 3 with 3 facets.

3-dim.

2-dim.

1-dim.

shellable 2-shellable

Figure 1

Theorem 2.6. Let � be a k-shellable complex and σ a face of �. Then
lk�(σ) is again k-shellable.

Proof. Since� is k-shellable, so there exists an k-shelling orderF1, . . . , Fr

of facets of �. Let Fi1 , . . . , Fit where i1 < · · · < it be all of facets which
contain σ . We claim that Fi1 \ σ, . . . , Fit \ σ is a k-shelling order of lk�(σ).
To this end we want to show that the condition (c) of Proposition 2.4 holds.

Set Gj = Fij \ σ . Consider �, m with 1 ≤ � < m ≤ t . By k-shellability of
�, there are x1, . . . , xk ∈ Fim \Fi� = (Fim \σ)\ (Fi� \σ) = Gm \G� such that
for some s < im we have {x1, . . . , xk} = Fim \ Fs . It follows from σ ⊂ Fim

and Fim \Fs = {x1, . . . , xk} that σ ⊂ Fs . This implies that Fs is among the list
Fi1 , . . . , Fim . Let Fim′ = Fs . Hence Gm \Gm′ = {x1, . . . , xk} and the assertion
is completed.

For the simplicial complexes �1 and �2 defined on disjoint vertex sets, the
join of �1 and �2 is �1 · �2 = {σ ∪ τ : σ ∈ �1, τ ∈ �2}.

Theorem 2.7. The simplicial complexes �1 and �2 are k-shellable if and
only if �1 · �2 is k-shellable.

Proof. Let �1 and �2 be k-shellable. Let F1, . . . , Fr and G1, . . . , Gs be,
respectively, the k-shelling orders of �1 and �2. We claim that

F1 ∪ G1, F1 ∪ G2, . . . , F1 ∪ Gs, . . . , Fr ∪ G1, Fr ∪ G2, . . . , Fr ∪ Gs

is a k-shelling order of �1 · �2.
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Let Fi ∪ Gj be a facet of �1 · �2 which comes after Fp ∪ Gq in the above
order. We have some cases:

Let p < i. Since �1 is k-shellable, there exist u1, . . . , uk ∈ Fi \ Fp and
some � < i such that Fi \ F� = {u1, . . . , uk}. It follows that u1, . . . , uk ∈
(Fi ∪ Gj) \ (Fp ∪ Gq) and (Fi ∪ Gj) \ (F� ∪ Gj) = {u1, . . . , uk}.

Let p = i and q < j . Since �2 is k-shellable, there exist v1, . . . , vk ∈
Gj\Gq and somem < j such thatGj\Gm = {v1, . . . , vk}. Therefore we obtain
v1, . . . , vk ∈ (Fi ∪Gj) \ (Fp ∪Gq) and (Fi ∪Gj) \ (Fi ∪Gm) = {v1, . . . , vk}.

Conversely, suppose that �1 · �2 is k-shellable with the k-shelling order
Fi1 ∪ Gj1 , . . . , Fit ∪ Gjt

. Let Fs1 , . . . , Fsr
be the ordering obtained from Fi1 ∪

Gj1 , . . . , Fit ∪ Gjt
after removing the repeated facets beginning on the left-

hand. Then it is easy to check that Fs1 , . . . , Fsr
is a k-shelling order of �1. In

a similar way, it is shown that �2 is k-shellable.

The following theorem, relates the expansion of a shellable complex to a
k-shellable complex.

Theorem 2.8. Let � be a simplicial complex and k ∈ N. Then � is shellable
if and only if �[k] is k-shellable.

Proof. Let � = 〈F1, . . . , Fr〉 and let �j = 〈Fj 〉 ∩ 〈F1, . . . , Fj−1〉 for
j = 2, . . . , r . Fix an integer j . If �j = 〈Fj \ xi1 , . . . , Fj \ xit 〉, then

�
[k]
j = 〈F [k]

j 〉 ∩ 〈F [k]
1 , . . . , F

[k]
j−1〉

= 〈F [k]
j \ {xi11, . . . , xi1k}, . . . , F [k]

j \ {xit 1, . . . , xit k}〉.

Now by the Definition 2.1, if F1, . . . , Fr is a shelling order of � then F
[k]
1 , . . . ,

F [k]
r is a k-shelling order of �[k].

Conversely, suppose that F
[k]
1 , . . . , F [k]

r is a k-shelling order of �[k] and
set �

[k]
j = 〈F [k]

j 〉 ∩ 〈F [k]
1 , . . . , F

[k]
j−1〉 for j = 2, . . . , r . Fix an index j . Hence

�
[k]
j = 〈F [k]

j \ σ1, . . . , F
[k]
j \ σt 〉 with |σi | = k for all i. By Proposition 2.4(b),

σ� ∩ σm = ∅ for all � = m. We claim that for every i, σi is the expansion of a
singleton set. Suppose, on the contrary, that for some σs we have xi1�, xi2m ∈ σs

with i1 = i2 and let F
[k]
j ∩ F

[k]
s ′ = F

[k]
j \ σs for some s ′. It follows from

|σs | = k that xi1�′ ∈ σs for some �′ with 1 ≤ �′ ≤ k. In particular, we conclude
that xi1� ∈ F

[k]
s ′ but xi1�′ ∈ F

[k]
s ′ . This is a contradiction, because F

[k]
s ′ is the

expansion of Fs ′ .
Therefore we conclude that for all j = 2, . . . , r , the complex �

[k]
j is in the

form
�

[k]
j = 〈

F
[k]
j \ {xi1}[k], . . . , F

[k]
j \ {xit }[k]

〉
.
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Finally, for all j , �j = 〈Fj 〉 ∩ 〈F1, . . . , Fj−1〉 will be in the form �j =
〈Fj \ xi1 , . . . , Fj \ xit 〉. This implies that 〈Fj 〉 ∩ 〈F1, . . . , Fj−1〉 is pure of
dimension dim(Fj ) − 1 for all j ≥ 2, as desired.

Let R be a Noetherian ring and M be a finitely generated multigraded
R-module. We call

F : 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mr−1 ⊂ Mr = M

a multigraded finite filtration of submodules of M if there exist the positive
integers a1, . . . , ar such that Mi/Mi−1

∼= ∏ai

j=1 R/Pi(−aij ) for some Pi ∈
Supp(M). F is called a multigraded prime filtration if a1 = · · · = ar = 1.
It is well known that every finitely generated multigraded R-module M has
a multigraded prime filtration (see for example [14, Theorem 6.4]). In the
following we present a multigraded finite filtration for the face ring of a k-
shellable simplicial complex which we need in Section 3.

For F ⊂ X. We set Fc = X \ F and PF = (xi : xi ∈ F).

Theorem 2.9. Let � be a simplicial complex and k a positive integer. If
F1, . . . , Fr is a k-shelling order of � then there exists a filtration 0 = M0 ⊂
M1 ⊂ · · · ⊂ Mr = S/I� with

Mi =
r−i⋂
�=1

PFc
�

and

Mi/Mi−1
∼=

kai∏
j=1

S/PFc
r−i+1

(−aij ),

for all i = 1, . . . , r . Here ai = |aij |, for all j = 1, . . . , kai .

Proof. We set a1 = 0 and for each i > 2 we denote by ai the number of
facets of 〈Fi〉 ∩ 〈F1, . . . , Fi−1〉. If F1, . . . , Fr is a k-shelling of �, then for
i = 2, . . . , r we have

i−1⋂
j=1

PFc
j

+ PFc
i

= PFc
i
+ Pσi1 . . . Pσiai

, (1)

where σi� = Fi \ Fi� and |σi�| = k for � = 1, . . . , ai . Actually, Fi� ∩ Fi’s are
all facets of 〈Fi〉 ∩ 〈F1, . . . , Fi−1〉. Since σi� ∩ σi�′ = ∅ for 1 ≤ � < �′ ≤ ai ,
one can suppose that Pσi1 . . . Pσiai

= (fij : j = 1, . . . , kai ). Set aij = deg(fij )
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and it is clear that for all j = 1, . . . , kai , ai = |aij |. We have the following
isomorphisms:

(i−1⋂
j=1

PFc
j

) ( i⋂
j=1

PFc
j

)
∼=

i−1⋂
j=1

PFc
j

+ PFc
i
/PFc

i

∼= Pσi1 . . . Pσiai
+ PFc

i
/PFc

i

∼= Pσi1 . . . Pσiai
/(Pσi1 . . . Pσiai

∩ PFc
i
)

∼= Pσi1 . . . Pσiai
/Pσi1 . . . Pσiai

PFc
i
,

where ai = |aij |, for j = 1, . . . , kai . Now it is easy to check that the homo-
morphism

θ :
kai∏

S −→ Pσi1 . . . Pσiai
/Pσi1 . . . Pσiai

PFc
i
,

(r1, . . . , rkai ) �−→
kai∑
j

rjfij + Pσi1 . . . Pσiai
PFc

i

is an epimorphism. In particular, it follows that

Pσi1 . . . Pσiai
/Pσi1 . . . Pσiai

PFc
i

∼=
kai∏
j=1

S/PFc
i
(−aij ).

This completes the proof.

Remark 2.10. In view of Theorem 2.9, let � = 〈F1, . . . , Fr〉 be a shellable
simplicial complex and �j = 〈F1, . . . , Fj 〉. Then we have the prime filtration

(0) = I� ⊂ I�r−1 ⊂ · · · ⊂ I�1 ⊂ K[�]

for K[�]. In particular, it provides the following filtration for K[�[k]]:

(0) = I�[k] ⊂ I�
[k]
r−1

⊂ · · · ⊂ I�
[k]
1

⊂ K[�[k]].

In other words, Theorem 2.9 gives a filtration for the face ring of the expansion
of a shellable simplicial complex with respect to k.

Remark 2.11. The filtration described in Theorem 2.9 in the case that k > 1
is not a prime filtration, i.e. the quotient of any two consecutive modules of the
filtration is not cyclic. Consider the same notations of Theorem 2.9, we have
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the following prime filtration for K[�] when � has a k-shelling order:

F : 0 =
r⋂

j=1

PFc
j

⊂ · · ·

⊂
i⋂

j=1

PFc
j

⊂ · · · ⊂
kai −1∑
j=1

(fj ) +
i⋂

j=1

PFc
j

⊂
kai∑
j=1

(fj ) +
i⋂

j=1

PFc
j

=
i−1⋂
j=1

PFc
j

⊂ · · · ⊂ K[�],

where (f1, . . . , fj−1) : (fj ) is generated by linear forms for all j = 2, . . . , kai

and all i = 1, . . . , r .
For all 2 ≤ j ≤ kai , suppose that (f1, . . . , fj−1) : (fj ) = PQj

. Set PQ1 =
(0). We have

j∑
t=1

(ft ) +
i⋂

t=1

PFc
t

j−1∑
t=1

(ft ) +
i⋂

t=1

PFc
t

∼= (fj )/(fj ) ∩
(

(f1, . . . , fj−1) +
i⋂

t=1

PFc
t

)

∼= (fj )/fjPLij
,

where Lij = Fc
i ∪ Qj , for i = 1, . . . , r and j = 1, . . . , kai . Therefore the set

of prime ideals which defines the cyclic quotients of F is Supp(F ) = {PLij
:

i = 1, . . . , r and j = 1, . . . , kai }.

3. The Stanley conjecture

Consider a field K , and let R be a finitely generated Nn-graded K-algebra,
and let M be a finitely generated Zn-graded R-module. Stanley [18] conjec-
tured that, in this case, there exist finitely many subalgebras A1, . . . , Ar of
R, each generated by algebraically independent Nn-homogeneous elements
of R, and there exist Zn-homogeneous elements u1, . . . , ur of M , such that
M = ⊕r

i=1 uiAi , where dim(Ai) ≥ depth(M) for all i and where uiAi is a
free Ai-module of rank one.

Consider a finitely generatedZn-graded S-module M , a subset Z of {x1, . . . ,

xn}, and a homogeneous element u ∈ M . The K-subspace uK[Z] of M is
called a Stanley space of dimension |Z| if it is a free K[Z]-module of rank 1,
i.e., the elements of the form uv, where v is a monomial in K[Z], form a
K-basis of uK[Z]. A Stanley decomposition of M is a decomposition D of
M into a finite direct sum of Stanley spaces. The Stanley depth of D , denoted
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sdepth(D), is the minimal dimension of a Stanley space in a decomposition
D . We set

sdepth(M) = max{sdepth(D) : D is a Stanley decomposition of M},
and we call this number the Stanley depth of M . The Stanley conjecture says
that sdepth(M) ≥ depth(M) always holds.

The following lemma is needed in the proof of the main theorem of this
section.

Lemma 3.1. Let F1, . . . , Fs ⊂ X with Fi ∩Fj = ∅, for all i = j and |Fi | =
k > 1. Let f1, . . . , fks be a sequence of minimal generators of PF1 . . . PFs

ordered with respect to lexicographical ordering x1 > x2 > · · · > xn. Suppose
that ni is the minimal number of homogeneous generators of (f1, . . . , fi−1) :
(fi) for i = 2, . . . , ks . Then

max{ni : i = 2, . . . , ks} = nks = (k − 1)s.

Moreover, for all i, the colon ideal (f1, . . . , fi−1) : (fi) is generated by linear
forms.

Proof. By [5, Corollary 1.5], PF1 . . . PFs
has linear quotients. To show

equality, we use induction on s. If s = 1, the assertion is clear. Assume that
s > 1. Let PF1 . . . PFs−1 = (f1, . . . , fks−1) and Fs = {x1, . . . , xk}. Then

PF1 . . . PFs
= x1(f1, . . . , fks−1) + · · · + xk(f1, . . . , fks−1).

Moreover,

(x1f1, . . . , x1fks−1 , . . . , xkf1, . . . , xkfks−2) : xkfks−1

= (x1, . . . , xk−1) + (f1, . . . , fks−2) : fks−1 .

Now, by the induction hypothesis, we have nks = (k − 1) + (k − 1)(s − 1) =
(k − 1)s, as desired.

Let
F : 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mr = M

be a prime filtration of M with Mi/Mi−1
∼= (S/Pi)(−ai ). Then this fil-

tration decomposes M as a multigraded K-vector space, that is, we have
M = ⊕r

i=1 uiK[Zi] and this is a Stanley decomposition of M where ui ∈ Mi

is a homogeneous element of degree ai and Zi = {xj : xj /∈ Pi}.
Now suppose that � = 〈G1, . . . , Gr〉 is a pure shellable simplicial complex

on X and k is a positive integer. By Theorem 2.8, �[k] = 〈G[k]
1 , . . . , G[k]

r 〉 is
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pure k-shellable. For all i, set Fi = G
[k]
i . Consider the prime filtration F of

K[�[k]] described in Section 2. Then we have the Stanley decomposition

K[�[k]] =
r⊕

i=1

kai⊕
j=1

uijK[Zij ],

where Zij = {x� : � ∈ Lij }, deg(uij ) = aij and |aij | = ai for all i, j . We
claim that for all i, j , |Zij | ≥ depth(K[�[k]]).

By Corollaries 4.1 and 2.1 of [15], we have depth(K[�[k]]) =
dim(K[�]) = |Gi |. On the other hand, |Gi | ≥ ai . Now by combining all
of these results with Lemma 3.1, we have

|Zikai | = kn − (|Qkai | + |Fc
i |)

= kn − ((k − 1)ai + k ht(PGc
i
))

= (k − 1)(n − ht(PGc
i
) − ai) + n − ht(PGc

i
)

= (k − 1)(|Gi | − ai) + |Gi |
≥ |Gi | = dim(K[�]).

Thus we have shown the main result of this section:

Theorem 3.2. The expansion of the face ring of a pure shellable simplicial
complex with respect to k > 0 satisfies the Stanley conjecture. In particular,
the face ring of a pure k-shellable complex satisfies the Stanley conjecture.

4. k-shellable graphs

Let G be a simple graph and let �G the independence complex of G. We say
that G is k-shellable if �G has this property. The purpose of this section is to
characterize k-shellable graphs.

Following Schrijver [17], the duplication of a vertex xi of a graph G means
extending its vertex set X by a new vertex xi ′ and replacing E(G) by

E(G) ∪ {xi ′xj : xixj ∈ E(G)}.
In other words, if V (G) = {x1, . . . , xn} then the graph G′ obtained from G

by duplicating ki − 1 times the vertex xi has the vertex set

V (G′) = {xij : i = 1, . . . , n and j = 1, . . . .ki}
and the edge set

E(G′) = {xirxjs : xixj ∈ E(G), r = 1, . . . , ki and j = 1, . . . , ki}.
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Example 4.1. Let G be a simple graph on the vertex set V (G) = {x1, . . . ,

x5} and E(G) = {x1x3, x1x4, x2x4, x2x5, x3x5, x4x5}. Let G′ be obtained from
G by duplicating 1 times the vertices x1 and x4 and 0 times the other vertices.
Then G and G′ are in the form

G Gα

x1

x2

x3

x4x5

x12

x21

x31

x42

x41x51

x11

Figure 2

Also, the independence complexes of G and G′ are, respectively, �G =
〈x1x2, x1x5, x2x3, x3x4〉 and �G′ = 〈x11x12x21, x11x12x51, x21x31, x31x41x42〉.
Note that �G′ = �α

G, where α = (2, 1, 1, 2, 1).

In the following theorem we show that the simple graph obtained from
duplicating k − 1 times any vertex of a shellable graph is k-shellable.

Theorem 4.2. Let G be a simple graph on X and let G′ be a new graph
obtained from G by duplicating k−1 times any vertex of G. Then G is shellable
if and only if G′ is k-shellable.

Proof. It suffices to show that �G′ = �
[k]
G . Then Theorem 2.8 completes

the assertion.
After relabeling of the vertices of G′ one can assume that G′ is a graph with

the vertex set X[k] = {xij : i = 1, . . . , n, j = 1, . . . , k} and the edge set

{xirxjs : xixj ∈ G and 1 ≤ r, s ≤ k}.
Let F be an independent set of G′ and let F̄ = {xi : xir ∈ F for some r}. If
|F̄ | = 1 then F̄ is an independent set in G. So assume that |F̄ | > 1. Suppose,
on the contrary, that xi, xj ∈ F̄ and xixj ∈ G. By the construction of G′, for all
xir and xjs of V (G′), xirxjs ∈ G′. Therefore F contains an edge xirxjs of G′,
a contradiction. This implies that F̄ is an independent set in G. In particular,
since F ⊂ (F̄ )[k] we have F ∈ �

[k]
G .

Conversely, suppose H is an independent set of G. Choose xir , xjs ∈ H [k].
If xirxjs ∈ G′ then xixj ∈ G, which is false since xi, xj ∈ H . Therefore H [k]

is an independent set of G′ and H [k] ∈ �G′ .

In the following we want to extend some results from [4], [6], [20]. Firstly,
we present a generalization of the concept of simplicial vertex.
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Let G be a simple graph. For U ⊂ V (G) we define the induced subgraph
of G on U to be the subgraph GU on U consisting of those edges xixj ∈ E(G)

with xi, xj ∈ U . For x ∈ V (G), let NG(x) denote the open neighborhood
of x, that is, all of vertices adjacent to x. We also denote by NG[x] the closed
neighborhood of x, which is NG(x) together with x itself, so that NG[x] =
NG(x) ∪ {x}. Set NG(U) = ⋃

x∈U NG(x) and NG[U ] = ⋃
x∈U NG[x].

Recall from [7] or [13] that a vertex x ∈ V (G) is simplicial if the induced
subgraph GNG[x] is complete.

The simple graph G is a complete r-partite graph if there is a partition
V (G) = V1 ∪ · · · ∪ Vr of the vertex set, such that uv ∈ E(G) if and only if u

and v are in different parts of the partition. If |Vi | = ni , then G is denoted by
Kn1,...,nr

.

Definition 4.3. The set S of pairwise non-adjacent vertices of G is a k-
simplicial set if GNG[S] is a r-partite complete graph with k-element parts
S1, . . . , Sr having the following property:

for every S� and every two vertices xi, xj ∈ S�, NG(xi) = NG(xj ).

Note that every 1-simplicial set is a simplicial vertex.

Lemma 4.4. Let S ⊂ V (G) of pairwise non-adjacent vertices of G. Set
G′ = G \ NG[S] and G′′ = G \ S. Then

(i) �G′ = lk�G
(S) and (ii) �G′′ =

⋂
x∈S

dl�G
(x).

Proof. (i) “⊆”: let F ∈ �G′ . Since F ⊂ V (G) \ NG[S] we have F ∈ �G

and F ∩ S = ∅. It remains to show that F ∪ S ∈ �G. Let F ∪ S contain an
edge xixj ∈ E(G). Then it should be xi ∈ S and xj ∈ F . In particular, since
xi and xj are adjacent it follows that xj ∈ NG[S]. This is impossible because
F ⊂ V (G) \ NG[S]. Therefore F ∪ S ∈ �G. This implies that F ∈ lk�G

(S).
“⊇”: let F ∈ lk�G

(S). Then F ∪ S ∈ �G and F ∩ S = ∅. In order to prove
that F ∈ �G′ it suffices to show that F ∩NG(S) = ∅ and no two vertices of F

are adjacent in G′. If x ∈ F ∩ NG(S) then S ∪ {x} contains an edge of G and
this contradicts F ∪ S ∈ �G. Also, if xi, xj ∈ F and xixj ∈ G′ then xixj ∈ G,
which is again a contradiction.

(ii) “⊆”: let F ∈ �G′′ . If for xi, xj ∈ F , xixj is an edge of G, since
{xi, xj } ∩ S = ∅ we obtain that xixj ∈ G′′, which is not true. Hence F ∈ �G.
In particular, it follows from F ⊂ V (G) \ S that F ∩ S = ∅ and so F ∈⋂

x∈S dl�G
(x).
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“⊇”: let F ∈ ⋂
x∈S dl�G

(x). Then for all x ∈ S we have F ∈ dl�G
(x). Thus

F ∈ �G and F ∩ S = ∅. Since F contains no edge of G it follows that F

contains no edge of G′′, either. This implies that F ∈ �G′′ .

Combining Theorem 2.6 with Lemma 4.4 we obtain the following corollary
as an extension of Theorem 2.6 of [20].

Corollary 4.5. Let S ⊂ V (G) be a set of pairwise non-adjacent vertices.
If G is k-shellable, then G′ = G \ NG[S] is k-shellable, too.

Theorem 4.6. If S is a k-simplicial set of G such that both G \ S and
G \ NG[S] are k-shellable, then G is k-shellable.

Proof. Let G′ = G \ NG[S] and G′′ = G \ S. Let F1, . . . , Fr and
Hr+1, . . . , Hs be, respectively, the k-shelling orders of �G′′ and �G′ . Set
Fi = Hi ∪ S, for r + 1 ≤ i ≤ s. We show that F1, . . . , Fs is a k-shelling
order of �G.

Note that �G′′ = dl�G
(S). This follows from the fact that S is a k-simplicial

set. Hence F1, . . . , Fs contains all of facets of �G. Now let 1 ≤ j < i ≤ s.
If i ≤ r or j > r , by k-shellability of �G′ and �G′′ , we are done. So suppose
that i > r and j ≤ r . Clearly, S ⊆ Fi \ Fj . On the other hand, �G′ ⊂ �G′′

and so there exists � ≤ r such that Hi ⊂ F�. This implies that S = Fi \F� and
therefore the assertion is completed.

The following theorem extends Theorem 2.1.13 of [6].

Theorem 4.7. Let S1 be a k-simplicial set of G and let S1, . . . , Sr be the
parts of GNG[S1] and G′

i = G \ NG[Si] for all i = 1, . . . , r . Then G is k-
shellable if and only if G′

i is k-shellable for all i = 1, . . . , r .

Proof. Only if part follows from Theorem 4.5. Conversely, let G′
i be k-

shellable for all i = 1, . . . , r . Hence for every i, there exists a k-shelling order
Fi1, . . . , Fiti for �G′

i
= lk�G

(Si). We claim that

F11 ∪ S1, . . . , F1t1 ∪ S1, . . . , Fr1 ∪ Sr, . . . , Frtr ∪ Sr

is a k-shelling order for �G.
We first show that the above list is the complete list of facets of �G. Let

F ∈ �G. If for some i = 1, Si ⊂ F then F is in the above list. Otherwise,
suppose that for all i = 1, Si ∩ F = ∅. Since the elements of S1 are only
adjacent to the elements of Si’s, for i = 1, it follows that S1 ⊂ F . On the other
hand, it is not possible that F contains only some of elements of a part, as Si ,
but not all of elements of Si . Because in this case, there are xj ∈ Si ∩ F and
xj ′ ∈ Si \ F . This means that NG(xj ) ∩ F = ∅ but NG(xj ′) ∩ F = ∅ and so
NG(xj ) = NG(xj ′), a contradiction.
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Now consider Fij ∪ Si and F�m ∪ S�. We have the following cases:
(i) i < �: then S� ⊂ (F�m∪S�)\(Fij ∪Si). Since F�m∪S1 is an independence

set in G, there exists a facet F ∈ �G with F�m ∪ S1 ⊂ F . In particular, F is in
the form F = F1p ∪S1 for some 1 ≤ p ≤ t1. Thus (F�m∪S�)\(F1p ∪S1) = S�.

(ii) i = � and j < m: the assertion follows from k-shellability of �G′
i
.

Therefore G is k-shellable.

Lemma 4.8. Let S, T ⊂ V (G) and let T be an independent set of G.
If NG[T ] ⊆ NG[S] then independent sets of G \ NG[S] are not maximal
independent sets of G \ S.

Proof. If F is an independent set of G \NG[S] then F ∪T will be a larger
independent set of G \ S.

Corollary 4.9. Let S be a k-simplicial set of G and let S1, . . . , Sr be the
parts of GNG[S]. Then for every Si , independent sets of G \ NG[Si] are not
maximal independent sets of G \ Si .

Proof. Since NG[S] ⊆ NG[Si] for all i, the assertion follows from Lem-
ma 4.8.

In [4, Theorem 2] the authors proved that if x is a simplicial vertex of G

and y adjacent to x, then G is shellable if and only if G \ NG[y] and G \ y are
shellable. The following theorem extends this result to k-shellable graphs.

Theorem 4.10. Let S1 be a k-simplicial set of G and let S1, . . . , Sr be the
parts of GNG[S1]. Then G is k-shellable if and only if for each i = 2, . . . , r the
graphs G′

i = G \ NG[Si] and G′′
i = G \ Si are k-shellable.

Proof. “Only if part”: let G be k-shellable. It follows from Theorem 4.7
that G′

i is k-shellable for all i. Fix an integer i. We want to show that G′′
i is

k-shellable. By again relabeling Si’s we can consider i = r .
Since each G′

i is k-shellable, so for every i, there exists a k-shelling order
Fi1, . . . , Fiti for �G′

i
= lk�G

(Si). Moreover, by the proof of Theorem 4.7,

F11 ∪ S1, . . . , F1t1 ∪ S1, . . . , Fr1 ∪ Sr, . . . , Frtr ∪ Sr

is a k-shelling order for �G. By the fact that NG(S1) ⊆ NG(Sr) we conclude
that for every Frj where 1 ≤ j ≤ tr , there exists 1 ≤ � ≤ t1 such that
Frj ⊆ F1�. Therefore

F11 ∪ S1, . . . , F1t1 ∪ S1, . . . , Fr−1 1 ∪ Sr−1, . . . , Fr−1 tr−1 ∪ Sr−1

will be a list of facets of G \ Sr . Furthermore, it is a k-shelling order of G′′
r .



k-SHELLABLE SIMPLICIAL COMPLEXES AND GRAPHS 177

“If part”: let for all i = 2, . . . , r the graphs G′
i and G′′

i are k-shellable. Fix
an i and set G′ = G′

i , G
′′ = G′′

i , S = Si . Let F1, . . . , Fr and H1, . . . , Hs be,
respectively, the k-shelling orders of �G′′ and �G′ . We first show that

F1, . . . , Fr , H1 ∪ S, . . . , Hs ∪ S

is a list of facets of �G, and furthermore, this list is a k-shelling order of �G.
Let F be a facet of �G. If F ∩ S = ∅, then since F contains no edge of G,

it contains no edge of G′′ and so F ∈ �G′′ . Suppose F ∩S = ∅. Let x ∈ F ∩S

and let y ∈ S with y = x. Since NG(y) = NG(x), we have y ∈ F . Thus
S ⊂ F . On the other F contains no edge of G′. Therefore F \ S is a facet of
�G′ .

Now we show that above list is a k-shelling order. Set Fi+r = Hi ∪ S for
all i = 1, . . . , s. Suppose Fi and Fj with i < j . If j ≤ r or i ≥ r + 1 then by
the k-shellability of �G′′ and �G′ , respectively, the assertion is completed. Let
i ≤ r and r < j . Then S ⊂ Fj \ Fi . Since Hj−r ∈ �G′′ , there is F� with � ≤ r

such that Hj−r ⊂ F�. Therefore Fj \ F� = S. This completes the assertion.
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