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k-SMOOTHNESS: AN ANSWER TO
AN OPEN PROBLEM

PAWEŁ WÓJCIK

Abstract
The aim of this paper is to characterize the k-smooth points of the closed unit ball of K (H1; H2).
In this paper we also answer a question posed by A. Saleh Hamarsheh in 2015.

1. Introduction

For a unit vector xo in a Banach space X, consider the set

J (xo) := {x∗ ∈ X∗ : ‖x∗‖ = 1, x∗(xo) = ‖xo‖}.
The point x is a smooth point if J (x) consists exactly of one point. Let X be
a real or complex Banach space. Let S(X) denote the unit sphere. It is easy to
see that the set J (x) is convex and closed, and J (x) ⊂ S(X∗). By the Hahn-
Banach theorem we get J (x) �= ∅ for all x ∈ S(X). By Ext F we will denote
the set of all extremal points of a given subset F ⊂ X. Let B(X) denote the
closed unit ball.

In [2], Khalil and Saleh generalize the notion of smoothness by calling a
unit vector x in a Banach space X a k-smooth point, or a multismooth point of
order k if J (x) has exactly k linearly independent vectors, or equivalently, if
dim(span J (x)) = k. For a natural number k, the set of k-smooth points in X

is denoted by N k
sm(X).

2. k-smoothness in the space K (H1; H2)

For Banach spaces X and Y , K (X; Y ) denotes the set of all compact operators
from X into Y . In this paper, we will answer the question posed in [4, p. 2].

Open Problem 2.1 ([4, p. 2]). For Banach spaces X and Y , let T ∈
K (X; Y ) with ‖T ‖ = 1. Is it true that T is a multismooth point of finite order k

in K (X; Y ) if and only if T ∗ attains its norm at only finitely many independent
vectors, say at y∗

1 , y∗
2 , . . . , y∗

r ∈ Ext B(Y ∗) such that each Ty∗
1 , T y∗

2 , . . . , T y∗
r

Received 29 April 2016, in final form 30 April 2017.
DOI: https://doi.org/10.7146/math.scand.a-102834



86 P. WÓJCIK

is a multismooth point of finite order, say mi , in X∗, and where k = m1 +m2 +
· · · + mr?

The answer is no, as this section demonstrates. Let H1, H2 be Hilbert spaces
over K. Let A ∈ K (H1; H2). We write M(A) := {x ∈ S(H1) : ‖Ax‖ =
‖A‖}. It is easy to check that M(A) is compact and dim span M(A) < ∞.
In particular, M(A) �= ∅. The following equality characterizes the extremal
points of the closed unit ball in K (H1; H2)

∗:

Ext B(K (H1; H2)
∗)

= {x ⊗ y ∈ K (H1; H2)
∗ : x ∈ S(H1), y ∈ S(H2)}, (1)

where a ⊗ b: K (H1; H2) → K, (x ⊗ y)(A) := 〈Ax|y〉 for every A ∈
K (H1; H2). This has been proved in [1] and [3]. The next lemma is quite
useful.

Lemma 2.2. Let A ∈ K (H1; H2). If ‖A‖ = 1, then

ExtJ (A) = {x ⊗ Ax : x ∈ M(A)} .

Proof. By computation, we see that J (A) is an extremal subset of
B(K (H1; H2)

∗). Thus we obtain

Ext J (A) ⊂ Ext B(K (H1; H2)
∗). (2)

Combining (1) and (2), we immediately get

Ext J (A) ⊂ {x ⊗ y : x ∈ S(H1), y ∈ S(H2), (x ⊗ y)(A) = 1}. (3)

It is a straightforward computation to by verify that

x ⊗ y ∈ J (A) ⇐⇒ x ∈ M(A), y = Ax. (4)

Next, from (3) and (4), it follows that

Ext J (A) ⊂ {x ⊗ Ax : x ∈ M(A)}.
The reverse inclusion is clear by (1) and (4).

It is a straightforward computation to obtain the following lemma.

Lemma 2.3. Suppose that x1, . . . , xn are pairwise orthogonal vectors in
H1. If y1, . . . , yn are pairwise orthogonal vectors in H2, then {xj ⊗ yi : j, i =
1, . . . , n} is a linearly independent subset of K (H1; H2)

∗.
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The idea of the proof is rather simple. The next result is the main result of
this section and it yields the characterization of N k

sm(K (H1; H2)).

Theorem 2.4. Let H1, H2 be complex Hilbert spaces. Suppose that A ∈
K (H1; H2), ‖A‖ = 1. Then the following statements are equivalent:

(a) A ∈ N k
sm(K (H1; H2)),

(b) k = (dim span M(A))2.

For real Hilbert spaces a similar result holds with the value of k replaced
by

(
n+1

2

)
, where n = dim span M(A). The lower value is due to the fact that

αjαi = αiαj for real αi, αj .

Proof. It is not difficult to prove that a restrictionA|span M(A): span M(A)→
H2 has to be a similarity (scalar multiple of an isometry). Namely, ‖Ax‖ =
‖A‖ · ‖x‖ for all x ∈ span M(A). Since A is compact, dim M(A) = n < ∞
holds. So, there is a maximal orthonormal set {ej ∈ M(A) : j = 1, . . . , n} ⊂
M(A) such that the linear span of {ej ∈ M(A) : j = 1, . . . , n} equals the linear
span of M(A). The restriction A|span M(A) is a similarity, whence Aej⊥Aei for
j �= i.

Note that J (A) is a weak*-compact convex set and hence it is easy to see
that dim span J (A) = dim span Ext J (A). Observe that

k = dim span J (A) = dim span Ext J (A)
(Lemma 2.2)=

= dim span {x ⊗ Ax : x ∈ M(A)}

= dim span

{ n∑
j=1

αj · ej ⊗ A
( n∑

j=1

αj · ej

)
:

n∑
j=1

|αj |2 = 1

}

= dim span

{ n∑
j=1

n∑
i=1

αjαi · ej ⊗ Aei :
n∑

j=1

|αj |2 = 1

}

= dim span{ej ⊗ Aei : j, i = 1, . . . , n} (Lemma 2.3)= n2.

We may consider (a) ⇐⇒ (b) as shown. The proof is complete.

Now we are able to answer the question posed in Open Problem 2.1.

Example 2.5. Consider the Hilbert space X := (C3, 〈 · | · 〉). We define an
operator T ∈ K (X; X) by T (x1, x2, x3) := (x1, x2, 0). It is easy to see that
X∗ = X, T ∗ = T . From now on we may consider X and T instead of X∗, T ∗.
It is a straightforward verification to show that ‖T ‖ = 1 and

dim span M(T ) = 2.
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Therefore, T attains its norm at only two independent vectors, say at y1, y2 ∈
S(X). Moreover, each y1, y2 is a multismooth point of finite order m1 = m2 =
1 in X (indeed, the Hilbert space X is smooth). It follows from Theorem 2.4
that T is a multismooth point of finite order 4 in K (X; X).

Summarizing, we obtain k = 4 > 2 = 1 + 1 = m1 + m2. The problem 2.1
is solved. Namely, the answer is no. The same example over the reals, has
k = 3 > 2 = m1 + m2, so the answer is still no in this case.

3. Corrigendum to [2]

Unluckily, there is a mistake in [2] and we would like to correct it. Let us quote
a result from [2, Theorem 2.2].

Theorem 3.1 ([2, Theorem 2.2]). Let T ∈ S(K (lp)), 1 < p < ∞. Then
the following conditions are equivalent:

(i) T is a multi-smooth point of order k,

(ii) T attains its norm at exactly k-linearly independents elements, say
x1, . . . , xk .

Unfortunately, it follows from Theorem 2.4 and Example 2.5 that The-
orem 3.1 does not hold. The proof of Theorem 3.1 contains a mistake. Namely,
the authors in [2, Theorem 2.2] used the following implication:

if x1 ⊗ y1, . . . , xn ⊗ yn are independent, then x1, . . . , xn are independent.

In fact, the above implication is not true (see (5) and Example 3.2).

Example 3.2. Consider the Hilbert space X := (C3, 〈 · | · 〉). Consider the
following vectors: a = (1, 0, 0), b = (0, 1, 0), c := (1/

√
2, 1/

√
2, 0). Thus

‖a‖ = ‖b‖ = ‖c‖ = 1. Define f, g, h ∈ K (X; X)∗ by

f := a ⊗ a, g := b ⊗ b, h := c ⊗ c. (5)

It is a straightforward verification to show that the functionals a ⊗ a, b ⊗ b,
c ⊗ c are linearly independent. On the other hand, the vectors a, b, c are not
linearly independent.

4. k-smoothness related to exposed points

As an illustration of the application of Theorem 2.4 we prove a well-known
result in a new way. Moreover, we will show that another theorem from [2] can
be extended. Khalil and Saleh [2, Theorem 4.1] proved the following result.

Theorem 4.1 ([2]). Let X be a finite dimensional Banach space and x ∈
S(X). If x is a smooth point of order n = dim X, then x is an extreme point of
the unit ball of X.
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Now, we generalize the above result.

Theorem 4.2. Let X be a finite dimensional Banach space and x ∈ S(X).
If x is a smooth point of order n = dim X, then x is an exposed point of the
unit ball of X.

Proof. Let x be a smooth point of order n of S(X). It follows that there
exist n independent unit functionals a∗

1 , . . . , a
∗
n ∈ S(X∗) such that a∗

j (x) = 1
for all j = 1, . . . , n. We define a functional b∗ ∈ X∗ by b∗ := ∑n

j=1
1
n
a∗
j .

Since ‖b∗‖ ≤ 1 and b∗(x) = 1, we get ‖b∗‖ = 1. Then we define a hyperplane
M := {w ∈ X : b∗(w) = 1}. Clearly x ∈ M ∩ S(X). It is enough to show
that {x} = M ∩ S(X). Assume, contrary to our claim, that there exists y in
M ∩ S(X) such that x �= y. It follows that

|a∗
j (y)| ≤ 1 and 1 = b∗(y) :=

n∑
j=1

1

n
a∗
j (y). (6)

It is easy to check that 1 ∈ Ext[−1, 1] (or in complex case 1 ∈ Ext{z ∈ C :
|z| ≤ 1}). So, by (6) we have a∗

j (y) = 1 for all j = 1, . . . , n.
It is helpful to recall that a∗

j (x) = 1 for all j = 1, . . . , n. It follows that
a∗
j (x) = a∗

j (y) for every j = 1, . . . , n. Since {a∗
1 , . . . , a

∗
n} is total over X, we

have x = y, which is a contradiction.

Let H be a finite-dimensional Hilbert space over C. Suppose that U ∈
L (H ) is an unitary operator. Although it is well known that U is an exposed
point of the unit ball of L (H ), we would like to give a simple proof of this
using our main result, i.e., Theorem 2.4.

Theorem 4.3. Let H be a complex Hilbert space such that dim H < ∞.
Then every unitary operator U in L (H ) is an exposed point of the unit ball
of L (H ).

Proof. It is easy to see that M(U) = S(H ), hence dim span M(U) =
dim H . By Theorem 2.4, U is a smooth point of order (dim span M(U))2 =
dim L (H ). By Theorem 4.2, U is an exposed point of the closed unit ball of
L (H ).

REFERENCES

1. Collins, H. S., and Ruess, W., Weak compactness in spaces of compact operators and of
vector-valued functions, Pacific J. Math. 106 (1983), no. 1, 45–71.

2. Khalil, R., and Saleh, A., Multi-smooth points of finite order, Missouri J. Math. Sci. 17 (2005),
no. 2, 76–87.



90 P. WÓJCIK

3. Lima, Å., and Olsen, G., Extreme points in duals of complex operator spaces, Proc. Amer.
Math. Soc. 94 (1985), no. 3, 437–440.

4. Saleh Hamarsheh, A., k-smooth points in some Banach spaces, Int. J. Math. Math. Sci. (2015),
Art. ID 394282, 4 pp.

INSTITUTE OF MATHEMATICS
PEDAGOGICAL UNIVERSITY OF CRACOW
PODCHORA̧ŻYCH 2
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