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A SHORT NOTE ON CUNTZ SPLICE FROM A
VIEWPOINT OF CONTINUOUS ORBIT EQUIVALENCE

OF TOPOLOGICAL MARKOV SHIFTS

KENGO MATSUMOTO

Abstract
Let A be an N × N irreducible matrix with entries in {0, 1}. We present an easy way to find an
(N+3)×(N+3) irreducible matrix Ā with entries in {0, 1} such that the associated Cuntz-Krieger
algebras OA and OĀ are isomorphic and det(1 − A) = − det(1 − Ā). As a consequence, we find
that two Cuntz-Krieger algebras OA and OB are isomorphic if and only if the one-sided topological
Markov shift (XA, σA) is continuously orbit equivalent to either (XB, σB) or (XB̄ , σB̄ ).

For an N × N irreducible matrix A with entries in {0, 1}, let us denote by
G(A) the abelian group ZN/(1 − At)ZN and by uA the position of the class
[(1, . . . , 1)] of the vector (1, . . . , 1) in the group G(A). Throughout this short
note, matrices are all assumed to be irreducible and not permutation matrices.
J. Cuntz in [4] has shown that the pair (K0(OA), [1]), consisting of the K0-
group K0(OA) of the Cuntz-Krieger algebra OA and the class [1] of the unit
in K0(OA), is isomorphic to (G(A), uA). In [14], M. Rørdam has shown that
(G(A), uA) is a complete invariant of the isomorphism class of OA (see [8],
for N ≤ 3). For an N × N irreducible matrix A = [A(i, j)]Ni,j=1 with entries
in {0, 1}, the (N + 2) × (N + 2) irreducible matrix A− defined by

A− =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A(1, 1) . . . A(1, N − 1) A(1, N) 0 0
...

...
...

...
...

A(N − 1, 1) . . . A(N − 1, N − 1) A(N − 1, N) 0 0

A(N, 1) . . . A(N, N − 1) A(N, N) 1 0

0 . . . 0 1 1 1

0 . . . 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

is called the Cuntz splice for A, this was first introduced in [5] by J. Cuntz and
is related to classification problem for Cuntz-Krieger algebras. In [5], he had
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used the notation A− instead of the above A−. The crucial property of the Cuntz
splice is that G(A−) is isomorphic to G(A) and det(1 −A−) = − det(1 −A).
The Cuntz splice ⎡

⎢⎢⎢⎣
1 1 0 0

1 1 1 0

0 1 1 1

0 0 1 1

⎤
⎥⎥⎥⎦

for the matrix
[

1 1
1 1

]
is denoted by 2−. In the proof of the above-mentioned

result by Rørdam, [14, Theorem 6.5], a theorem of J. Cuntz, [14, Theorem 7.2],
is used which says that if O2

∼= O2− then OA ⊗ K ∼= OA− ⊗ K holds for all
irreducible non-permutation matrices A. Since Rørdam has proved O2

∼= O2−
([14, Lemma 6.4]), the result OA ⊗ K ∼= OA− ⊗ K holds for all irreducible
non-permutation matrices A. By using this result, Rørdam has also obtained
that the group G(A) is a complete invariant of the stable isomorphism class
of OA.

Let us denote by BF(A) the abelian group G(At) = ZN/(1 −A)ZN , which
is called the Bowen-Franks group for N × N matrix A, [2]. Although BF(A)

is isomorphic to G(A) as a group, there is no canonical isomorphism between
them. Related to classification theory of symbolic dynamical systems, J. Franks
[9] has shown that the pair (BF(A), sgn(det(1−A))) is a complete invariant of
the flow equivalence class of the two-sided topological Markov shift (X̄A, σ̄A)

by using Bown-Franks’s result [2] for the group BF(A) and Parry-Sullivan’s
result [13] for the determinant det(1 − A). Combining this with Rørdam’s
result for the stable isomorphism classes of the Cuntz-Krieger algebras, OA is
stably isomorphic to OB if and only if (X̄A, σ̄A) is flow equivalent to either
(X̄B, σ̄B) or (X̄B− , σ̄B−). The operation of Cuntz splicing is now one of basic
tools to analyze the structure of Cuntz-Krieger algebras and more general graph
C∗-algebras as seen in recent developments of classification of graph algebras
(cf. [1], [7], etc.).

In [11], the author has introduced a notion of continuous orbit equivalence in
one-sided topological Markov shifts to classify Cuntz-Krieger algebras from a
view point of topological dynamical systems. In [12], H. Matui and the author
have shown that the triple (G(A), uA, sgn(det(1−A))) is a complete invariant
of the continuous orbit equivalence class of the right one-sided topological
Markov shift (XA, σA). This result is rephrased by using the above-mentioned
result by Rørdam for isomorphism classes of the Cuntz-Krieger algebras such
that the pair (OA, sgn(det(1 − A))) is a complete invariant of the continuous
orbit equivalence class of the one-sided topological Markov shift (XA, σA).
The C∗-algebra OA− is not necessarily isomorphic to OA, whereas they are
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stably isomorphic, because the position uA− in G(A−) generally is different
from the position uA in G(A). We note that the group G(A) determines the
absolute value | det(1−A)|. If G(A) is infinite, Ker(1−A) is not trivial so that
det(1 − A) = 0. If G(A) is finite, it forms a finite direct sum Z/m1Z⊕ · · · ⊕
Z/mrZ for some m1, . . . , mr ∈ N so that | det(1 − A)| = m1 · · · mr (cf. [5],
[6], [14]).

By [12, Lemma 3.7], we know that there is a matrix A′ with entries in
{0, 1} such that the triples (G(A), uA, sgn(det(1 − A))) and (G(A′), uA′ ,

− sgn(det(1 − A′))) are isomorphic, which means that there exists an iso-
morphism �: G(A) → G(A′) such that �(uA) = uA′ and sgn(det(1 − A)) =
− sgn(det(1 − A′)). Following the given proof of [12, Lemma 3.7], the con-
struction of the matrix A′ seems to be slightly complicated and the matrix size
of A′ becomes much bigger than that of A. It is not an easy task to present the
matrix A′ for the given matrix A in a concrete way.

In this short note, we directly present an (N + 3) × (N + 3) matrix Ā

with entries in {0, 1} such that (G(A), uA, sgn(det(1 − A))) is isomorphic to
(G(Ā), uĀ, − sgn(det(1 − Ā))). The matrix Ā is constructed such that if A is
an irreducible non-permutation matrix, so is Ā.

We define

A◦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

A(1, 1) . . . A(1, N − 1) A(1, N) 0
...

...
...

...

A(N − 1, 1) . . . A(N − 1, N − 1) A(N − 1, N) 0

0 . . . 0 0 1

A(N, 1) . . . A(N, N − 1) A(N, N) 0

⎤
⎥⎥⎥⎥⎥⎥⎦

and

Ā = (A◦)−

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A(1, 1) . . . A(1, N − 1) A(1, N) 0 0 0
...

...
...

...
...

...

A(N − 1, 1) . . . A(N − 1, N − 1) A(N − 1, N) 0 0 0

0 . . . 0 0 1 0 0

A(N, 1) . . . A(N, N − 1) A(N, N) 0 1 0

0 . . . 0 0 1 1 1

0 . . . 0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(1)

The operation A → A◦ is nothing but an expansion defined by Parry-Sullivan
in [13], and preserves their determinant: det(1 − A) = det(1 − A◦). The
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Figure 1

following figure is a graphical expression of the matrix Ā from A.
We provide two lemmas. The first one is seen in [2]. The second one is seen

in [5] and [14] in a different form.

Lemma 1 ([2, Theorem 1.3]). The map

ηA: (x1, . . . , xN−1, xN, xN+1) ∈ ZN+1 → (x1, . . . , xN−1, xN + xN+1) ∈ ZN

induces an isomorphism η̄A from G(A◦) to G(A) such that

η̄A([(1, . . . , 1, 0)]) = uA.

Lemma 2 (cf. [5, Proposition 2], [14, Proposition 7.1]). The map

ξA: (x1, . . . , xN) ∈ ZN → (x1, . . . , xN , 0, 0) ∈ ZN+2

induces an isomorphism ξ̄A from G(A) to G(A−) such that

ξ̄A([(1, . . . , 1, 0)]) = uA− .

Proof. For y = (y1, . . . , yN) ∈ ZN , put

z =
⎡
⎣

z1
...

zN

⎤
⎦ = (1 − At)

⎡
⎣

y1
...

yN

⎤
⎦ .

We then have

ξA(z) =

⎡
⎢⎢⎢⎢⎢⎣

z1
...

zN

0

0

⎤
⎥⎥⎥⎥⎥⎦

= (1 − At
−)

⎡
⎢⎢⎢⎢⎢⎣

y1
...

yN

0
−yN

⎤
⎥⎥⎥⎥⎥⎦

.
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Hence we have ξA((1 − At)ZN) ⊂ (1 − At−)ZN+2 so that ξA:ZN → ZN+2

induces a homomorphism from G(A) to G(A−) denoted by ξ̄A. Suppose that
[ξA(x1, . . . , xN)] = 0 in G(A−) so that

⎡
⎢⎢⎢⎢⎢⎣

x1
...

xN

0

0

⎤
⎥⎥⎥⎥⎥⎦

= (1 − At
−)

⎡
⎢⎢⎢⎢⎢⎣

z1
...

zN

zN+1

zN+2

⎤
⎥⎥⎥⎥⎥⎦

for some (z1, . . . , zN+2) ∈ ZN+2. It then follows that zN+1 = 0, zN+2 = −zN

so that ⎡
⎣

x1
...

xN

⎤
⎦ = (1 − At)

⎡
⎣

z1
...

zN

⎤
⎦ .

This implies [(x1, . . . , xN)] = 0 in G(A) and hence ξ̄A is injective.
For (x1, . . . , xN , xN+1, xN+2) ∈ ZN+2, we have

⎡
⎢⎢⎢⎢⎢⎣

x1
...

xN

xN+1

xN+2

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1
...

xN−1

xN − xN+2

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0
xN+2

xN+1

xN+2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1
...

xN−1

xN − xN+2

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ (1 − At
−)

⎡
⎢⎢⎢⎢⎢⎣

0
...

0

−xN+2

−xN+1

⎤
⎥⎥⎥⎥⎥⎦

.

This implies that

[(x1, . . . , xN , xN+1, xN+2)] = ξ̄A([(x1, . . . , xN−1, xN − xN+2)])

in G(A−). Therefore ξ̄A: G(A) → G(A−) is surjective and hence an iso-
morphism. In particular, we see that [(1, . . . , 1, 1, 1)] = ξ̄A([(1, . . . , 1, 0)])
in G(A−).

We have the following theorem by the preceding two lemmas.
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Theorem 3. For an N × N matrix A with entries in {0, 1}, let Ā be the
(N +3)× (N +3) matrix with entries in {0, 1} defined in (1). Then there exists
an isomorphism �: G(A) → G(Ā) such that �(uA) = uĀ and the matrices
A, Ā satisfy det(1−A) = − det(1−Ā). If A is an irreducible non-permutation
matrix, so is Ā.

Proof. Define �: G(A) → G(Ā) by � = ξ̄A◦ ◦ η̄−1
A so that �(uA) =

ξ̄A◦([(1, . . . , 1, 0)]) = uĀ. Since det(1−Ā) = − det(1−A◦) = − det(1−A),
we see the desired assertion.

Let P be an N × N permutation matrix coming from a permutation of the
set {1, 2, . . . , N}. Since there exists a natural isomorphism �P : G(A) −→
G(PAP −1) such that �P (uA) = uPAP −1 and det(1 −A) = det(1 −PAP −1),
the triplet (G(A), uA, det(1 −A)) does not depend on the choice of the vertex
vN in the directed graph of the matrix A.

We have some corollaries.

Corollary 4. Let A be an irreducible non-permutation matrix with entries
in {0, 1}. Then OA is isomorphic to OĀ and det(1 − A) = − det(1 − Ā).

Let 1̄ denote the matrix ⎡
⎢⎢⎢⎣

0 1 0 0

1 0 1 0

0 1 1 1

0 0 1 1

⎤
⎥⎥⎥⎦

which is the matrix Ā for the 1 × 1 matrix A = [1]. By the above theorem,
we have (K0(O1̄), u1̄) = (Z, 1). Hence the simple purely infinite C∗-algebra
O1̄ has the same K-theory as the C∗-algebra O1 = C(S1) of the continu-
ous functions on the unit circle S1 with the positions of their units, whereas

(K0(O1−), u1−) = (Z, 0) for the matrix 1− =
[

1 1 0
1 1 1
0 1 1

]
by [8] (cf. [5, p. 150]).

The following corollary has been shown in [12]. Its proof is now easy by
using [14].

Corollary 5 ([12, Lemma 3.7]). Let F be a finitely generated abelian
group and u an element of F . Let s = 0 when F is infinite and s = −1 or 1
when F is finite. Then there exists an irreducible non-permutation matrix A

such that
(F, u, s) = (G(A), uA, sgn(det(1 − A)).

Proof. By [14, Proposition 6.7 (i)], we know that there exists an irreducible
non-permutation matrix A such that (F, u) = (G(A), uA). If s = sgn(det(1−
A)), the matrix A is the desired one, otherwise Ā is the desired one.
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Let A and B be two irreducible non-permutation matrices with entries in
{0, 1}. The one-sided topological Markov shifts (XA, σA) and (XB, σB) are
said to be flip continuously orbit equivalent if (XA, σA) is continuously orbit
equivalent to either (XB, σB) or (XB̄, σB̄). Similarly two-sided topological
Markov shifts (X̄A, σ̄A) and (X̄B, σ̄B) are said to be flip flow equivalent if
(X̄A, σ̄A) is flow equivalent to either (X̄B, σ̄B), or (X̄B̄ , σ̄B̄ ). We thus have the
following corollaries.

Corollary 6. Let A, B be irreducible matrices with entries in {0, 1} that
are not permutation matrices.

(i) OA is isomorphic to OB if and only if the one-sided topological Markov
shifts (XA, σA) and (XB, σB) are flip continuously orbit equivalent.

(ii) OA is stably isomorphic to OB if and only if the two-sided topological
Markov shifts (X̄A, σ̄A) and (X̄B, σ̄B) are flip flow equivalent.

Let us denote by [OA] the isomorphism class of the Cuntz-Krieger algebra
OA as a C∗-algebra. Since (G(A), uA) is isomorphic to (G(Ā), uĀ), we have
[OA] = [OĀ]. We regard the sign sgn(det(1−A)) of det(1−A) as the orienta-
tion of the class [OA]. Then we can say that the pair ([OA], sgn(det(1−A))) is
a complete invariant of the continuous orbit equivalence class of the one-sided
topological Markov shift (XA, σA).

In the rest of this short note, we present another square matrix Ã of size
N + 3 from a square matrix A = [A(i, j)]Ni,j=1 of size N such that OA is

isomorphic to OÃ and det(1 − A) = − det(1 − Ã). Define (N + 3) × (N + 3)

matrix Ã by setting

Ã =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A(1, 1) . . . A(1, N − 1) A(1, N) 0 0 0
...

...
...

...
...

...

A(N − 1, 1) . . . A(N − 1, N − 1) A(N − 1, N) 0 0 0

0 . . . 0 0 1 0 0

A(N, 1) . . . A(N, N − 1) A(N, N) 0 1 0

0 . . . 0 0 1 0 1

0 . . . 0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The difference between the previous matrix Ā in (1) and the above matrix Ã

is only the (N + 2, N + 2)-component. Its graphical expression of the matrix
Ã from A is the following figure.
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Figure 2

By virtue of [8], we know the following proposition.

Proposition 7. The Cuntz-Krieger algebras OĀ and OÃ are isomorphic,
and det(1 − Ā) = det(1 − Ã).

Proof. Let us denote by Āi the ith row vector of the matrix Ā of size N +3.

We put Ei the row vector of size N + 3 such that Ei = (0, . . . , 0,
i

1, 0, . . . , 0)

where the ith component is one, and the other components are zero. Then
we have ĀN+2 = EN+1 + ĀN+3. Since the (N + 2)th row ÃN+2 of Ã is
ÃN+2 = EN+1 + EN+3, and the other rows of Ã are the same as those of Ā,
the matrix Ã is obtained from Ā by the primitive transfer

Ā �⇒
EN+1+ĀN+3→ÃN+2

Ã

in the sense of [8, Definition 3.5]. We obtain that OĀ is isomorphic to OÃ by [8,
Theorem 3.7], and det(1 − Ā) = det(1 − Ã) by [8, Theorem 8.4].

Before ending this short note, we refer to differences among the three
matrices A−, Ā and Ã from a view point of dynamical system. As (G(A−),

det(1−A−)) = (G(Ā), det(1−Ā)) = (G(Ã), det(1−Ã)), there is a possibility
that their two-sided topological Markov shifts (X̄A− , σ̄A−), (X̄Ā, σ̄Ā), (X̄Ã, σ̄Ã)

are topologically conjugate. We however know that they are not topologically
conjugate to each other in general by the following example. Denote by pn(σ̄A)

the cardinal number of the n-periodic points {x ∈ X̄A | σ̄ n
A(x) = x} of the

topological Markov shift (X̄A, σ̄A). The zeta function ζA(z) for (X̄A, σ̄A) is
defined by

ζA(z) = exp

( ∞∑
n=1

pn(σ̄A)

n
zn

)

(cf. [10]). It is well-known that the formula ζA(z) = 1
det(1−zA)

holds [3]. Let us

denote by 2−, 2̄, 2̃ the matrices A−, Ā, Ã for
[

1 1
1 1

]
respectively. It is straight-
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forward to see that

ζ2−(z) = 1

1 − 4z + 3z2 + 2z3 − z4
,

ζ2̄(z) = 1

1 − 3z + 4z3 − z4
,

ζ2̃(z) = 1

1 − 2z − 2z2 + 4z3
.

The zeta function is invariant under topological conjugacy so that the topolo-
gical Markov shifts (X̄2− , σ̄2−), (X̄2̄, σ̄2̄), (X̄2̃, σ̄2̃) are not topologically con-
jugate to each other.
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