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THE BOUNDED APPROXIMATION PROPERTY
OF VARIABLE LEBESGUE SPACES

AND NUCLEARITY

JULIO DELGADO and MICHAEL RUZHANSKY

Abstract
In this paper we prove the bounded approximation property for variable exponent Lebesgue
spaces, study the concept of nuclearity on such spaces and apply it to trace formulae such as the
Grothendieck-Lidskii formula. We apply the obtained results to derive criteria for nuclearity and
trace formulae for periodic operators on Rn in terms of global symbols.

1. Introduction

The approximation property on a Banach space arises in the study of the
concept of trace and was first introduced in its current shape by Grothen-
dieck in his monumental work [17]. A particular importance for a Banach
space enjoying this property is that the trace can be defined and consequently
the Fredholm’s determinant leading to numerous further developments. In-
deed, this problematic finds itself closely related to a wide range of analysis
areas: operator theory, spectral analysis, harmonic analysis, functional ana-
lysis, PDEs.

In [14], Enflo constructed a counterexample to the approximation prop-
erty in Banach spaces. A more natural counterexample was then found by
Szankowski [47] who proved that B(H) does not have the approximation
property. More recently these properties have been intensively investigated by
Figiel, Johnson, Pelczyński and Szankowski in [16], [21]. Alberti, Csörnyei,
Pelczyński and Preiss [1] established the bounded approximation property
(BAP) for functions of bounded variations, and Roginskaya and Wojciechow-
ski [37] for Sobolev spaces W 1,1. The authors have recently established the
metric approximation property for mixed-norm Lp, modulation and Wiener
amalgam spaces in [10], see also [11]. Other works on the bounded approxim-
ation property can be found in [24], [25]. A weak approximation property has
been introduced and investigated in [26]. The fact that the approximation prop-
erty does not imply the bounded approximation property was proved in [15].
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For a historical perspective and an introduction to the subject the reader can be
referred to Pietsch’s book [34, Section 5.7.4] and the recent revisited present-
ation on the Grothendieck’s classical work by Diestel, Fourie and Swart [13].
The monograph [42] contains a more accessible introduction to the topic as
well as several examples of spaces enjoying approximation properties. An in-
troductory survey to the concept of trace on Banach spaces appeared in [36]
by Robert.

To formulate the notions more precisely, let B1, B2 be Banach spaces. A
linear operator T from B1 to B2 is called nuclear if there exist sequences
(x ′

n) in B ′
1 and (yn) in B2 such that

T x =
∞∑

n=1

〈x, x ′
n〉yn and

∞∑
n=1

‖x ′
n‖B ′

1
‖yn‖B2 < ∞.

This definition agrees with the concept of a trace class operator in the setting
of Hilbert spaces. The set of nuclear operators from B1 into B2 forms the ideal
of nuclear operators N (B1, B2) endowed with the norm

N(T ) = inf

{ ∞∑
n=1

‖x ′
n‖B ′

1
‖yn‖B2 : T =

∞∑
n=1

x ′
n ⊗ yn

}
.

If B = B1 = B2, it is natural to attempt to define the trace of T ∈ N (B) by

Tr(T ) :=
∞∑

n=1

x ′
n(yn), (1.1)

where T = ∑∞
n=1 x ′

n ⊗ yn is a representation of T . Grothendieck [17] proved
that the trace Tr(T ) is well defined for all nuclear operators T ∈ N (B) if
and only if the Banach space B has the approximation property (see also
Pietsch [33] or Defant and Floret [4]), which means that for every compact set
K in B and for every ε > 0 there exists F ∈ F (B) such that

‖x − Fx‖ < ε for all x ∈ K,

where we have denoted by F (B) the space of all finite rank bounded linear
operators on B. We denote by L (B) the Banach algebra of bounded linear
operators on B.

There are more related approximation properties, e.g. if in the definition
above the operator F satisfies ‖F‖ ≤ M , for a fixed M > 0, one says that B

possesses the bounded approximation property. In the case M = 1, one says
that B has the metric approximation property. The fact that the classical spaces
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C(X), where X is a compact topological space, and Lp(μ), for 1 ≤ p < ∞,
satisfy the metric approximation property can be found in [32].

As we know from Lidskii [23], in Hilbert spaces the operator trace is equal
to the sum of the eigenvalues of the operator counted with multiplicities.
This property is nowadays called the Lidskii formula. An important feature
on Banach spaces even endowed with the approximation property is that the
Lidskii formula does not hold in general for nuclear operators. Thus, in the
setting of Banach spaces, Grothendieck [17] introduced a more restricted class
of operators where the Lidskii formula holds, this fact motivating the following
definition.

Let B1, B2 be Banach spaces and let 0 < r ≤ 1. A linear operator T

from B1 into B2 is called r-nuclear if there exist sequences (x ′
n) in B ′

1 and
(yn) in B2 so that

T x =
∞∑

n=1

〈x, x ′
n〉yn and

∞∑
n=1

‖x ′
n‖r

B ′
1
‖yn‖r

B2
< ∞. (1.2)

We associate a quasi-norm nr(T ) by

nr(T )r := inf

{ ∞∑
n=1

‖x ′
n‖r

B ′
1
‖yn‖r

B2

}
,

where the infimum is taken over the representations of T as in (1.2). When
r = 1, the 1-nuclear operators agree with the nuclear operators, and as already
mentioned, in that case this definition also agrees with the concept of trace class
operators in the setting of Hilbert spaces (B1 = B2 = H ). More generally,
Oloff proved in [30] that the class of r-nuclear operators coincides with the
Schatten class Sr(H) when B1 = B2 = H is a Hilbert space and 0 < r ≤ 1.
Moreover, Oloff proved that

‖T ‖Sr
= nr(T ),

where ‖ · ‖Sr
denotes the classical Schatten quasi-norms in terms of singular

values.
In [17], Grothendieck proved that if T is 2

3 -nuclear from B into B for a
Banach space B, then

Tr(T ) =
∞∑

j=1

λj ,

where λj (j = 1, 2, . . .) are the eigenvalues of T with multiplicities taken into
account, and Tr(T ) is as in (1.1). Grothendieck also established applications of
this to the distribution of eigenvalues of operators in Banach spaces. We refer
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to [6] for several conclusions in the setting of compact Lie groups concerning
summability and distribution of eigenvalues of operators on Lp-spaces once
we have information on their r-nuclearity. See also [9] for applications of
the notion of nuclearity to boundary value problems. Kernel conditions on
compact manifolds have been investigated in [7], [5].

On the other hand, the variable exponent Lebesgue spaces are a general-
isation of the classical Lebesgue spaces, replacing the constant exponent p by
a variable exponent function p(x). Variable exponent Lebesgue spaces were
introduced by Orlicz [31] in 1931 and some properties were further developed
by Nakano in the 1950s, [28] and [29], within the more general framework of
modular spaces. Subsequently developments of modular spaces were carried
out in the 1970s and 1980s by Hudzik, Musielak, Portnov [18], [19], [20],
[27], [35].

A more specific study of variable Lebesgue spaces only appears in 1961 with
the work of Tsenov [48] who independently discovered those spaces and later
in the works of Sharapudinov [43], [44], [45], [46] and Zhikov [49], [50], [51].
Further, the development of the analysis of many problems on those spaces
has been of great interest in the last decades as has been exhibited in the recent
book [12], [2], [3] and the literature therein.

We now briefly recall the definition of variable exponent Lebesgue spaces
and we refer the reader to [12] and [2] for the basic properties of such spaces.
Let (�, M, μ) be a σ -finite, complete measure space. We define P(�, μ) to
be the set of all μ-measurable functions p: � → [1, ∞]. The functions in
P(�, μ) are called variable exponents on �. We define

p+ = p+
� := ess sup

x∈�

p(x), p− = p−
� := ess inf

x∈�
p(x).

If p+ < ∞, then p is called a bounded variable exponent. If f : � → R is a
measurable function we define the modular associated with p = p( · ) by

ρp(·)(f ) :=
∫

�

|f (x)|p(x) dμ(x),

and
‖f ‖Lp(·)(μ) := inf{λ > 0 : ρp(·)(f/λ) ≤ 1}.

The resulting spaces Lp(·)(μ) of measurable functions such that ‖f ‖Lp(·)(μ) <

∞ are Banach spaces and enjoy many properties similar to the classical Le-
besgue Lp spaces. For example, we will often make use of the following
modification of Hölder inequality which becomes affected by a factor 2: let
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p, q, s ∈ P(�, μ) be such that

1

s(x)
= 1

p(x)
+ 1

q(x)

holds for μ-almost every x ∈ �. Then we have

‖fg‖Ls(·)(μ) ≤ 2 ‖f ‖Lp(·)(μ)‖g‖Lq(·)(μ). (1.3)

We refer to [12, Lemma 3.2.20] for a more detailed statement.
At the same time, there are some exceptions and differences to the classical

theory, for instance the Young inequality fails in the variable exponent case, a
fact proved in 1991 by Kováčik and Rákosník (cf. [22]) and essentially due to
the loss of boundedness of translation operators on Lp(·) spaces (see also [2,
Theorem 5.19]). If the variable exponent p( · ) is bounded, the space Lp(·)(μ)

is separable and if we denote by p′( · ) the variable exponent defined pointwise
by

1

p(x)
+ 1

p′(x)
= 1,

then (Lp(·)(μ))′ = Lp′(·)(μ), where the identity refers to the associate space
and not necessarily to the isometric dual space. Moreover, if 1 < p− ≤ p+ <

∞, the space Lp(·)(μ) is reflexive. For the study of the approximation property
we will restrict to consider bounded variable exponents due to the density of
the simple functions in Lp(·) in that case.

In this work we are going to establish the bounded approximation property
for variable exponent Lebesgue spaces, study the concept of nuclearity on such
spaces and apply it to trace formulae such as the Grothendieck-Lidskii formula
and the analysis of pseudo-differential operators on the torus.

2. The bounded approximation property for variable exponent
Lebesgue spaces

In this section we will prove that the variable exponent spaces Lp(·)(μ) satisfy
the bounded approximation property.

Throughout this section we will assume that our measure space (�, M, μ) is
σ -finite and complete. We will also assume that the exponent p( · ) is bounded
since only in such cases are the simple functions dense in Lp(·)(μ) (cf. [12,
Corollary 3.4.10]).

We shall now formulate some preparatory lemmata useful for the proof
of the bounded approximation property. Let I be a countable set of indices
endowed with the counting measure ν. For p ∈ P(I, ν), we will denote by
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�p(·)(I ) or simply by �p(·) the corresponding variable exponent Lebesgue space
whose norm is given by

‖h‖�p(·) = inf

{
λ > 0 :

∑
k∈I

∣∣∣∣hk

λ

∣∣∣∣pk

≤ 1

}
.

Given a Banach space B and u ∈ B, z ∈ B ′, we will also denote by 〈u, z〉B,B ′ ,
or simply by 〈u, z〉, the valuation z(u).

Lemma 2.1. Let B be a Banach space and q ∈ P(I, ν). Let (ui)i∈I , (vi)i∈I

be sequences in B ′, B, respectively, such that

‖〈x, ui〉‖�q(·) , ‖〈vi, z〉‖�q′(·) ≤ 1, for ‖x‖B , ‖z‖B ′ ≤ 1.

Then the operator T = ∑
i∈I ui ⊗ vi from B into B is well defined, bounded

and satisfies ‖T ‖L (B) ≤ 2.

Proof. Let N ⊂ I be a finite subset of I . Let us write TN := ∑
i∈N ui ⊗ vi .

It is clear that TN is well defined. Moreover TN is a bounded finite rank operator.
Now, since TNx = ∑

i∈N 〈x, ui〉vi , we observe that for x ∈ B, z ∈ B ′ such that
‖x‖B , ‖z‖B ′ ≤ 1, applying the Hölder inequality (1.3) for variable exponent
spaces we obtain

|〈TNx, z〉| ≤
∑
i∈N

|〈x, ui〉||〈vi, z〉| ≤ 2‖〈x, ui〉‖�q(·)‖〈vi, z〉‖�q′(·) ≤ 2.

Therefore T = limN TN exists in L (B) and ‖T ‖L (B) ≤ 2.

Lemma 2.2. Let B1, B2 be Banach spaces and (Li)i a net contained in
L (B1, B2) such that for every x ∈ B1, limi Lix = Lx for some Lx ∈ B2.
Then L ∈ L (B1, B2), ‖Li‖L (B1,B2) ≤ M for some M > 0 and Li converge
to L in the topology of uniform convergence on compact sets.

Proof. The fact that ‖Li‖L (B1,B2) ≤ M and L ∈ L (B1, B2) follows from
the uniform boundedness principle. For the rest, let K ⊂ B1 be compact,
ε > 0 and M ≥ 1 such that ‖Li‖L (B1,B2) ≤ M . Let {x1, . . . , xn} ⊂ K be
such that K ⊂ ⋃n

j=1 B(xj , ε/(3M)). If i is large enough we have ‖Lxj −
Lixj‖B2 < ε/(3M) for all 1 ≤ j ≤ n. Let x ∈ K and we pick j0 such that
‖x − xj0‖B1 < ε/(3M). Then

‖Lx −Lix‖B2 ≤ ‖Lx −Lxj0‖B2 +‖Lxj0 −Lixj0‖B2 +‖Lixj0 −Lix‖B2 < ε.

Therefore Li converge to L uniformly on compact sets.

As a consequence we obtain:

Corollary 2.3. Let B be a Banach space. If there is a net (Li)i contained
in F (B) such that supi ‖Li‖ ≤ M < ∞ and limi Lix = x for every x ∈ B,
then B has the bounded approximation property with constant M .
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We can now prove the main result of this section:

Theorem 2.4. Let p ∈ P(�, μ) be a bounded variable exponent. Then, the
variable exponent Lebesgue space Lp(·)(μ) has the bounded approximation
property.

Since the Hölder inequality (1.3) in variable Lebesgue spaces Lp(·) holds
with constant 2, we obtain the bounded approximation property in this setting,
rather than the metric approximation property valid for the usual Lp-spaces.

However, the bounded approximation property implies the metric approx-
imation property if the space is reflexive. In our case, this happens if � ⊂ Rn

is open and 1 < p−, p+ < ∞ (cf. [12]), in which case Lp(·)(�) has the metric
approximation property. This gives a small change to Theorem 3.1 in [11],
with the rest of [11] unchanged.

Proof of Theorem 2.4. We first consider the case when p ∈ P(�, μ) is
a simple function and we write

p(x) =
�∑

j=1

pj 1�j
(x),

where pj > 0, the sets �j are disjoint of finite measure and 1�j
denotes the

characteristic function of the set �j .
Let � = {�1, . . . , ��} be a finite family of disjoint measurable sets of finite

positive measure. We denote by P the collection of such families. To a � ∈ P
we associate a finite rank operator L� from Lp(·) into Lp(·) defined by

L�f :=
�∑

k=1

μ(�k)
−1〈f, 1�k

〉Lp(·),Lp′(·)1�k
. (2.1)

We observe that L�f is well defined since 0 < μ(�k) < ∞ for 1 ≤ k ≤ �

and the duality 〈 · , · 〉Lp(·),Lp′(·) is well defined by using the Hölder inequality
for variable exponent spaces, see (1.3).

In the collection P we define the partial order �1 ≤ �2 if any set in �1 is
the union of sets in �2. We also say that �2 is finer than �1 if �1 ≤ �2. This
order begets a directed set.

Let �1 be the family of sets associated to the exponent p( · ). By choosing a
finer � we can rewrite the operator L� given by (2.1) in different ways which
will be useful later on: we define

uk := 1�k

μ(�k)
1/p′

k

, vk := 1�k

μ(�k)1/pk
,
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so that we can write

L� =
�∑

k=1

1�k

μ(�k)
1/p′

k

⊗ 1�k

μ(�k)1/pk

=
�∑

k=1

uk ⊗ vk

=
�∑

k=1

1

μ(�k)
(1�k

⊗ 1�k
).

We will prove that ‖L�‖L (Lp(·)) ≤ 2 by applying Lemma 2.1 in the case
B = Lp(·), to the finite families uk, vk and q = p(k) = pk . Let f ∈ Lp(·),
g ∈ Lp′(·) be such that ‖f ‖Lp(·) , ‖g‖Lp′(·) ≤ 1. Then we have to show that

‖〈f, uk〉‖�p(·) ≤ 1 and ‖〈vk, g〉‖�p′(·) ≤ 1.

In order to prove the corresponding property for f ∈ Lp(·), it is enough to
consider a simple function f ∈ Lp(·) such that ‖f ‖Lp(·) ≤ 1. The general case
follows then by a standard density argument. By redefining partitions, we can
assume that f can be written in the form

f (x) =
�∑

k=1

βk1�k
(x).

Now, for λ > 0 we have

ρp(·)(f/λ) =
∫

�

∣∣∣∣f (x)

λ

∣∣∣∣p(x)

dx =
�∑

k=1

∫
�k

∣∣∣∣βk

λ

∣∣∣∣pk

dx =
�∑

k=1

∣∣∣∣βk

λ

∣∣∣∣pk

μ(�k).

We also observe that

〈f, uk〉 = βk

μ(�k)

μ(�k)
1/p′

k

= βkμ(�k)
1/pk .

Hence

‖〈f, uk〉‖�p(·) = inf

{
λ > 0 :

�∑
k=1

∣∣∣∣βk

λ

∣∣∣∣pk

μ(�k) ≤ 1

}

= inf
{
λ > 0 : ρp(·)(f/λ) ≤ 1

}
= ‖f ‖Lp(·) ≤ 1.

We have shown that ‖〈f, uk〉‖�p(·) ≤ 1, the proof of ‖〈vk, g〉‖�p′(·) ≤ 1 is similar
and we omit it. Hence ‖L�‖L (Lp(·)) ≤ 2.
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We now consider the net of finite rank operators (L�)�≥�1 and prove that

lim
�

L�f = f

for every f ∈ Lp(·). It is enough to see this for f simple by the density of
simple functions in Lp(·) (cf. [12, Corollary 3.4.10]). Indeed, let us write f in
the form

f (x) :=
s∑

m=1

αm1�̃m
(x).

If we chose � finer than Q1 = {�̃m : 1 ≤ m ≤ s}, then L�f = f . Indeed,
since the sets �k are disjoint we have

L(1�j
) =

�∑
k=1

1

μ(�k)
(1�k

⊗ 1�k
)(1�j

)

=
�∑

k=1

1

μ(�k)
〈1�j

, 1�k
〉Lp′(·),Lp(·) (1�k

)

= 1

μ(�j)
〈1�j

, 1�j
〉Lp′(·),Lp(·) (1�j

)

= 1�j
.

Therefore, L�f = f for � ≥ Q1 and thus lim� L�f = f in Lp(·). We have
actually proved that Lp(·) satisfies the bounded approximation property by an
application of Corollary 2.3.

By an additional argument we will obtain the desired property in the gen-
eral case. We now consider a variable exponent p( · ) such that p+ < ∞.
Then, there exists an increasing sequence of simple functions pj ( · ) such that
limj pj ( · ) = p( · ) a.e. For each j we associate to a �j ∈ P an operator L�j

as in (2.1) which due to its form is also defined from Lp(·)(μ) into Lp(·)(μ).
The fact that limj L�j f = f in Lp(·) follows as in the previous case. We claim
that ‖L�j ‖L (Lp(·)) ≤ 2 which by an application of Corollary 2.3 with M = 2
will conclude the proof. Indeed, if f is a simple function such that ‖f ‖Lp(·) ≤ 1
and �1 is its corresponding family in P, we observe that by choosing �j ≥ �1

we obtain L�j f = f .

3. Nuclearity on variable exponent Lebesgue spaces

In this section we establish some basic properties for the kernels of nuclear
operators on Lp(·) spaces. We also prove a characterisation of nuclear operators
on Lp(·).
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We start by proving a lemma giving basic properties of a kernel correspond-
ing to a nuclear operator on Lp(·) spaces when μ is a finite measure. In the
rest of this section we shall consider two variable exponents p( · ) ∈ P(�, μ),
q( · ) ∈ P(�, ν) and the variable exponent conjugate p′( · ) of p( · ) such that

1

p( · ) + 1

p′( · ) = 1.

Lemma 3.1. Let (�, M, μ) and (�, M ′, ν) be two finite and complete meas-
ure spaces. Let f ∈ Lp(·)(μ) and (gn)n, (hn)n be sequences in Lq(·)(ν) and
Lp′(·)(μ), respectively, such that

∑∞
n=1 ‖gn‖Lq(·)‖hn‖Lp′(·) < ∞. Then

(a) the series
∑∞

j=1 gj (x)hj (y) converges absolutely for a.e. (x, y) and,
consequently, limn

∑n
j=1 gj (x)hj (y) is finite, for a.e. (x, y),

(b) for k(x, y) := ∑∞
j=1 gj (x)hj (y), we have k ∈ L1(ν ⊗ μ),

(c) if kn(x, y) = ∑n
j=1 gj (x)hj (y), then ‖kn − k‖L1(ν⊗μ) → 0,

(d) limn

∫
�

(∑n
j=1 gj (x)hj (y)

)
f (y) dμ(y)

= ∫
�

(∑∞
j=1 gj (x)hj (y)

)
f (y) dμ(y), for a.e. x.

Proof. We first write k̃n(x, y) := ∑n
j=1 gj (x)hj (y)f (y) and note that since

ν is finite then ‖1‖Lq′(·)(ν) < ∞. Indeed,
∫
�

|1/λ|q ′(x) dν(x) = ν(�) < ∞, for
λ = 1. Now, by applying the Hölder inequality (1.3) which is affected by the
factor 2 in the setting of variable exponents we obtain∫

�

∫
�

|k̃n(x, y)| dν(x) dμ(y)

≤
∫

�

∫
�

n∑
j=1

|gj (x)hj (y)f (y)| dν(x) dμ(y)

≤
n∑

j=1

∫
�

|gj (x)|dν(x)

∫
�

|hj (y)||f (y)| dμ(y)

≤ 2‖1‖Lq′(·)(ν)‖f ‖Lp(·)(μ)

n∑
j=1

‖gj‖Lq(·)(ν)‖hj‖Lp′(·)(μ)

≤ M < ∞, for all n.

Hence ‖k̃n‖L1(ν⊗μ) ≤ M , for all n. We now consider a sequence (sn) defined
by

sn(x, y) :=
n∑

j=1

|gj (x)hj (y)f (y)|,
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which is increasing in L1(ν ⊗ μ) and satisfies

sup
n

∫∫
|sn(x, y)| dμ(x) dμ(y) ≤ M < ∞.

By an application of the monotone convergence theorem, the limit

s(x, y) = lim
n

sn(x, y)

exists for a.e. (x, y) and s ∈ L1(ν ⊗ μ). Moreover, since f = 1 ∈ Lp(·)(μ)

and the fact that |k(x, y)| ≤ s(x, y) we deduce (a) and (b).
The part (c) can be deduced by using the Lebesgue dominated convergence

theorem applied to the sequence (k̃n) dominated by s(x, y), and setting f ≡ 1,
in which case k̃n = kn.

For part (d) we observe that with k̃n(x, y) = ∑n
j=1 gj (x)hj (y)f (y), we have

|k̃n(x, y)| ≤ s(x, y) for all n and every (x, y). From the fact that s ∈ L1(ν⊗μ),
we obtain that s(x, · ) ∈ L1(μ) for a.e. x. Then (d) is obtained from the
Lebesgue dominated convergence theorem.

Remark 3.2. We observe that the condition of finiteness of the measures in
the lemma above is crucial to obtain k = k(x, y) ∈ L1(ν ⊗ μ). For instance,
let � = � = Rn, μ = ν be the Lebesgue measure and p = p( · ), q = q( · )
constant exponents such that 1 ≤ p, q < ∞. By using the fact that p′ > 1, we
define k(x, y) := g(x)h(y), with g ∈ Lq(μ) \ {0}, h ∈ Lp′

(μ) \ L1(μ). Then∫
Rn

∫
Rn

|k(x, y)| dμ(x) dμ(y) =
∫
Rn

|g(x)| dμ(x)

∫
Rn

|h(y)| dμ(y) = ∞.

We can now formulate a characterisation of r-nuclear operators on variable
exponent Lebesgue spaces for finite measure spaces.

Theorem 3.3. Let (�, M, μ) and (�, M ′, ν) be two complete and finite
measure spaces. Let 0 < r ≤ 1. Then T is r-nuclear operator from Lp(·)(μ)

into Lq(·)(ν) if and only if there exist a sequence (gn) in Lq(·)(ν) and a sequence
(hn) in Lp′(·)(μ), such that

∑∞
n=1 ‖gn‖r

Lq(·)(ν)
‖hn‖r

Lp′(·)(μ)
< ∞ and such that,

for all f ∈ Lp(·)(μ), we have

Tf (x) =
∫

�

( ∞∑
n=1

gn(x)hn(y)

)
f (y) dμ(y), for a.e. x.

Proof. We will assume that r = 1. The case 0 < r < 1 follows by
inclusion. Let T be a nuclear operator from Lp(·)(μ) into Lq(·)(ν). Then there
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exist sequences (gn) in Lq(·)(ν), (hn) in Lp′(·)(μ) such that

∞∑
n=1

‖gn‖Lq(·)(ν)‖hn‖Lp′(·)(μ) < ∞

and
Tf =

∑
n

〈f, hn〉gn.

Now
Tf =

∑
n

〈f, hn〉gn =
∑

n

(∫
�

hn(y)f (y) dμ(y)

)
gn,

where the sums converge with respect to the Lq(·)(ν)-norm. There exist
(cf. [12], Lemma 3.2.10) two sub-sequences (g̃n) and (̃hn) of (gn) and (hn)

respectively such that

(Tf )(x) =
∑

n

〈f, h̃n〉g̃n(x) =
∑

n

(∫
�

h̃n(y)f (y) dμ(y)
)
g̃n(x),

for a.e. x. Now taking into account that the pair
(
(g̃n), (̃hn)

)
satisfies

∞∑
n=1

‖g̃n‖Lq(·)(ν)‖h̃n‖Lp′(·)(μ) < ∞,

and by applying Lemma 3.1(d), it follows that

∞∑
n=1

(∫
�

h̃n(y)f (y) dμ(y)
)
g̃n(x) = lim

n

n∑
j=1

(∫
�

h̃j (y)f (y) dμ(y)
)
g̃j (x)

= lim
n

∫
�

( n∑
j=1

g̃j (x)̃hj (y)f (y)
)

dμ(y)

=
∫

�

( ∞∑
n=1

g̃n(x)̃hn(y)
)
f (y) dμ(y),

for a.e. x. Conversely, let us assume that there exist sequences (gn)n in Lq(·)(ν),
and (hn)n in Lp′(·)(μ) such that

∑∞
n=1 ‖gn‖Lq(·)(ν)‖hn‖Lp′(·)(μ) < ∞, and for all

f ∈ Lp(·)(μ)

Tf (x) =
∫

�

( ∞∑
n=1

gn(x)hn(y)
)
f (y) dμ(y), for a.e. x.
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The Lemma 3.1(d) gives∫
�

( ∞∑
n=1

gn(x)hn(y)

)
f (y) dμ(y)

= lim
n

∫
�

( n∑
j=1

gj (x)hj (y)f (y)

)
dμ(y)

= lim
n

n∑
j=1

(∫
�

hj (y)f (y) dμ(y)

)
gj (x)

=
∑

n

(∫
�

hn(y)f (y) dμ(y)

)
gn(x)

=
∑

n

〈
f, hn

〉
gn(x) = (Tf )(x), for a.e. x.

To prove that Tf = ∑
n〈f, hn〉gn in Lq(·)(ν), we let sn := ∑n

j=1〈f, hj 〉gj ,
then (sn)n is a sequence in Lq(·)(ν) and

|sn(x)| ≤ ‖f ‖Lp(·)(μ)

n∑
j=1

‖hj‖Lp′(·)(μ)|gj (x)|

≤ ‖f ‖Lp(·)(μ)

∞∑
j=1

‖hj‖Lp′(·)(μ)|gj (x)| =: γ (x), for all n.

Moreover, γ is well defined and γ ∈ Lq(·)(ν) since it is the increasing limit
of the sequence (γn)n = (‖f ‖Lp(·)(μ)

∑n
j=1 ‖hj‖Lp′(·)(μ)|gj (x)|)

n
of Lq(·)(ν)

functions and

‖γn‖Lq(·)(ν) ≤ ‖f ‖Lp(·)

∞∑
j=1

‖hj‖Lp′(·)(μ)‖gj‖Lq(·)(ν) ≤ M < ∞.

By the monotone convergence theorem we see that γ ∈ Lq(·)(ν). Finally,
applying the Lebesgue dominated convergence theorem we deduce that sn →
Tf in Lq(·)(ν).

In the sequel we also establish a characterisation of r-nuclear operators for
σ -finite measures. In order to get an analogue of the finite measures setting we
first generalise Lemma 3.1.

Lemma 3.4. Let (�, M, μ) and (�, M ′, ν) be two σ -finite, complete meas-
ure spaces. Let f ∈ Lp(·)(μ) and (gn)n, (hn)n be sequences in Lq(·)(ν) and
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Lp′(·)(μ), respectively, such that
∑∞

n=1 ‖gn‖Lq(·)‖hn‖Lp′(·) < ∞. Then the parts
(a) and (d) of Lemma 3.1 hold.

Proof. (a) There exist two sequences (�k)k and (�j )j of disjoint measur-
able subsets of � and � respectively such that

⋃
k �k = �,

⋃
j �j = �, and,

for all j, k,
μ(�k), ν(�j ) < ∞.

We now consider the respective restricted measure spaces (�k, Mk, μk) and
(�j , M ′

j , νj ) that we obtain by restricting � to �k and � to �j , for every k, j ,
and restricting the functions gn to �j and hn to �k , for each n. Then, for all k, j ,

∞∑
n=1

‖gn‖Lq(·)(νj )‖hn‖Lp′(·)(μk)
< ∞.

By Lemma 3.1(a) it follows that
∑∞

j=1 gj (x)hj (y) converges absolutely for
a.e. (x, y) ∈ �j ×�k . Hence

∑∞
j=1 gj (x)hj (y) converges absolutely for almost

every (x, y) ∈ � × �. This proves part (a).
From part (a) the series

∑∞
j=1 gj (x)hj (y)f (y) converges absolutely for

a.e. (x, y) ∈ � × �. Part (d) now follows from the Lebesgue dominated con-
vergence theorem applied as in the “only if” part of the proof of Theorem 3.3.

We are now ready to give the main result of this section, the extension of
Theorem 3.3 to the setting of σ -finite measures.

Theorem 3.5. Let (�, M, μ) and (�, M ′, ν) be σ -finite complete measure
spaces. Let 0 < r ≤ 1. Then T is r-nuclear operator from Lp(·)(μ) into
Lq(·)(ν) if and only if there exist a sequence (gn) in Lq(·)(ν) and a sequence
(hn) in Lp′(·)(μ) such that

∑∞
n=1 ‖gn‖r

Lq(·)(ν)
‖hn‖r

Lp′(·)(μ)
< ∞ and such that,

for all f ∈ Lp(·)(μ), we have

Tf (x) =
∫

�

( ∞∑
n=1

gn(x)hn(y)
)
f (y) dμ(y), for a.e. x.

Moreover, if � = �, μ = ν, p( · ) = q( · ), p+ < ∞, and T is r-nuclear
in L (Lp(·)(μ)), then

Tr(T ) =
∞∑

n=1

〈gn, hn〉 =
∫

�

∞∑
n=1

gn(x)hn(x) dμ.

Proof. For the characterisation it is enough to consider the case r = 1.
But that characterisation now follows from the same lines of the proof of The-
orem 3.3 by replacing the references to part (d) of Lemma 3.1 by part (d)
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of Lemma 3.4. On the other hand, since p+ < ∞ the bounded approxima-
tion property holds and the trace is well defined. We observe that by defini-
tion (1.1) we can use the sequences gn, hn to calculate the trace, which gives
Tr(T ) = ∑∞

n=1〈gn, hn〉. Moreover, the kernel k(x, y) = ∑∞
n=1 gn(x)hn(y) is

well defined on the diagonal since for p( · ) = q( · ), we have

|k(x, x)| ≤
∫

�

∞∑
n=1

|gn(x)hn(x)| dμ

=
∞∑

n=1

∫
�

|gn(x)hn(x)| dμ

≤
∞∑

n=1

‖gn‖Lq(·)(ν)‖hn‖Lp′(·)(μ) < ∞.

Therefore, k(x, x) ∈ L1(μ), k(x, x) is finite for a.e. x and

∞∑
n=1

〈gn, hn〉 =
∫

�

∞∑
n=1

gn(x)hn(x) dμ,

completing the proof.

4. Nuclearity on Lp(·) of operators on the torus

In practice the application of the concept of nuclearity requires an underlying
discrete analysis. A source of problems where this situation arises in a natural
way is the analysis of operators on compact Lie groups, due to the discreteness
of the unitary dual. More generally, a discrete Fourier analysis can be associated
to a compact manifold as well as a notion of global symbol as developed
in [8], [7].

In this section we apply the concept of r-nuclearity on variable exponent
Lebesgue spaces to the study of periodic operators onRn which we can realise
as operators on the torus Tn, and we point out that all the results in this section
have suitable extensions to the setting of compact Lie groups. Recent results on
the nuclearity on Lebesgue spaces on compact Lie groups and Grothendieck-
Lidskii formulae have been obtained in [6]. The trace formulas that we establish
here are expressed in terms of global toroidal symbols. We first recall some
notation and definitions for the Fourier analysis on the torus and the toroidal
quantization. The toroidal quantization has been analysed extensively in [41]
and [39], [40], following the initial analysis in [38].

We denote the n-dimensional torus by Tn = Rn/Zn. Its unitary dual can
be described as T̂n � Zn, and the collection {ξk(x) = e2πix·k}k∈Zn is an or-
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thonormal basis of L2(Tn). We will use the notation 〈ξ〉 := 1 + |ξ |, where | · |
denotes the euclidean norm.

Definition 4.1. Let us denote by S (Zn) the space of rapidly decaying
functions φ:Zn → C. That is, ϕ ∈ S (Zn) if for any M > 0 there exists a
constant Cϕ,M such that

|ϕ(ξ)| ≤ Cϕ,M〈ξ〉−M

holds for all ξ ∈ Zn. The topology on S (Zn) is defined by the seminorms pk ,
where k ∈ N0 and pk(ϕ) = supξ∈Zn〈ξ〉k|ϕ(ξ)|.

In order to define the class of symbols that we will use, let us recall the
definition of the Fourier transform on the torus for a function f in C∞(Tn)

given by

(FTnf )(ξ) = f̂ (ξ) =
∫
Tn

e−2πix·ξ f (x) dx.

One can prove that
FTn : C∞(Tn) → S (Zn)

is a continuous bijection. The reconstruction formula of f in the form of a
discrete integral or sum over the dual group Zn is the Fourier series

f (x) =
∑
ξ∈Zn

e2πix·ξ (FTnf )(ξ).

A corresponding operator is associated to a symbol σ(x, ξ) which will
be called a periodic pseudo-differential operator or the operator given by the
toroidal quantization:

Tσf (x) =
∑
ξ∈Zn

e2πix·ξ σ (x, ξ)(FTnf )(ξ), (4.1)

which can also be written as

Tσf (x) =
∑
ξ∈Zn

∫
Tn

e2πi(x−y)·ξ σ (x, ξ)f (y) dy. (4.2)

We refer to [41] for an extensive analysis of such toroidal quantization.
In the rest of this section we will consider Tn endowed with the Borel σ -

algebra and the Lebesgue measure so that we will just write P(Tn) to denote
the corresponding class of variable exponents.
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Theorem 4.2. Let p( · ) ∈ P(Tn) and 0 < r ≤ 1. Let σ(x, ξ) be a symbol
such that ∑

ξ∈Zn

‖σ( · , ξ)‖r

Lp′(·) < ∞.

Then Tσ is r-nuclear from Lp(·) to Lq(·), for all q( · ) ∈ P(Tn). If p+ < ∞
and q( · ) = p( · ), then Tσ is r-nuclear on Lp(·)(Tn) and

Tr(Tσ ) =
∫
Tn

∑
ξ∈Zn

σ (x, ξ) dx. (4.3)

In particular, if additionally r ≤ 2/3, then

Tr(Tσ ) =
∫
Tn

∑
ξ∈Zn

σ (x, ξ) dx =
∞∑

j=1

λj , (4.4)

where λj , (j = 1, 2, . . .) are the eigenvalues of Tσ on Lp(·)(Tn) with multipli-
cities taken into account.

Proof. We observe that for a pseudo-differential operator Tσ of the form
(4.2) its kernel can be formally written in the form

k(x, y) =
∑
ξ∈Zn

e2πi(x−y)·ξ σ (x, ξ).

We write gξ (x) = e2πix·ξ σ (x, ξ), hξ (y) = e−2πiy·ξ . Now, ‖hξ ( · )‖Lq(·) =
‖1‖Lq(·) < ∞ since the measure is finite. Hence∑

ξ∈Zn

‖σ( · , ξ)‖r

Lp′(·)‖hξ ( · )‖r
Lq(·) = ‖hξ ( · )‖r

Lq(·)
∑
ξ∈Zn

‖σ( · , ξ)‖r

Lp′(·) < ∞,

for all q( · ) ∈ P(Tn). An application of Theorem 3.5 yields the r-nuclearity
of Tσ from Lp(·) to Lq(·) for all q( · ) ∈ P(Tn). The formula (4.3) for the trace
also follows from Theorem 3.5 since gξ (x)hξ (x) = σ(x, ξ). The formula (4.4)
follows from (4.3) and Grothendieck’s Theorem.

As an application, we will consider the composition of a multiplication
operator with a multiplier (an operator with symbol depending only on ξ ) on
the torus Tn. Given a measurable function α on Tn, we take the symbols α(x)

and σ(ξ). The corresponding multiplication is the operator denoted by αTσ

given by αTσf = ασ(D)f on Tn.



316 J. DELGADO AND M. RUZHANSKY

Corollary 4.3. Let p( · ) ∈ P(Tn). Let 0 < r ≤ 1, α ∈ Lp′(·), and let
σ(ξ) be a symbol such that ∑

ξ∈Zn

|σ(ξ)|r < ∞.

Then αTσ is r-nuclear from Lp(·) to Lq(·) for all q( · ) ∈ P(Tn). If p+ < ∞
and q( · ) = p( · ), then αTσ is r-nuclear on Lp(·)(Tn) and

Tr(αTσ ) =
∫
Tn

α(x) dx ·
∑
ξ∈Zn

σ (ξ).

If additionally r ≤ 2/3, then

Tr(αTσ ) =
∫
Tn

α(x) dx ·
∑
ξ∈Zn

σ (ξ) =
∞∑

j=1

λj ,

where λj (j = 1, 2, . . .) are the eigenvalues of αTσ with multiplicities taken
into account.

Proof. Note that ‖α( · )σ (ξ)‖r

Lp′(·) = ‖α‖r

Lp′(·) |σ(ξ)|r , hence∑
ξ∈Zn

‖α( · )σ (ξ)‖r

Lp′(·) = ‖α‖r

Lp′(·)
∑
ξ∈Zn

|σ(ξ)|r < ∞.

An application of Theorem 3.5 concludes the proof.

In particular, let us consider the symbol σ(ξ) = (1+4π2|ξ |2)−τ/2 for τ > 0.
The corresponding multiplication yields the operator αTσf = α(I −�)−τ/2f

on Tn. We observe that
∑

ξ∈Zn (1 + 4π2|ξ |2)−rτ/2 < ∞ if and only if rτ > n.
Consequently we obtain:

Corollary 4.4. Let p( · ) ∈ P(Tn). If 0 < r ≤ 1, α ∈ Lp′(·) and rτ > n,
then αTσ = α(I −�)− τ

2 is r-nuclear from Lp(·) to Lq(·), for all q( · ) ∈ P(Tn).
If additionally p+ < ∞ and q( · ) = p( · ), then α(I − �)− τ

2 is r-nuclear on
Lp(·)(Tn) and

Tr
(
α(I − �)−τ/2

) =
∫
Tn

α(x) dx ·
∑
ξ∈Zn

(1 + 4π2|ξ |2)−τ/2.

If additionally r ≤ 2/3, then

Tr
(
α(I − �)−τ/2

) =
∫
Tn

α(x) dx ·
∑
ξ∈Zn

(1 + 4π2|ξ |2)−τ/2 =
∞∑

j=1

λj ,
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where λj (j = 1, 2, . . .) are the eigenvalues of α(I −�)−τ/2 on Lp(·)(Tn) with
multiplicities taken into account.
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16. Figiel, T., Johnson, W. B., and Pełczyński, A., Some approximation properties of Banach
spaces and Banach lattices, Israel J. Math. 183 (2011), 199–231.



318 J. DELGADO AND M. RUZHANSKY

17. Grothendieck, A., Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math.
Soc., vol. 16, American Mathematical Society, 1955.

18. Hudzik, H., A generalization of Sobolev spaces. I, Funct. Approximatio Comment. Math. 2
(1976), 67–73.

19. Hudzik, H., A generalization of Sobolev spaces. II, Funct. Approximatio Comment. Math. 3
(1976), 77–85.

20. Hudzik, H., On generalized Orlicz-Sobolev space, Funct. Approximatio Comment. Math. 4
(1976), 37–51.

21. Johnson, W. B., and Szankowski, A., Hereditary approximation property, Ann. of Math. (2)
176 (2012), no. 3, 1987–2001.
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