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MAPPINGS PRESERVING APPROXIMATE
ORTHOGONALITY IN HILBERT

C∗-MODULES

MOHAMMAD SAL MOSLEHIAN and ALI ZAMANI

Abstract
We introduce a notion of approximate orthogonality preserving mappings between Hilbert C∗-
modules. We define the concept of (δ, ε)-orthogonality preserving mapping and give some suffi-
cient conditions for a linear mapping to be (δ, ε)-orthogonality preserving. In particular, if E is
a full Hilbert A -module with K(H ) ⊆ A ⊆ B(H ) and T , S: E → E are two linear mappings
satisfying |〈Sx, Sy〉| = ‖S‖2|〈x, y〉| for all x, y ∈ E and ‖T − S‖ ≤ θ‖S‖, then we show that T

is a (δ, ε)-orthogonality preserving mapping. We also prove whenever K(H ) ⊆ A ⊆ B(H ) and
T : E → F is a nonzero A -linear (δ, ε)-orthogonality preserving mapping between A -modules,
then

‖〈T x, T y〉 − ‖T ‖2〈x, y〉‖ ≤ 4(ε − δ)

(1 − δ)(1 + ε)
‖T x‖‖Ty‖ (x, y ∈ E ).

As a result, we present some characterizations of the orthogonality preserving mappings.

1. Introduction and preliminaries

An inner product module over a C∗-algebra A is a (right) A -module E

equipped with an A -valued inner product 〈 · , · 〉, which is C-linear and A -
linear in the second variable and has the properties 〈x, y〉∗ = 〈y, x〉 as well as
〈x, x〉 ≥ 0, with equality if and only if x = 0. An inner product A -module
E is called a Hilbert A -module if it is complete with respect to the norm
‖x‖ = ‖〈x, x〉‖1/2. An inner product A -module E has an “A -valued norm”
| · |, defined by |x| = 〈x, x〉1/2. A mapping T : E → F , where E and F are
inner product A -modules, is called A -linear if it is linear and T (xa) = (T x)a

for all x ∈ E , a ∈ A .
Inner product C∗-modules generalize inner product spaces by allowing in-

ner products to take values in an arbitrary C∗-algebra instead of the C∗-algebra
of complex numbers, but some fundamental properties of inner product spaces
are no longer valid in inner product C∗-modules. For example, not each closed
submodule of an inner product C∗-module is complemented. Therefore, when
we are working in inner product C∗-modules, it is always of some interest to
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find conditions to obtain results analogous to those for inner product spaces.
We refer the reader to [13] for more information on the basic theory of Hilbert
C∗-modules.

Let B(H ) be the C∗-algebra of all bounded operators acting on a com-
plex Hilbert space (H , ( · , · )) and let K(H ) denote the ideal of compact
operators. It is well known that the class of Hilbert K(H )-modules is a well-
behaved class of Hilbert C∗-modules and thatt they share many nice properties
with Hilbert spaces. For example, these structures have orthonormal bases and
all closed submodules of such modules are complemented. Many properties
of Hilbert C∗-modules over C∗-algebras of compact operators can be found
in [2].

Given two vectors η, ζ in a Hilbert space H , we shall denote by η ⊗ ζ ∈
K(H ) the one-rank operator defined by (η ⊗ ζ )(ξ) = (ξ, ζ )η. Obviously,
‖η⊗ζ‖ = ‖η‖‖ζ‖ and tr(η⊗ζ ) = (η, ζ ). Observe that η⊗η is the orthogonal
projection to the one dimensional subspace spanned by the unit vector η. If T

is an arbitrary bounded operator on H , then (η⊗η)T (η⊗η) = (T η, η)η⊗η.
This shows that η ⊗ η is a minimal projection. Recall that a projection (i.e., a
self-adjoint idempotent) e in a C∗-algebra A is called minimal if eAe = Ce.

Now let E be an inner product (respectively, Hilbert) A -module, where
K(H ) ⊆ A ⊆ B(H ). Let e = η ⊗ η for some unit vector η ∈ H , be any
minimal projection. Then Ee = {xe : x ∈ E } is a complex inner product
(respectively, Hilbert) space contained in E with respect to the inner product
(x, y) = tr(〈x, y〉), x, y ∈ Ee; see [2]. It is not hard to see that 〈x, y〉 = (x, y)e.
Note that if x ∈ Ee, then ‖x‖Ee

= ‖x‖E , where the norm ‖ · ‖Ee
comes from the

inner product ( · , · ). This enables us to apply Hilbert space theory by lifting
results from the Hilbert space Ee to the whole A -module E .

The orthogonality equation and the related orthogonality preserving prop-
erty play an important role in Hilbert C∗-modules, operator algebras, K-theory
and group representation theory; see [1], [3], [8], [11] and the references
therein.

Recall that vectorsη, ζ in an inner product space H are said to be orthogonal,
and write η ⊥ ζ , if (η, ζ ) = 0; for a given δ ≥ 0, they are approximately
orthogonal or δ-orthogonal, denoted by η ⊥δ ζ , if |(η, ζ )| ≤ δ‖η‖‖ζ‖. For
δ ≥ 1, it is clear that every pair of vectors are δ-orthogonal, so the interesting
case is when δ ∈ [0, 1).

A mapping T : H → K , where H and K are inner product spaces, is called
orthogonality preserving if η ⊥ ζ ⇒ T η ⊥ T ζ (η, ζ ∈ H ). It is known that
orthogonality preserving mappings may be nonlinear and discontinuous but
under the additional assumption of linearity, a mapping T is orthogonality
preserving if and only if it is a scalar multiple of an isometry, that is T = γU ,
where U is an isometry and γ ≥ 0; see [4]. It should be noticed that the same
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result is obtained in [20] by using a different approach. The orthogonality
preserving mappings have been considered also in [15].

Analogously, for δ, ε ∈ [0, 1), a mapping T : H → K is said to be ap-
proximately orthogonality preserving, or (δ, ε)-orthogonality preserving, if
η ⊥δ ζ ⇒ T η ⊥ε T ζ (η, ζ ∈ H ). Approximately orthogonality preserving
mappings have been recently intensively studied in connection with functional
analysis and operator theory; cf. [4], [6], [10], [16], [17], [19], [20].

An interesting question is whether a (δ, ε)-orthogonality preserving map-
ping T must be close to a linear orthogonality preserving mapping.

In the case where δ = 0, Chmieliński [4] and Turnšek [16] verified the prop-
erties of mappings that preserve approximate orthogonality in inner product
spaces. Also Kong and Cao [10] studied stability of approximate orthogonality
preserving mappings and the orthogonality equations. Approximate orthogon-
ality preserving mappings between inner product spaces have been recently
considered by Wójcik in [17].

Other approximate orthogonalities in general normed spaces along with the
corresponding approximately orthogonality preserving mappings have been
studied in [7], [14], [18]. Similar investigations have been carried out in Hilbert
spaces in [5], [6], [12].

It is natural to explore the orthogonality preserving mappings between inner
product C∗-modules. So, a mapping T : E → F , where E and F are inner
product A -modules, is called orthogonality preserving if x ⊥ y ⇒ T x ⊥ Ty

(x, y ∈ E ). Also, for δ, ε ∈ [0, 1), it is called approximately orthogonality
preserving, or (δ, ε)-orthogonality preserving, if

‖〈x, y〉‖ ≤ δ‖x‖‖y‖ �⇒ ‖〈T x, T y〉‖ ≤ ε‖T x‖‖Ty‖ (x, y ∈ E ).

The natural problems are to describe such a class of approximately orthogon-
ality preserving mappings and whether each (δ, ε)-orthogonality preserving
mapping has to be approximated by an orthogonality preserving mapping.
Ilišević and Turnšek [9] studied approximate orthogonality preserving map-
pings on A -modules with K(H ) ⊆ A ⊆ B(H ) in the case when δ = 0.
Orthogonality preserving mappings have been treated also by Frank et al. [8]
and Leung et al. [11].

In this paper, we study (δ, ε)-orthogonality preserving mappings between
Hilbert A -modules, which generalize some results from [4], [9], [10], [16],
[17]. In Section 2, some sufficient conditions for a linear mapping to be (δ, ε)-
orthogonality preserving are given. In particular, we show that if E is a full
Hilbert A -module with K(H ) ⊆ A ⊆ B(H ) and T , S: E → E are two
linear mappings such that |〈Sx, Sy〉| = ‖S‖2|〈x, y〉| for all x, y ∈ E and
‖T − S‖ ≤ θ‖S‖ with θ ∈ [0, 1), then T is a (δ, ε)-orthogonality preserving
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mapping, where ε = (θ2 + 2θ + δ)/(1 − θ)2.
In Section 3 we prove ifK(H ) ⊆ A ⊆ B(H ) and T : E → F is a nonzero

A -linear (δ, ε)-orthogonality preserving mapping between A -modules, then

∥∥〈T x, T y〉 − ‖T ‖2〈x, y〉∥∥ ≤ 4(ε − δ)

(1 − δ)(1 + ε)
‖T x‖‖Ty‖ (x, y ∈ E ).

As a result, we obtain some characterizations of the orthogonality preserving
mappings in inner product A -modules. Particularly, we show that a nonzero
A -linear mapping T is orthogonality preserving if and only if T is (ε, ε)-
orthogonality preserving. Our results improve some theorems due to
Chmieliński [4] and Wójcik [17].

2. The approximate orthogonality preserving property in
Hilbert C∗-modules

In this section, we give some sufficient conditions for a linear mapping to be
(δ, ε)-orthogonality preserving. Recall that the minimum modulus [T ] of a
linear map T is defined by [T ] := inf{‖T x‖ : ‖x‖ = 1}.

Proposition 2.1. Let θ ≥ 1, λ ∈ [0, 1/4) and 0 ≤ δ < (1 − 4λ)/θ4. Let
E and F be two inner product A -modules and let T , S: E → F be nonzero
linear mappings such that

(i) ‖T x − Sx‖ ≤ λ‖Sx‖ for all x ∈ E ,

(ii) 1
θ2 γ

2‖〈x, y〉‖ ≤ ‖〈Sx, Sy〉‖ ≤ θ2γ 2‖〈x, y〉‖ for all x, y ∈ E ,

with some γ ∈ [
[S], ‖S‖]. Then T is a (δ, ε)-orthogonality preserving map-

ping, where ε = (λ2 + 2λ + θ4δ)/(1 − λ)2.

Proof. It follows from (i) that

‖Sx‖ = ‖Sx−T x+T x‖ ≤ ‖Sx−T x‖+‖T x‖ ≤ λ‖Sx‖+‖T x‖ (x ∈ E ).

Hence

‖Sx‖ ≤ 1

1 − λ
‖T x‖ (x ∈ E ). (2.1)

Put y = x in (ii) to get ‖x‖ ≤ θ
γ
‖Sx‖, whence by (2.1),

‖x‖ ≤ θ

(1 − λ)γ
‖T x‖ (x ∈ E ). (2.2)
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Now, fix x, y ∈ E with x ⊥δ y. Hence ‖〈x, y〉‖ ≤ δ‖x‖‖y‖. By (i) and (ii),
we get

‖〈T x, T y〉‖
≤ ‖〈T x, T y〉 − 〈Sx, Sy〉‖ + ‖〈Sx, Sy〉‖
≤ ‖〈T x − Sx, T y − Sy〉 + 〈T x − Sx, Sy〉 + 〈Sx, T y − Sy〉‖

+ θ2γ 2‖〈x, y〉‖
≤ ‖T x − Sx‖‖Ty − Sy‖ + ‖T x − Sx‖‖Sy‖ + ‖Sx‖‖Ty − Sy‖

+ θ2γ 2δ‖x‖‖y‖
≤ λ2‖Sx‖‖Sy‖ + 2λ‖Sx‖‖Sy‖ + θ2γ 2δ‖x‖‖y‖ (by (2.2))

≤ (λ2 + 2λ)‖Sx‖‖Sy‖ + θ2γ 2δ × θ2

(1 − λ)2γ 2
‖T x‖‖Ty‖ (by (2.1))

≤ (λ2 + 2λ) × 1

(1 − λ)2
‖T x‖‖Ty‖ + θ4δ

(1 − λ)2
‖T x‖‖Ty‖

= λ2 + 2λ + θ4δ

(1 − λ)2
‖T x‖‖Ty‖.

Thus ‖〈T x, T y〉‖ ≤ ε‖T x‖‖Ty‖ and hence T x ⊥ε T y.

As a consequence, with θ = 4
√

ε/δ, λ = 0 and S = T , we have

Corollary 2.2. Let δ, ε ∈ [0, 1). Let E and F be two inner product
A -modules and let T : E → F be a nonzero linear mapping satisfying√

δ

ε
γ 2‖〈x, y〉‖ ≤ ‖〈T x, T y〉‖ ≤

√
ε

δ
γ 2‖〈x, y〉‖,

for all x, y ∈ E with some γ ∈ [
[T ], ‖T ‖]. Then T is a (δ, ε)-orthogonality

preserving mapping.

It follows from the inequality in Corollary 2.2 that x ⊥ y ⇒ T x ⊥ Ty

(x, y ∈ E ). In the following we give an example of (δ, ε)-orthogonality pre-
serving mapping between Hilbert C∗-modules.

Example 2.3. Let 0 < δ ≤ ε < 1 and let E and F be two inner product
A -modules. We define T : E → F by T x = √

ε/δx. Suppose that x, y ∈ E

satisfies x ⊥δ y. Hence ‖〈x, y〉‖ ≤ δ‖x‖‖y‖. Therefore, we get

‖〈T x, T y〉‖ = ε

δ
‖〈x, y〉‖ ≤ ε‖x‖‖y‖ = δ

∥∥∥∥
√

ε

δ
x

∥∥∥∥
∥∥∥∥
√

ε

δ
y

∥∥∥∥
= δ‖T x‖‖Ty‖ ≤ ε‖T x‖‖Ty‖.
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Thus T x ⊥ε T y. This shows that T is a (δ, ε)-orthogonality preserving map-
ping. In addition, if we consider T x = √

ε/δ‖x‖x, then for all x, y ∈ E , the
condition x ⊥δ y implies T x ⊥ε T y but T is not linear.

For inner product A -module E , we define a relation which is connected
with the notion of angle. Fix δ, ε ∈ [0, 1) and c ∈ A with ‖c‖ < 1. Let us
say x � δ

c y if
∥∥〈x, y〉 − ‖x‖‖y‖c∥∥ ≤ δ‖x‖‖y‖. A mapping T : E → F , where

E and F are inner product A -modules, is called (δ, ε, c)-angle preserving, if
x � δ

c y ⇒ T x � ε
c T y (x, y ∈ E ). It is easy to see that T is a (δ, ε, 0)-angle

preserving mapping if and only if T is (δ, ε)-orthogonality preserving.

Theorem 2.4. Let E be a full Hilbert A -module withK(H ) ⊆ A ⊆ B(H )

such that dim H > 1 and let a nonzero bounded linear mapping S: E → E

satisfy |〈Sx, Sy〉| = ‖S‖2|〈x, y〉| (x, y ∈ E ). (2.3)

Let c ∈ A with ‖c‖ < 1, δ ∈ [0, 1 − ‖c‖) and θ ∈ [0, 1). If a linear mapping
T : E → E satisfies ‖T − S‖ ≤ θ‖S‖, then T is (δ, ε, c)-angle preserving,
where ε = (θ2 + 2θ + δ + (θ2 − 2θ − 2)‖c‖)/(1 − θ)2.

Proof. For x = z and y = z, (2.3) becomes ‖Sz‖ = ‖S‖‖z‖. This implies∣∣‖T z‖−‖S‖‖z‖∣∣ = ∣∣‖T z‖−‖Sz‖∣∣ ≤ ‖T z−Sz‖ ≤ ‖T −S‖‖z‖ ≤ θ‖S‖‖z‖.
Thus

‖T z‖ ≤ (1 + θ)‖S‖‖z‖ and ‖z‖ ≤ ‖T z‖
‖S‖(1 − θ)

(z ∈ E ). (2.4)

From (2.3) we have
∣∣〈 S

‖S‖x, S
‖S‖y

〉∣∣ = |〈x, y〉| (x, y ∈ E ). So S/‖S‖ preserves
the absolute value of the A -valued inner product on E . ByWigner’s theorem [3,
Theorem 1] there exist an A -linear isometry U : E → E and a phase function
ϕ: E → C (i.e. its values are of modulus 1) such that

S

‖S‖z = ϕ(z)Uz (z ∈ E ). (2.5)

Now, let x, y ∈ E and x � δ
c y. By (2.4), we get

‖x‖‖y‖ − 1

‖S‖2
‖T x‖‖Ty‖ ≤ 1

‖S‖2

(
1

(1 − θ)2
− 1

)
‖T x‖‖Ty‖ (2.6)

and

1

‖S‖2
‖T x‖‖Ty‖ − ‖x‖‖y‖ ≤ 1

‖S‖2

(
1 − 1

(1 + θ)2

)
‖T x‖‖Ty‖. (2.7)
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Sine 1 − 1
(1+θ)2 ≤ 1

(1−θ)2 − 1 = 2θ−θ2

(1−θ)2 , (2.6) and (2.7) yield

∣∣∣∣‖x‖‖y‖ − 1

‖S‖2
‖T x‖‖Ty‖

∣∣∣∣ ≤ 2θ − θ2

‖S‖2(1 − θ)2
‖T x‖‖Ty‖. (2.8)

Further, by (2.5) we get∥∥∥∥
〈

T

‖S‖x,
T

‖S‖y

〉
− 〈ϕ(x)Ux, ϕ(y)Uy〉

∥∥∥∥
=
∥∥∥∥
〈

T

‖S‖x,
T

‖S‖y

〉
−
〈

S

‖S‖x,
S

‖S‖y

〉∥∥∥∥
= 1

‖S‖2

∥∥〈T x − Sx, T y − Sy〉

+ 〈T x − Sx, Sy〉 + 〈Sx, T y − Sy〉∥∥
≤ 1

‖S‖2

(‖T x − Sx‖‖Ty − Sy‖

+ ‖T x − Sx‖‖Sy‖ + ‖Sx‖‖Ty − Sy‖)
≤ 1

‖S‖2

(‖T − S‖2‖x‖‖y‖
+ ‖T − S‖‖S‖‖x‖‖y‖ + ‖S‖‖T − S‖‖x‖‖y‖)

≤ 1

‖S‖2

(
θ2‖S‖2‖x‖‖y‖ + θ‖S‖2‖x‖‖y‖ + θ‖S‖2‖x‖‖y‖)

= (θ2 + 2θ)‖x‖‖y‖ (by (2.4))

≤ θ2 + 2θ

‖S‖2(1 − θ)2
‖T x‖‖Ty‖.

(2.9)

Since x � δ
c y, we have

∥∥〈x, y〉 − ‖x‖‖y‖c∥∥ ≤ δ‖x‖‖y‖ and so we obtain

∥∥〈ϕ(x)Ux, ϕ(y)Uy〉 − ϕ(x)ϕ(y)‖x‖‖y‖c∥∥
= |ϕ(x)||ϕ(y)|∥∥〈U ∗Ux, y〉 − ‖x‖‖y‖c∥∥
= ∥∥〈x, y〉 − ‖x‖‖y‖c∥∥
≤ δ‖x‖‖y‖ (by (2.4))

≤ δ

‖S‖2(1 − θ)2
‖T x‖‖Ty‖.

(2.10)
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From (2.8) it follows that∥∥∥∥ϕ(x)ϕ(y)‖x‖‖y‖c − ϕ(x)ϕ(y)

‖S‖2
‖T x‖‖Ty‖c

∥∥∥∥
= |ϕ(x)||ϕ(y)|

∣∣∣‖x‖‖y‖ − 1

‖S‖2
‖T x‖‖Ty‖

∣∣∣‖c‖
≤ 2θ − θ2

‖S‖2(1 − θ)2
‖T x‖‖Ty‖‖c‖.

(2.11)

Also, notice that∥∥∥∥ϕ(x)ϕ(y)

‖S‖2
‖T x‖‖Ty‖c − 1

‖S‖2
‖T x‖‖Ty‖c

∥∥∥∥
= 1

‖S‖2
‖T x‖‖Ty‖|ϕ(x)ϕ(y) − 1|‖c‖

≤ 1

‖S‖2
‖T x‖‖Ty‖(|ϕ(x)||ϕ(y)| + 1

)‖c‖ = 2

‖S‖2
‖T x‖‖Ty‖‖c‖.

(2.12)

Now, we observe that∥∥〈T x, T y〉 − ‖T x‖‖Ty‖c∥∥
≤ ‖S‖2

(∥∥∥∥
〈

T

‖S‖x,
T

‖S‖y

〉
− 〈ϕ(x)Ux, ϕ(y)Uy〉

∥∥∥∥
+ ∥∥〈ϕ(x)Ux, ϕ(y)Uy〉 − ϕ(x)ϕ(y)‖x‖‖y‖c∥∥
+
∥∥∥∥ϕ(x)ϕ(y)‖x‖‖y‖c − ϕ(x)ϕ(y)

‖S‖2
‖T x‖‖Ty‖c

∥∥∥∥
+
∥∥∥∥ϕ(x)ϕ(y)

‖S‖2
‖T x‖‖Ty‖c − 1

‖S‖2
‖T x‖‖Ty‖c

∥∥∥∥
)

(by (2.9), (2.10), (2.11) and (2.12))

≤ ‖S‖2

(
θ2 + 2θ

‖S‖2(1 − θ)2
‖T x‖‖Ty‖ + δ

‖S‖2(1 − θ)2
‖T x‖‖Ty‖

+ 2θ − θ2

‖S‖2(1 − θ)2
‖T x‖‖Ty‖‖c‖ + 2

‖S‖2
‖T x‖‖Ty‖‖c‖

)

= θ2 + 2θ + δ + (θ2 − 2θ − 2)‖c‖
(1 − θ)2

‖T x‖‖Ty‖.

Thus
∥∥〈T x, T y〉 − ‖T x‖‖Ty‖c∥∥ ≤ ε‖T x‖‖Ty‖ and hence T x � ε

c T y.
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As a consequence, with c = 0, we have

Corollary 2.5. Let δ, θ ∈ [0, 1). Let E be a full Hilbert A -module with
K(H ) ⊆ A ⊆ B(H ) such that dim H > 1 and let S: E → E be a nonzero
bounded linear mapping satisfying

|〈Sx, Sy〉| = ‖S‖2|〈x, y〉| (x, y ∈ E ).

If a linear mapping T : E → E satisfies ‖T − S‖ ≤ θ‖S‖, then T is (δ, ε)-
orthogonality preserving, where ε = (θ2 + 2θ + δ)/(1 − θ)2.

3. Mappings preserving approximate orthogonality in Hilbert C∗-
modules

In this section, we study (δ, ε)-orthogonality preserving mappings between
Hilbert A -modules whenever K(H ) ⊆ A ⊆ B(H ). To achieve our main
result we first prove some auxiliary results.

Proposition 3.1. Let T : H → K be a (δ, ε)-orthogonality preserving
linear mapping. If η, ζ ∈ H are orthogonal unit vectors, then√

(n + 1)(1 − δ)(1 − ε)

n(1 + δ)(1 + ε)
‖T ζ‖ ≤ ‖T η‖ ≤

√
(n + 1)(1 − δ)(1 + ε)

n(1 + δ)(1 − ε)
‖T ζ‖,

for all n ∈ N.

Proof. Let n ∈ N. We have∣∣∣∣∣
(

η +
√

(n + 1)(1 − δ)

n(1 + δ)
ζ, η −

√
(n + 1)(1 − δ)

n(1 + δ)
ζ

)∣∣∣∣∣
= 1 − (n + 1)(1 − δ)

n(1 + δ)

≤ δ

[
1 + (n + 1)(1 − δ)

n(1 + δ)

]

= δ

∥∥∥∥∥η +
√

(n + 1)(1 − δ)

n(1 + δ)
ζ

∥∥∥∥∥
∥∥∥∥∥η −

√
(n + 1)(1 − δ)

n(1 + δ)
ζ

∥∥∥∥∥.
So, we get η +

√
(n+1)(1−δ)

n(1+δ)
ζ ⊥δ ζ −

√
(n+1)(1−δ)

n(1+δ)
ζ . Since T is a (δ, ε)-

orthogonality preserving mapping, we reach

T η +
√

(n + 1)(1 − δ)

n(1 + δ)
T ζ ⊥ε T η −

√
(n + 1)(1 − δ)

n(1 + δ)
T ζ.
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Therefore,∣∣∣∣∣
(

T η +
√

(n + 1)(1 − δ)

n(1 + δ)
T ζ, T η −

√
(n + 1)(1 − δ)

n(1 + δ)
T ζ

)∣∣∣∣∣
≤ ε

∥∥∥∥∥T η +
√

(n + 1)(1 − δ)

n(1 + δ)
T ζ

∥∥∥∥∥
∥∥∥∥∥T η −

√
(n + 1)(1 − δ)

n(1 + δ)
T ζ

∥∥∥∥∥,
whence

(
‖T η‖2 − (n + 1)(1 − δ)

n(1 + δ)
‖T ζ‖2

)2

+ 4

[
Im(T η,

√
(n + 1)(1 − δ)

n(1 + δ)
T ζ )

]2

≤ ε2

((
‖T η‖2 + (n + 1)(1 − δ)

n(1 + δ)
‖T ζ‖2

)2

− 4

[
Re(T η,

√
(n + 1)(1 − δ)

n(1 + δ)
T ζ )

]2)
.

It follows that∣∣∣∣‖T η‖2 − (n + 1)(1 − δ)

n(1 + δ)
‖T ζ‖2

∣∣∣∣ ≤ ε

(
‖T η‖2 + (n + 1)(1 − δ)

n(1 + δ)
‖T ζ‖2

)
,

or equivalently,√
(n + 1)(1 − δ)(1 − ε)

n(1 + δ)(1 + ε)
‖T ζ‖ ≤ ‖T η‖ ≤

√
(n + 1)(1 − δ)(1 + ε)

n(1 + δ)(1 − ε)
‖T ζ‖.

Corollary 3.2. Let T : H → K be a (δ, ε)-orthogonality preserving map-
ping. If η, ζ ∈ H \ {0} are orthogonal vectors, then√

(1 − δ)(1 − ε)

(1 + δ)(1 + ε)
‖T ζ‖‖η‖ ≤ ‖T η‖‖ζ‖ ≤

√
(1 − δ)(1 + ε)

(1 + δ)(1 − ε)
‖T ζ‖‖η‖.

Theorem 3.3. Let T : H → K be a (δ, ε)-orthogonality preserving map-
ping. Then T is injective, continuous and satisfies

1

θ
γ ‖η‖ ≤ ‖T η‖ ≤ θγ ‖η‖
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for all η ∈ H and all γ ∈ [[T ], ‖T ‖], for θ =
√

(1−δ)(1+ε)

(1+δ)(1−ε)
+ 2ε

√
(1−δ)(1+ε)

(1+δ)(1−ε)
.

Proof. Let η, ζ ∈ H \ {0}. Choose η1, η2 ∈ H \ {0} such that

η = η1 + η2, η1 ∈ {λζ : λ ∈ C}, |(η1, η2)| = 0 ≤ δ‖η1‖‖η2‖,
whence

‖η‖2 = ‖η1‖2 + ‖η2‖2, ‖η1‖ ≤ ‖η‖, ‖η2‖ ≤ ‖η‖. (3.1)

By Corollary 3.2, we get√
(1 − δ)(1 − ε)

(1 + δ)(1 + ε)
‖T η1‖‖η2‖ ≤ ‖T η2‖‖η1‖ ≤

√
(1 − δ)(1 + ε)

(1 + δ)(1 − ε)
‖T η1‖‖η2‖.

(3.2)

So, we reach

‖T η‖2

= ‖T η1‖2 + 2 Re(T η1, T η2) + ‖T η2‖2 (since η = η1 + η2)

≤ ‖T η1‖2 + 2|(T η1, T η2)| + ‖T η2‖2

(since ‖T η1‖/‖η1‖ = ‖T ζ‖/‖ζ‖, |(η1, η2)| ≤ δ‖η1‖‖η2‖,

T is a (δ, ε)-orthogonality preserving mapping and (3.2))

≤ ‖T ζ‖2

‖ζ‖2
‖η1‖2 + 2ε‖T η1‖‖T η2‖ + (1 − δ)(1 + ε)

(1 + δ)(1 − ε)

‖T η1‖2

‖η1‖2
‖η2‖2

(by (3.1), (3.2) and since ‖T η1‖/‖η1‖ = ‖T ζ‖/‖ζ‖)

≤ ‖T ζ‖2

‖η‖2
(‖η‖2 − ‖η2‖2) + 2ε

√
(1 − δ)(1 + ε)

(1 + δ)(1 − ε)
‖T η1‖2 × ‖η2‖

‖η1‖

+ (1 − δ)(1 + ε)

(1 + δ)(1 − ε)

‖T ζ‖2

‖ζ‖2
‖η2‖2 (since ‖T η1‖/‖η1‖ = ‖T ζ‖/‖ζ‖)

≤ ‖T ζ‖2

‖ζ‖2
‖η‖2 + 2ε

√
(1 − δ)(1 + ε)

(1 + δ)(1 − ε)

‖T ζ‖2

‖ζ‖2
‖η1‖‖η2‖

+
(

(1 − δ)(1 + ε)

(1 + δ)(1 − ε)
− 1

)‖T ζ‖2

‖ζ‖2
‖η2‖2

(since ‖η1‖ ≤ ‖η‖ and ‖η2‖ ≤ ‖η‖)
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≤ ‖T ζ‖2

‖ζ‖2
‖η‖2

(
1 + 2ε

√
(1 − δ)(1 + ε)

(1 + δ)(1 − ε)
+
(

(1 − δ)(1 + ε)

(1 + δ)(1 − ε)
− 1

))

= ‖T ζ‖2

‖ζ‖2
‖η‖2

[
(1 − δ)(1 + ε)

(1 + δ)(1 − ε)
+ 2ε

√
(1 − δ)(1 + ε)

(1 + δ)(1 − ε)

]
.

Thus we have ‖T η‖2 ≤ ‖T ζ‖2

‖ζ‖2 ‖η‖2θ2 and hence ‖T η‖/‖η‖ ≤ θ‖T ζ‖/‖ζ‖.
Since η and ζ are arbitrary, we change the order to get ‖T ζ‖/‖ζ‖≤ θ‖T η‖/‖η‖
and finally 1

θ
‖T ζ‖/‖ζ‖ ≤ ‖T η‖/‖η‖ ≤ θ‖T ζ‖/‖ζ‖. Hence T is continuous

and 1
θ
‖T ‖ ≤ ‖T η‖/‖η‖ ≤ θ [T ].

Now, for all η ∈ H and for all γ ∈ [[T ], ‖T ‖], we reach

1

θ
γ ‖η‖ ≤ 1

θ
‖T ‖‖η‖ ≤ ‖T η‖ ≤ θ [T ]‖η‖ ≤ θγ ‖η‖.

Thus T is injective and 1
θ
γ ‖η‖ ≤ ‖T η‖ ≤ θγ ‖η‖.

The following lemma is a consequences of the discussion in the first section.

Lemma 3.4. Let δ, ε ∈ [0, 1). Let E be inner product A -module with
K(H ) ⊆ A ⊆ B(H ) and let E be any minimal projection. Then the fol-
lowing statements hold:

(i) x, y ∈ Ee are δ-orthogonal in Ee if and only if they are δ-orthogonal
in E ,

(ii) if T : E → F is an A -linear (δ, ε)-orthogonality preserving mapping,
then Te := T |Ee

: Ee → Fe is a linear (δ, ε)-orthogonality preserving
mapping.

Proof. (i) Let x, y ∈ Ee. Then

x ⊥δ y in Ee ⇐⇒ |(x, y)| ≤ δ‖x‖Ee
‖y‖Ee

⇐⇒ ‖〈x, y〉‖ ≤ δ‖x‖E ‖y‖E

⇐⇒ x ⊥δ y in E .

(ii) Let x ⊥δ y in Ee. By (i), x ⊥δ y in E . Since T is (δ, ε)-orthogonality
preserving, hence T x ⊥ε T y in F . So, by (i), Tex ⊥ε Tey in Fe. Thus Te is a
linear (δ, ε)-orthogonality preserving mapping.

A part of the following lemma can be found in [9, Proposition 3.3]. We,
however, prove it for the sake of completeness.

Proposition 3.5. Let E , F be inner product A -modules with K(H ) ⊆
A ⊆ B(H ) and T : E → F be an A -linear mapping. Suppose that Te :=



MAPPINGS PRESERVING APPROXIMATE ORTHOGONALITY 269

T |Ee
: Ee → Fe for some minimal projection E , such that 0 < [Te] ≤ ‖Te‖ <

∞. Then

(i) [T ] = [Te].

(ii) ‖T ‖ = ‖Te‖.

Proof. (i) Let e = ζ ⊗ ζ , f = η ⊗ η be minimal projections and let
u = η ⊗ ζ . We have

e〈T u, T u〉e = 〈T (ue), T (ue)〉 = (T (ue), T (ue))e

= ‖T (ue)‖2
Ef

e ≥ [Te]2‖ue‖2e = [Te]2
∥∥(η ⊗ ζ )(ζ ⊗ ζ )

∥∥2
e

= [Te]2
∥∥‖ζ‖2η ⊗ ζ

∥∥2
e = [Te]2‖u‖2e.

Hence

[Te]2‖u‖2 ≤ ‖e〈T u, T u〉e‖ ≤ sup{‖e〈T u, T u〉e‖ : ‖e‖ = 1} = ‖T u‖2.

Hence [Te]‖u‖ ≤ ‖T u‖, which shows [Te] ≤ [T ]. Since [Te] ≥ [T ], thus we
reach [Te] = [T ].

(ii) The proof is similar to (i).

We are now in a position to establish one of our main results. In fact, in
the sequel we provide a version of Theorem 3.3 in the setting of inner product
C∗-modules.

Theorem 3.6. Let δ, ε ∈ [0, 1). Let E , F be inner product A -modules
with K(H ) ⊆ A ⊆ B(H ) and let T : E → F be a nonzero A -linear (δ, ε)-
orthogonality preserving mapping. Then

(i) 0 < [T ] ≤ ‖T ‖ < ∞.

(ii) 1
θ2 γ

2〈x, x〉 ≤ 〈T x, T x〉 ≤ θ2γ 2〈x, x〉, for all x ∈ E , γ ∈ [
[T ], ‖T ‖]

and for θ =
√

(1−δ)(1+ε)

(1+δ)(1−ε)
+ 2ε

√
(1−δ)(1+ε)

(1+δ)(1−ε)
.

(iii) ‖〈T x, T y〉 − γ 2〈x, y〉‖ ≤ 4
(
1 − 1

θ2

)
min{γ 2‖x‖‖y‖, ‖T x‖‖Ty‖}, for

all x, y ∈ E and for all γ ∈ [[T ], ‖T ‖].
Proof. Let e = η⊗η be a minimal projection. From Lemma 3.4 it follows

that Te := T |Ee
: Ee → Fe is a linear (δ, ε)-orthogonality preserving mapping.

Hence Theorem 3.3 implies Te is injective, 0 < [Te] ≤ ‖Te‖ < ∞ and satisfies

1

θ
γ ‖xe‖ ≤ ‖Te(xe)‖ ≤ θγ ‖xe‖, (3.3)
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for all x ∈ E , γ ∈ [
[Te], ‖Te‖

]
and θ =

√
(1−δ)(1+ε)

(1+δ)(1−ε)
+ 2ε

√
(1−δ)(1+ε)

(1+δ)(1−ε)
. Thus

by Proposition 3.5, 0 < [T ] ≤ ‖T ‖ < ∞ and it follows from (3.3) that

1

θ2
γ 2(xe, xe) ≤ (Te(xe), Te(xe)) ≤ θ2γ 2(xe, xe),

or equivalently,(
1

θ2
γ 2〈x, x〉η, η

)
≤ (〈T x, T x〉η, η

) ≤ (
θ2γ 2〈x, x〉η, η

)
. (3.4)

Now (3.4) gives

1

θ2
γ 2〈x, x〉 ≤ 〈T x, T x〉 ≤ θ2γ 2〈x, x〉 (3.5)

for all x ∈ E and for all γ ∈ [[T ], ‖T ‖]. Using the polar identity, we obtain

∥∥〈T x, T y〉 − γ 2〈x, y〉∥∥ ≤ 1

4
× 4

(
1 − 1

θ2

)
γ 2(‖x‖ + ‖y‖)2

≤ 2

(
1 − 1

θ2

)
γ 2(‖x‖2 + ‖y‖2).

(3.6)

Applying (3.6) for vectors x/‖x‖ and y/‖y‖, we get∥∥∥∥
〈
T

(
x

‖x‖
)

, T

(
y

‖y‖
)〉

− γ 2

〈
x

‖x‖ ,
y

‖y‖
〉∥∥∥∥≤ 4

(
1 − 1

θ2

)
γ 2,

or equivalently,

∥∥〈T x, T y〉 − γ 2〈x, y〉∥∥ ≤ 4

(
1 − 1

θ2

)
γ 2‖x‖‖y‖. (3.7)

Furthermore (3.5) implies

1

θ2

1

γ 2
〈T x, T x〉 ≤ 〈x, x〉 ≤ θ2 1

γ 2
〈T x, T x〉. (3.8)

Similar to (3.7), by (3.8) we reach

∥∥〈T x, T y〉 − γ 2〈x, y〉∥∥ ≤ 4

(
1 − 1

θ2

)
‖T x‖‖Ty‖, (3.9)

for all x, y ∈ E and for all γ ∈ [
[T ], ‖T ‖]. Thus, by (3.7) and (3.9), (iii)

follows.
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Next we obtain a sufficient condition for an A -linear mapping to be (δ, ε)-
orthogonality preserving.

Corollary 3.7. Let δ, ε ∈ [0, 1). Let E , F be inner product A -modules
with K(H ) ⊆ A ⊆ B(H ) and let T : E → F be a nonzero A -linear such
that

2δ√
(4 − ε)2 + 16δ − (4 − ε)

γ 2〈x, x〉 ≤ 〈T x, T x〉

≤
√

(4 − ε)2 + 16δ − (4 − ε)

2δ
γ 2〈x, x〉

for all x ∈ E and for some γ ∈ [
[T ], ‖T ‖]. Then T is (δ, ε)-orthogonality

preserving.

Proof. Let x, y ∈ E and x ⊥δ y. Then ‖〈x, y〉‖ ≤ δ‖x‖‖y‖. As in the
proof of Theorem 3.6 (iii) we have

∥∥〈T x, T y〉 − γ 2〈x, y〉∥∥ ≤ 4

(
1 − 2δ√

(4 − ε)2 + 16δ − (4 − ε)

)
‖T x‖‖Ty‖.

Hence

‖〈T x, T y〉‖
≤ ∥∥〈T x, T y〉 − γ 2〈x, y〉∥∥+ γ 2‖〈x, y〉‖

≤ 4

(
1 − 2δ√

(4 − ε)2 + 16δ − (4 − ε)

)
‖T x‖‖Ty‖ + γ 2δ‖x‖‖y‖

≤ 4

(
1 − 2δ√

(4 − ε)2 + 16δ − (4 − ε)

)
‖T x‖‖Ty‖

+ γ 2δ

√√
(4 − ε)2 + 16δ − (4 − ε)

γ
√

2δ
‖T x‖

·
√√

(4 − ε)2 + 16δ − (4 − ε)

γ
√

2δ
‖Ty‖

≤
[

4

(
1 − 2δ√

(4 − ε)2 + 16δ − (4 − ε)

)
+
√

(4 − ε)2 + 16δ − (4 − ε)

2

]

· ‖T x‖‖Ty‖
= ε‖T x‖‖Ty‖.
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Thus T x ⊥ε T y.

Let us quote a result from [17].

Lemma 3.8 ([17, Theorem 3.4]). Let δ, ε ∈ [0, 1). Let H , K be Hilbert
spaces and let T : H → K be a nonzero (δ, ε)-orthogonality preserving
mapping. Then T satisfies θ‖T ‖‖ξ‖ ≤ ‖T ξ‖ for all ξ ∈ H , where θ =√

(1−δ)(1+ε)

(1+δ)(1−ε)
.

Theorem 3.9. Let δ, ε ∈ [0, 1). Let E , F be Hilbert A -modules with
K(H ) ⊆ A ⊆ B(H ) and let T : E → F be a nonzero A -linear (δ, ε)-
orthogonality preserving mapping. Then

(i) (1+δ)(1−ε)

(1−δ)(1+ε)
‖T ‖2〈x, x〉 ≤ 〈T x, T x〉 ≤ ‖T ‖2〈x, x〉, for all x ∈ E , and

(ii)
∥∥〈T x, T y〉 − ‖T ‖2〈x, y〉∥∥ ≤ 4(ε−δ)

(1−δ)(1+ε)
‖T x‖‖Ty‖, for all x, y ∈ E .

Proof. By Lemma 3.8, we have θ‖T ‖‖ξ‖ ≤ ‖T ξ‖ ≤ ‖T ‖‖ξ‖ ≤ 1
θ
‖T ‖‖ξ‖

for all ξ ∈ H , with θ =
√

(1−δ)(1+ε)

(1+δ)(1−ε)
. Thus the proof is similar to the proof of

Theorem 3.6 and so we omit it.

Now, we are going to show some applications of the above theorems, which
generalize some results from [4], [9], [17], [19], [20].

As a consequence of Theorem 3.6 and Theorem 3.9, we have the following
result.

Corollary 3.10. Let 0 ≤ ε < δ < 1. Let E , F be Hilbert A -modules with
K(H ) ⊆ A ⊆ B(H ) and T : E → F be an A -linear (δ, ε)-orthogonality
preserving mapping. Then T = 0.

Proof. We suppose, for a contradiction, that there is a nonzero A -linear
(δ, ε)-orthogonality preserving mapping with 0 ≤ ε < δ < 1. According to
Theorem 3.6 (i), 0 < [T ] ≤ ‖T ‖ < ∞ and also by Theorem 3.9, we have
1
θ2 ‖T ‖2〈x, x〉 ≤ 〈T x, T x〉 ≤ ‖T ‖2〈x, x〉 for all x ∈ E , with θ =

√
(1−δ)(1+ε)

(1+δ)(1−ε)
.

Since θ < 1, we obtain

0 < ‖T ‖2〈x, x〉 <
1

θ2
‖T ‖2〈x, x〉 ≤ 〈T x, T x〉 ≤ ‖T ‖2〈x, x〉,

for all x ∈ E , a contradiction. Therefore, T = 0.

Corollary 3.11. Let δ, ε ∈ [0, 1). Let E , F be Hilbert A -modules with
K(H ) ⊆ A ⊆ B(H ) and let for any n ∈ N, Tn: E → F be an A -linear
(δ, ε)-orthogonality preserving mapping. If T : E → F is a bounded linear
mapping such that Tn → T , then T is ϕ-orthogonality preserving with ϕ =
4(ε − δ)/((1 − δ)(1 + ε)).
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Proof. Let x, y ∈ E and x ⊥ y. Hence for any n ∈ N, by Theorem 3.9
(ii), we have ‖〈Tnx, Tny〉‖ ≤ ϕ‖Tnx‖‖Tny‖, for all x, y ∈ E , with ϕ =
4(ε − δ)/((1 − δ)(1 + ε)). Thus

‖〈T x, T y〉‖ ≤ ‖〈T x, T y〉 − 〈Tnx, T y〉‖ + ‖〈Tnx, T y〉 − 〈Tnx, Tny〉‖
+ ‖〈Tnx, Tny〉‖

≤ ‖Tn − T ‖‖x‖‖Ty‖ + ‖Tnx‖‖T − Tn‖‖y‖

+ 4(ε − δ)

(1 − δ)(1 + ε)
‖Tnx‖‖Tny‖.

Letting n → ∞, we obtain ‖〈T x, T y〉‖ ≤ 4(ε−δ)

(1−δ)(1+ε)
‖T x‖‖Ty‖, which is

nothing else but T x ⊥ϕ T y.

Taking E = F and T = id, one obtains, from Theorem 3.9 the following
result.

Corollary 3.12. Let δ, ε, ϑ ∈ [0, 1). Let E be a Hilbert A -module with
K(H ) ⊆ A ⊆ B(H ) and let 〈 · , · 〉1 and 〈 · , · 〉2 be two A -valued inner
products on E . If ⊥1

δ ⊆ ⊥2
ε, i.e., if ‖〈x, y〉1‖ ≤ δ‖x‖1‖y‖1 ⇒ ‖〈x, y〉2‖ ≤

ε‖x‖2‖y‖2 for all x, y ∈ E , then there exists γ > 0 such that

(i) γ

θ2 〈x, x〉1 ≤ 〈x, x〉2 ≤ γ 〈x, x〉1, for all x ∈ E , with θ =
√

(1−δ)(1+ε)

(1+δ)(1−ε)
,

(ii) ‖〈x, y〉2 −γ 〈x, y〉1‖ ≤ ϕ min{γ ‖x‖1‖y‖1, ‖x‖2‖y‖2}, for all x, y ∈ E ,
with ϕ = 4(ε−δ)

(1−δ)(1+ε)
.

(iii) ⊥2
ϑ ⊆ ⊥1

ν , with ν = ϑ + 4(ε−δ)

(1−δ)(1+ε)
, which makes sense if ν < 1, i.e.,

for sufficiently small δ, ε and ϑ .

Next we obtain some characterizations of the orthogonality preserving map-
pings in Hilbert A -modules.

Corollary 3.13. Let ε ∈ [0, 1). Let E , F be Hilbert A -modules with
K(H ) ⊆ A ⊆ B(H ). For a nonzero A -linear mapping T : E → F the
following statements are equivalent:

(i) there exists γ > 0 such that ‖T x‖ = γ ‖x‖ for all x ∈ E ,

(ii) T is injective and 〈T x,T y〉
‖T x‖‖Ty‖ = 〈x,y〉

‖x‖‖y‖ for all x, y ∈ E \ {0},
(iii) |x| = |y| ⇒ |T x| = |Ty| for all x, y ∈ E ,
(iv) |x| ≤ |y| ⇒ |T x| ≤ |Ty| for all x, y ∈ E ,
(v) T is strongly orthogonality preserving,

(vi) T is orthogonality preserving,
(vii) T is strongly (ε, ε)-orthogonality preserving,

(viii) T is (ε, ε)-orthogonality preserving.
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Proof. It follows from Theorem (4.6) and Corollary (4.11) of [19] we have
(i) ⇐⇒ (ii) ⇐⇒ (iii) ⇐⇒ (iv) ⇐⇒ (v) ⇐⇒ (vi).

(ii) �⇒ (vii) and (vii) �⇒ (viii) are trivial.
To prove (viii) �⇒ (i), let δ := ε. From Theorem 3.9 we obtain

(1 + ε)(1 − ε)

(1 − ε)(1 + ε)
‖T ‖2〈x, x〉 ≤ 〈T x, T x〉 ≤ ‖T ‖2〈x, x〉

for all x ∈ E . Thus 〈T x, T x〉 = ‖T ‖2〈x, x〉 for all x ∈ E .

The following example shows that conditions (iii)–(viii) in Corollary 3.13
are not equivalent to conditions (i)–(ii), even in the case ε = 0, in an arbitrary
Hilbert A -module.

Example 3.14. Following [19, Example 4.7], let  be a locally com-
pact Hausdorff space. Let us take E = F = C0(), the C∗-algebra of
all continuous complex-valued functions vanishing at infinity on . For a
nonzero function f0 ∈ C0(), suppose that T : C0() → C0() is given by
T (g) = f0g. Obviously T is C0()-linear and satisfies conditions (iii)–(viii)
but need not satisfies conditions (i)–(ii). Indeed, if there exists γ > 0 such that
‖T (g)‖ = γ ‖g‖ for all g ∈ C0(), then 1

γ 2 f0f0g = g for all g ∈ C0() and

hence, 1
γ 2 f0f0 is the identity in C0(), which is a contradiction.

Note that the assumption of A -linearity, even in the case ε = 0 and E =
F = A = B(H ), is necessary in Corollary 3.13, as one can see from the
following example.

Example 3.15. Let E = F = B(H ) and let P ∈ B(H ) be a nontrivial
projection. Then there exists S1 ∈ B(H ) such that S1P �= PS1. Hence
there exists S2 ∈ B(H ) such that S2(S1P − PS1) �= 0. Now, the mapping
T :B(H ) → B(H ) defined by T (S) = SP is orthogonality preserving. Since
T (S2S1) − T (S2)S1 = S2(S1P − PS1) �= 0, so T is not B(H )-linear. But T

does not satisfy (i). Indeed, if there exists γ > 0 such that ‖T (S)‖ = γ ‖S‖ for
all S ∈ B(H ), then for S = P we get γ = 1. But P is a nontrivial projection
and we obtain a contradiction; see [9, Example 3.2].

Corollary 3.16. Let δ, ε ∈ [0, 1) and let E , F be Hilbert A -modules.
The following statements hold:

(i) if S: E → E is a linear (δ, δ)-orthogonality preserving mapping and T

is (δ, ε)-orthogonality preserving, then T S is linear (δ, ε)-orthogonality
preserving mapping,

(ii) if S: F → F is a nonzero A -linear (ε, ε)-orthogonality preserving
mapping with K(H ) ⊆ A ⊆ B(H ) and T is an A -linear (δ, ε)-
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orthogonality preserving mapping, then ST is A -linear (δ, ε)-orthog-
onality preserving.

Proof. The proof immediately follows from the definition of a (δ, ε)-
orthogonality preserving mapping and the equivalence (i) ⇐⇒ (iv) of Co-
rollary 3.13.
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