k-SMOOTHNESS: AN ANSWER TO AN OPEN PROBLEM

PAWEŁ WÓJCIK

Abstract

The aim of this paper is to characterize the *k*-smooth points of the closed unit ball of $\mathcal{H}(\mathcal{H}_1; \mathcal{H}_2)$. In this paper we also answer a question posed by A. Saleh Hamarsheh in 2015.

1. Introduction

For a unit vector x_o in a Banach space X, consider the set

$$J(x_o) := \{x^* \in X^* : ||x^*|| = 1, \ x^*(x_o) = ||x_o||\}.$$

The point x is a *smooth point* if J(x) consists exactly of one point. Let X be a real or complex Banach space. Let S(X) denote the unit sphere. It is easy to see that the set J(x) is convex and closed, and $J(x) \subset S(X^*)$. By the Hahn-Banach theorem we get $J(x) \neq \emptyset$ for all $x \in S(X)$. By Ext F we will denote the set of all extremal points of a given subset $F \subset X$. Let B(X) denote the closed unit ball.

In [2], Khalil and Saleh generalize the notion of smoothness by calling a unit vector x in a Banach space X a k-smooth point, or a multismooth point of order k if J(x) has exactly k linearly independent vectors, or equivalently, if dim(span J(x)) = k. For a natural number k, the set of k-smooth points in X is denoted by $\mathcal{N}_{sm}^k(X)$.

2. *k*-smoothness in the space $\mathcal{H}(\mathcal{H}_1; \mathcal{H}_2)$

For Banach spaces X and Y, $\mathscr{K}(X; Y)$ denotes the set of all compact operators from X into Y. In this paper, we will answer the question posed in [4, p. 2].

OPEN PROBLEM 2.1 ([4, p. 2]). For Banach spaces X and Y, let $T \in \mathcal{K}(X; Y)$ with ||T|| = 1. Is it true that T is a multismooth point of finite order k in $\mathcal{K}(X; Y)$ if and only if T^* attains its norm at only finitely many independent vectors, say at $y_1^*, y_2^*, \ldots, y_r^* \in \text{Ext } B(Y^*)$ such that each $Ty_1^*, Ty_2^*, \ldots, Ty_r^*$

Received 29 April 2016, in final form 30 April 2017.

DOI: https://doi.org/10.7146/math.scand.a-102834

P. WÓJCIK

is a multismooth point of finite order, say m_i , in X^* , and where $k = m_1 + m_2 + \cdots + m_r$?

The answer is no, as this section demonstrates. Let $\mathcal{H}_1, \mathcal{H}_2$ be Hilbert spaces over \mathbb{K} . Let $A \in \mathcal{K}(\mathcal{H}_1; \mathcal{H}_2)$. We write $\mathcal{M}(A) := \{x \in S(\mathcal{H}_1) : ||Ax|| =$ $||A||\}$. It is easy to check that $\mathcal{M}(A)$ is compact and dim span $\mathcal{M}(A) < \infty$. In particular, $\mathcal{M}(A) \neq \emptyset$. The following equality characterizes the extremal points of the closed unit ball in $\mathcal{K}(\mathcal{H}_1; \mathcal{H}_2)^*$:

Ext
$$B(\mathscr{H}(\mathscr{H}_1; \mathscr{H}_2)^*)$$

= { $x \otimes y \in \mathscr{H}(\mathscr{H}_1; \mathscr{H}_2)^* : x \in S(\mathscr{H}_1), y \in S(\mathscr{H}_2)$ }, (1)

where $a \otimes b: \mathcal{K}(\mathcal{H}_1; \mathcal{H}_2) \to \mathbb{K}$, $(x \otimes y)(A) := \langle Ax | y \rangle$ for every $A \in \mathcal{K}(\mathcal{H}_1; \mathcal{H}_2)$. This has been proved in [1] and [3]. The next lemma is quite useful.

LEMMA 2.2. Let $A \in \mathcal{K}(\mathcal{H}_1; \mathcal{H}_2)$. If ||A|| = 1, then

$$Ext J(A) = \{ x \otimes Ax : x \in \mathcal{M}(A) \}.$$

PROOF. By computation, we see that J(A) is an extremal subset of $B(\mathcal{H}(\mathcal{H}_1; \mathcal{H}_2)^*)$. Thus we obtain

$$\operatorname{Ext} J(A) \subset \operatorname{Ext} B(\mathscr{K}(\mathscr{H}_1; \mathscr{H}_2)^*).$$
⁽²⁾

Combining (1) and (2), we immediately get

$$\operatorname{Ext} J(A) \subset \{ x \otimes y : x \in S(\mathscr{H}_1), \ y \in S(\mathscr{H}_2), \ (x \otimes y)(A) = 1 \}.$$
(3)

It is a straightforward computation to by verify that

$$x \otimes y \in J(A) \iff x \in \mathcal{M}(A), \ y = Ax.$$
 (4)

Next, from (3) and (4), it follows that

Ext
$$J(A) \subset \{x \otimes Ax : x \in \mathcal{M}(A)\}.$$

The reverse inclusion is clear by (1) and (4).

It is a straightforward computation to obtain the following lemma.

LEMMA 2.3. Suppose that x_1, \ldots, x_n are pairwise orthogonal vectors in \mathcal{H}_1 . If y_1, \ldots, y_n are pairwise orthogonal vectors in \mathcal{H}_2 , then $\{x_j \otimes y_i : j, i = 1, \ldots, n\}$ is a linearly independent subset of $\mathcal{K}(\mathcal{H}_1; \mathcal{H}_2)^*$.

86

The idea of the proof is rather simple. The next result is the main result of this section and it yields the characterization of $\mathcal{N}_{sm}^k(\mathcal{H}(\mathcal{H}_1;\mathcal{H}_2))$.

THEOREM 2.4. Let $\mathcal{H}_1, \mathcal{H}_2$ be complex Hilbert spaces. Suppose that $A \in \mathcal{K}(\mathcal{H}_1; \mathcal{H}_2), ||A|| = 1$. Then the following statements are equivalent:

- (a) $A \in \mathcal{N}^k_{sm}(\mathcal{K}(\mathcal{H}_1; \mathcal{H}_2)),$
- (b) $k = (\dim \operatorname{span} \mathcal{M}(A))^2$.

For real Hilbert spaces a similar result holds with the value of k replaced by $\binom{n+1}{2}$, where $n = \dim \operatorname{span} \mathcal{M}(A)$. The lower value is due to the fact that $\alpha_i \overline{\alpha_i} = \alpha_i \overline{\alpha_i}$ for real α_i, α_j .

PROOF. It is not difficult to prove that a restriction $A|_{\text{span }\mathcal{M}(A)}$: span $\mathcal{M}(A) \rightarrow \mathcal{H}_2$ has to be a similarity (scalar multiple of an isometry). Namely, $||Ax|| = ||A|| \cdot ||x||$ for all $x \in \text{span }\mathcal{M}(A)$. Since A is compact, dim $\mathcal{M}(A) = n < \infty$ holds. So, there is a maximal orthonormal set $\{e_j \in \mathcal{M}(A) : j = 1, ..., n\} \subset \mathcal{M}(A)$ such that the linear span of $\{e_j \in \mathcal{M}(A) : j = 1, ..., n\}$ equals the linear span of $\mathcal{M}(A)$. The restriction $A|_{\text{span }\mathcal{M}(A)}$ is a similarity, whence $Ae_j \perp Ae_i$ for $j \neq i$.

Note that J(A) is a weak*-compact convex set and hence it is easy to see that dim span $J(A) = \dim$ span Ext J(A). Observe that

$$k = \dim \operatorname{span} J(A) = \dim \operatorname{span} \operatorname{Ext} J(A) \stackrel{(\operatorname{Lemma} 2.2)}{=} \dim \operatorname{span} \{x \otimes Ax : x \in \mathcal{M}(A)\}$$
$$= \dim \operatorname{span} \left\{ \sum_{j=1}^{n} \alpha_j \cdot e_j \otimes A\left(\sum_{j=1}^{n} \alpha_j \cdot e_j\right) : \sum_{j=1}^{n} |\alpha_j|^2 = 1 \right\}$$
$$= \dim \operatorname{span} \left\{ \sum_{j=1}^{n} \sum_{i=1}^{n} \alpha_j \overline{\alpha_i} \cdot e_j \otimes Ae_i : \sum_{j=1}^{n} |\alpha_j|^2 = 1 \right\}$$
$$= \dim \operatorname{span} \{e_j \otimes Ae_i : j, i = 1, \dots, n\} \stackrel{(\operatorname{Lemma} 2.3)}{=} n^2.$$

We may consider (a) \iff (b) as shown. The proof is complete.

Now we are able to answer the question posed in Open Problem 2.1.

EXAMPLE 2.5. Consider the Hilbert space $X := (\mathbb{C}^3, \langle \cdot | \cdot \rangle)$. We define an operator $T \in \mathcal{H}(X; X)$ by $T(x_1, x_2, x_3) := (x_1, x_2, 0)$. It is easy to see that $X^* = X, T^* = T$. From now on we may consider X and T instead of X^*, T^* . It is a straightforward verification to show that ||T|| = 1 and

dim span
$$\mathcal{M}(T) = 2$$
.

Therefore, *T* attains its norm at only two independent vectors, say at $y_1, y_2 \in S(X)$. Moreover, each y_1, y_2 is a multismooth point of finite order $m_1 = m_2 = 1$ in *X* (indeed, the Hilbert space *X* is smooth). It follows from Theorem 2.4 that *T* is a multismooth point of finite order 4 in $\mathcal{X}(X; X)$.

Summarizing, we obtain $k = 4 > 2 = 1 + 1 = m_1 + m_2$. The problem 2.1 is solved. Namely, the answer is no. The same example over the reals, has $k = 3 > 2 = m_1 + m_2$, so the answer is still no in this case.

3. Corrigendum to [2]

Unluckily, there is a mistake in [2] and we would like to correct it. Let us quote a result from [2, Theorem 2.2].

THEOREM 3.1 ([2, Theorem 2.2]). Let $T \in S(\mathcal{K}(l^p))$, 1 . Then the following conditions are equivalent:

- (i) *T* is a multi-smooth point of order *k*,
- (ii) *T* attains its norm at exactly k-linearly independents elements, say x_1, \ldots, x_k .

Unfortunately, it follows from Theorem 2.4 and Example 2.5 that Theorem 3.1 does not hold. The proof of Theorem 3.1 contains a mistake. Namely, the authors in [2, Theorem 2.2] used the following implication:

if $x_1 \otimes y_1, \ldots, x_n \otimes y_n$ are independent, then x_1, \ldots, x_n are independent.

In fact, the above implication is not true (see (5) and Example 3.2).

EXAMPLE 3.2. Consider the Hilbert space $X := (\mathbb{C}^3, \langle \cdot | \cdot \rangle)$. Consider the following vectors: $a = (1, 0, 0), b = (0, 1, 0), c := (1/\sqrt{2}, 1/\sqrt{2}, 0)$. Thus ||a|| = ||b|| = ||c|| = 1. Define $f, g, h \in \mathcal{K}(X; X)^*$ by

$$f := a \otimes a, \quad g := b \otimes b, \quad h := c \otimes c. \tag{5}$$

It is a straightforward verification to show that the functionals $a \otimes a, b \otimes b$, $c \otimes c$ are linearly independent. On the other hand, the vectors a, b, c are not linearly independent.

4. k-smoothness related to exposed points

As an illustration of the application of Theorem 2.4 we prove a well-known result in a new way. Moreover, we will show that another theorem from [2] can be extended. Khalil and Saleh [2, Theorem 4.1] proved the following result.

THEOREM 4.1 ([2]). Let X be a finite dimensional Banach space and $x \in S(X)$. If x is a smooth point of order $n = \dim X$, then x is an extreme point of the unit ball of X.

Now, we generalize the above result.

THEOREM 4.2. Let X be a finite dimensional Banach space and $x \in S(X)$. If x is a smooth point of order $n = \dim X$, then x is an exposed point of the unit ball of X.

PROOF. Let *x* be a smooth point of order *n* of *S*(*X*). It follows that there exist *n* independent unit functionals $a_1^*, \ldots, a_n^* \in S(X^*)$ such that $a_j^*(x) = 1$ for all $j = 1, \ldots, n$. We define a functional $b^* \in X^*$ by $b^* := \sum_{j=1}^n \frac{1}{n} a_j^*$. Since $||b^*|| \le 1$ and $b^*(x) = 1$, we get $||b^*|| = 1$. Then we define a hyperplane $M := \{w \in X : b^*(w) = 1\}$. Clearly $x \in M \cap S(X)$. It is enough to show that $\{x\} = M \cap S(X)$. Assume, contrary to our claim, that there exists *y* in $M \cap S(X)$ such that $x \ne y$. It follows that

$$|a_j^*(y)| \le 1$$
 and $1 = b^*(y) := \sum_{j=1}^n \frac{1}{n} a_j^*(y).$ (6)

It is easy to check that $1 \in \text{Ext}[-1, 1]$ (or in complex case $1 \in \text{Ext}\{z \in \mathbb{C} : |z| \le 1\}$). So, by (6) we have $a_i^*(y) = 1$ for all j = 1, ..., n.

It is helpful to recall that $a_j^*(x) = 1$ for all j = 1, ..., n. It follows that $a_j^*(x) = a_j^*(y)$ for every j = 1, ..., n. Since $\{a_1^*, ..., a_n^*\}$ is total over X, we have x = y, which is a contradiction.

Let \mathscr{H} be a finite-dimensional Hilbert space over \mathbb{C} . Suppose that $U \in \mathscr{L}(\mathscr{H})$ is an unitary operator. Although it is well known that U is an exposed point of the unit ball of $\mathscr{L}(\mathscr{H})$, we would like to give a simple proof of this using our main result, i.e., Theorem 2.4.

THEOREM 4.3. Let \mathcal{H} be a complex Hilbert space such that dim $\mathcal{H} < \infty$. Then every unitary operator U in $\mathcal{L}(\mathcal{H})$ is an exposed point of the unit ball of $\mathcal{L}(\mathcal{H})$.

PROOF. It is easy to see that $\mathcal{M}(U) = S(\mathcal{H})$, hence dim span $\mathcal{M}(U) = \dim \mathcal{H}$. By Theorem 2.4, U is a smooth point of order $(\dim \operatorname{span} \mathcal{M}(U))^2 = \dim \mathcal{L}(\mathcal{H})$. By Theorem 4.2, U is an exposed point of the closed unit ball of $\mathcal{L}(\mathcal{H})$.

REFERENCES

- Collins, H. S., and Ruess, W., Weak compactness in spaces of compact operators and of vector-valued functions, Pacific J. Math. 106 (1983), no. 1, 45–71.
- Khalil, R., and Saleh, A., Multi-smooth points of finite order, Missouri J. Math. Sci. 17 (2005), no. 2, 76–87.

P. WÓJCIK

- Lima, Å., and Olsen, G., Extreme points in duals of complex operator spaces, Proc. Amer. Math. Soc. 94 (1985), no. 3, 437–440.
- 4. Saleh Hamarsheh, A., *k-smooth points in some Banach spaces*, Int. J. Math. Math. Sci. (2015), Art. ID 394282, 4 pp.

INSTITUTE OF MATHEMATICS PEDAGOGICAL UNIVERSITY OF CRACOW PODCHORĄŻYCH 2 30-084 KRAKÓW POLAND *E-mail:* pwojcik@up.krakow.pl

90