k-SMOOTHNESS: AN ANSWER TO AN OPEN PROBLEM

PAWEŁ WÓJCIK

Abstract

The aim of this paper is to characterize the k-smooth points of the closed unit ball of $\mathscr{K}\left(\mathscr{H}_{1} ; \mathscr{H}_{2}\right)$. In this paper we also answer a question posed by A. Saleh Hamarsheh in 2015.

1. Introduction

For a unit vector x_{o} in a Banach space X, consider the set

$$
J\left(x_{o}\right):=\left\{x^{*} \in X^{*}:\left\|x^{*}\right\|=1, x^{*}\left(x_{o}\right)=\left\|x_{o}\right\|\right\} .
$$

The point x is a smooth point if $J(x)$ consists exactly of one point. Let X be a real or complex Banach space. Let $S(X)$ denote the unit sphere. It is easy to see that the set $J(x)$ is convex and closed, and $J(x) \subset S\left(X^{*}\right)$. By the HahnBanach theorem we get $J(x) \neq \emptyset$ for all $x \in S(X)$. By Ext F we will denote the set of all extremal points of a given subset $F \subset X$. Let $B(X)$ denote the closed unit ball.

In [2], Khalil and Saleh generalize the notion of smoothness by calling a unit vector x in a Banach space X a k-smooth point, or a multismooth point of order k if $J(x)$ has exactly k linearly independent vectors, or equivalently, if $\operatorname{dim}(\operatorname{span} J(x))=k$. For a natural number k, the set of k-smooth points in X is denoted by $\mathcal{S}_{s m}^{k}(X)$.

2. \boldsymbol{k}-smoothness in the space $\mathscr{K}\left(\mathscr{H}_{1} ; \mathscr{H}_{2}\right)$

For Banach spaces X and $Y, \mathscr{K}(X ; Y)$ denotes the set of all compact operators from X into Y. In this paper, we will answer the question posed in [4, p. 2].

Open Problem 2.1 ([4, p. 2]). For Banach spaces X and Y, let $T \in$ $\mathscr{K}(X ; Y)$ with $\|T\|=1$. Is it true that T is a multismooth point of finite order k in $\mathscr{K}(X ; Y)$ if and only if T^{*} attains its norm at only finitely many independent vectors, say at $y_{1}^{*}, y_{2}^{*}, \ldots, y_{r}^{*} \in \operatorname{Ext} B\left(Y^{*}\right)$ such that each $T y_{1}^{*}, T y_{2}^{*}, \ldots, T y_{r}^{*}$

[^0]is a multismooth point of finite order, say m_{i}, in X^{*}, and where $k=m_{1}+m_{2}+$ $\cdots+m_{r}$?

The answer is no, as this section demonstrates. Let $\mathscr{H}_{1}, \mathscr{H}_{2}$ be Hilbert spaces over \mathbb{K}. Let $A \in \mathscr{K}\left(\mathscr{H}_{1} ; \mathscr{H}_{2}\right)$. We write $\mathscr{M}(A):=\left\{x \in S\left(\mathscr{H}_{1}\right):\|A x\|=\right.$ $\|A\|\}$. It is easy to check that $\mathscr{M}(A)$ is compact and $\operatorname{dim} \operatorname{span} \mathscr{M}(A)<\infty$. In particular, $\mathscr{M}(A) \neq \emptyset$. The following equality characterizes the extremal points of the closed unit ball in $\mathscr{K}\left(\mathscr{H}_{1} ; \mathscr{H}_{2}\right)^{*}$:

$$
\begin{align*}
& \operatorname{Ext} B\left(\mathscr{K}\left(\mathscr{H}_{1} ; \mathscr{H}_{2}\right)^{*}\right) \\
& \qquad=\left\{x \otimes y \in \mathscr{K}\left(\mathscr{H}_{1} ; \mathscr{H}_{2}\right)^{*}: x \in S\left(\mathscr{H}_{1}\right), y \in S\left(\mathscr{H}_{2}\right)\right\}, \tag{1}
\end{align*}
$$

where $a \otimes b: \mathscr{K}\left(\mathscr{H}_{1} ; \mathscr{H}_{2}\right) \rightarrow \mathbb{K},(x \otimes y)(A):=\langle A x \mid y\rangle$ for every $A \in$ $\mathscr{K}\left(\mathscr{H}_{1} ; \mathscr{H}_{2}\right)$. This has been proved in [1] and [3]. The next lemma is quite useful.

Lemma 2.2. Let $A \in \mathscr{K}\left(\mathscr{H}_{1} ; \mathscr{H}_{2}\right)$. If $\|A\|=1$, then

$$
\operatorname{Ext} J(A)=\{x \otimes A x: x \in \mathscr{M}(A)\}
$$

Proof. By computation, we see that $J(A)$ is an extremal subset of $B\left(\mathscr{K}\left(\mathscr{H}_{1} ; \mathscr{H}_{2}\right)^{*}\right)$. Thus we obtain

$$
\begin{equation*}
\operatorname{Ext} J(A) \subset \operatorname{Ext} B\left(\mathscr{K}\left(\mathscr{H}_{1} ; \mathscr{H}_{2}\right)^{*}\right) \tag{2}
\end{equation*}
$$

Combining (1) and (2), we immediately get

$$
\begin{equation*}
\operatorname{Ext} J(A) \subset\left\{x \otimes y: x \in S\left(\mathscr{H}_{1}\right), y \in S\left(\mathscr{H}_{2}\right),(x \otimes y)(A)=1\right\} \tag{3}
\end{equation*}
$$

It is a straightforward computation to by verify that

$$
\begin{equation*}
x \otimes y \in J(A) \quad \Longleftrightarrow \quad x \in \mathscr{M}(A), y=A x . \tag{4}
\end{equation*}
$$

Next, from (3) and (4), it follows that

$$
\operatorname{Ext} J(A) \subset\{x \otimes A x: x \in \mathscr{M}(A)\}
$$

The reverse inclusion is clear by (1) and (4).
It is a straightforward computation to obtain the following lemma.
Lemma 2.3. Suppose that x_{1}, \ldots, x_{n} are pairwise orthogonal vectors in \mathscr{H}_{1}. If y_{1}, \ldots, y_{n} are pairwise orthogonal vectors in \mathscr{H}_{2}, then $\left\{x_{j} \otimes y_{i}: j, i=\right.$ $1, \ldots, n\}$ is a linearly independent subset of $\mathscr{K}\left(\mathscr{H}_{1} ; \mathscr{H}_{2}\right)^{*}$.

The idea of the proof is rather simple. The next result is the main result of this section and it yields the characterization of $\mathcal{N}_{s m}^{k}\left(\mathscr{K}\left(\mathscr{H}_{1} ; \mathscr{H}_{2}\right)\right)$.

Theorem 2.4. Let $\mathscr{H}_{1}, \mathscr{H}_{2}$ be complex Hilbert spaces. Suppose that $A \in$ $\mathscr{K}\left(\mathscr{H}_{1} ; \mathscr{H}_{2}\right),\|A\|=1$. Then the following statements are equivalent:
(a) $A \in \mathcal{N}_{s m}^{k}\left(\mathscr{K}\left(\mathscr{H}_{1} ; \mathscr{H}_{2}\right)\right)$,
(b) $k=(\operatorname{dim} \operatorname{span} \mathscr{M}(A))^{2}$.

For real Hilbert spaces a similar result holds with the value of k replaced by $\binom{n+1}{2}$, where $n=\operatorname{dim} \operatorname{span} \mathscr{M}(A)$. The lower value is due to the fact that $\alpha_{j} \overline{\alpha_{i}}=\alpha_{i} \overline{\alpha_{j}}$ for real α_{i}, α_{j}.

Proof. It is not difficult to prove that a restriction $\left.A\right|_{\text {span } \mathscr{M}(A)}$: span $\mathscr{M}(A) \rightarrow$ \mathscr{H}_{2} has to be a similarity (scalar multiple of an isometry). Namely, $\|A x\|=$ $\|A\| \cdot\|x\|$ for all $x \in \operatorname{span} \mathscr{M}(A)$. Since A is compact, $\operatorname{dim} \mathscr{M}(A)=n<\infty$ holds. So, there is a maximal orthonormal set $\left\{e_{j} \in \mathscr{M}(A): j=1, \ldots, n\right\} \subset$ $\mathscr{M}(A)$ such that the linear span of $\left\{e_{j} \in \mathscr{M}(A): j=1, \ldots, n\right\}$ equals the linear span of $\mathscr{M}(A)$. The restriction $\left.A\right|_{\text {span }} \mathscr{M}(A)$ is a similarity, whence $A e_{j} \perp A e_{i}$ for $j \neq i$.

Note that $J(A)$ is a weak*-compact convex set and hence it is easy to see that $\operatorname{dim} \operatorname{span} J(A)=\operatorname{dim}$ span Ext $J(A)$. Observe that

$$
\begin{aligned}
k & =\operatorname{dim} \operatorname{span} J(A)=\operatorname{dim} \operatorname{span} \operatorname{Ext} J(A) \stackrel{(\text { Lemma }}{=}{ }^{2.2)} \\
& =\operatorname{dim} \operatorname{span}\{x \otimes A x: x \in \mathscr{M}(A)\} \\
& =\operatorname{dim} \operatorname{span}\left\{\sum_{j=1}^{n} \alpha_{j} \cdot e_{j} \otimes A\left(\sum_{j=1}^{n} \alpha_{j} \cdot e_{j}\right): \sum_{j=1}^{n}\left|\alpha_{j}\right|^{2}=1\right\} \\
& =\operatorname{dim} \operatorname{span}\left\{\sum_{j=1}^{n} \sum_{i=1}^{n} \alpha_{j} \overline{\alpha_{i}} \cdot e_{j} \otimes A e_{i}: \sum_{j=1}^{n}\left|\alpha_{j}\right|^{2}=1\right\} \\
& =\operatorname{dim} \operatorname{span}\left\{e_{j} \otimes A e_{i}: j, i=1, \ldots, n\right\} \stackrel{\text { (Lemma 2.3) }}{=} n^{2} .
\end{aligned}
$$

We may consider $(\mathrm{a}) \Longleftrightarrow(\mathrm{b})$ as shown. The proof is complete.
Now we are able to answer the question posed in Open Problem 2.1.
Example 2.5. Consider the Hilbert space $X:=\left(\mathbb{C}^{3},\langle\cdot \mid \cdot\rangle\right)$. We define an operator $T \in \mathscr{K}(X ; X)$ by $T\left(x_{1}, x_{2}, x_{3}\right):=\left(x_{1}, x_{2}, 0\right)$. It is easy to see that $X^{*}=X, T^{*}=T$. From now on we may consider X and T instead of X^{*}, T^{*}. It is a straightforward verification to show that $\|T\|=1$ and

$$
\operatorname{dim} \operatorname{span} \mathscr{M}(T)=2
$$

Therefore, T attains its norm at only two independent vectors, say at $y_{1}, y_{2} \in$ $S(X)$. Moreover, each y_{1}, y_{2} is a multismooth point of finite order $m_{1}=m_{2}=$ 1 in X (indeed, the Hilbert space X is smooth). It follows from Theorem 2.4 that T is a multismooth point of finite order 4 in $\mathscr{K}(X ; X)$.

Summarizing, we obtain $k=4>2=1+1=m_{1}+m_{2}$. The problem 2.1 is solved. Namely, the answer is no. The same example over the reals, has $k=3>2=m_{1}+m_{2}$, so the answer is still no in this case.

3. Corrigendum to [2]

Unluckily, there is a mistake in [2] and we would like to correct it. Let us quote a result from [2, Theorem 2.2].

Theorem 3.1 ([2, Theorem 2.2]). Let $T \in S\left(\mathscr{K}\left(l^{p}\right)\right), 1<p<\infty$. Then the following conditions are equivalent:
(i) T is a multi-smooth point of order k,
(ii) T attains its norm at exactly k-linearly independents elements, say x_{1}, \ldots, x_{k}.

Unfortunately, it follows from Theorem 2.4 and Example 2.5 that Theorem 3.1 does not hold. The proof of Theorem 3.1 contains a mistake. Namely, the authors in [2, Theorem 2.2] used the following implication:
if $x_{1} \otimes y_{1}, \ldots, x_{n} \otimes y_{n}$ are independent, then x_{1}, \ldots, x_{n} are independent.
In fact, the above implication is not true (see (5) and Example 3.2).
Example 3.2. Consider the Hilbert space $X:=\left(\mathbb{C}^{3},\langle\cdot \mid \cdot\rangle\right)$. Consider the following vectors: $a=(1,0,0), b=(0,1,0), c:=(1 / \sqrt{2}, 1 / \sqrt{2}, 0)$. Thus $\|a\|=\|b\|=\|c\|=1$. Define $f, g, h \in \mathscr{K}(X ; X)^{*}$ by

$$
\begin{equation*}
f:=a \otimes a, \quad g:=b \otimes b, \quad h:=c \otimes c . \tag{5}
\end{equation*}
$$

It is a straightforward verification to show that the functionals $a \otimes a, b \otimes b$, $c \otimes c$ are linearly independent. On the other hand, the vectors a, b, c are not linearly independent.

4. \boldsymbol{k}-smoothness related to exposed points

As an illustration of the application of Theorem 2.4 we prove a well-known result in a new way. Moreover, we will show that another theorem from [2] can be extended. Khalil and Saleh [2, Theorem 4.1] proved the following result.

Theorem 4.1 ([2]). Let X be a finite dimensional Banach space and $x \in$ $S(X)$. If x is a smooth point of order $n=\operatorname{dim} X$, then x is an extreme point of the unit ball of X.

Now, we generalize the above result.
Theorem 4.2. Let X be a finite dimensional Banach space and $x \in S(X)$. If x is a smooth point of order $n=\operatorname{dim} X$, then x is an exposed point of the unit ball of X.

Proof. Let x be a smooth point of order n of $S(X)$. It follows that there exist n independent unit functionals $a_{1}^{*}, \ldots, a_{n}^{*} \in S\left(X^{*}\right)$ such that $a_{j}^{*}(x)=1$ for all $j=1, \ldots, n$. We define a functional $b^{*} \in X^{*}$ by $b^{*}:=\sum_{j=1}^{n} \frac{1}{n} a_{j}^{*}$. Since $\left\|b^{*}\right\| \leq 1$ and $b^{*}(x)=1$, we get $\left\|b^{*}\right\|=1$. Then we define a hyperplane $M:=\left\{w \in X: b^{*}(w)=1\right\}$. Clearly $x \in M \cap S(X)$. It is enough to show that $\{x\}=M \cap S(X)$. Assume, contrary to our claim, that there exists y in $M \cap S(X)$ such that $x \neq y$. It follows that

$$
\begin{equation*}
\left|a_{j}^{*}(y)\right| \leq 1 \quad \text { and } \quad 1=b^{*}(y):=\sum_{j=1}^{n} \frac{1}{n} a_{j}^{*}(y) \tag{6}
\end{equation*}
$$

It is easy to check that $1 \in \operatorname{Ext}[-1,1]$ (or in complex case $1 \in \operatorname{Ext}\{z \in \mathbb{C}$: $|z| \leq 1\}$). So, by (6) we have $a_{j}^{*}(y)=1$ for all $j=1, \ldots, n$.

It is helpful to recall that $a_{j}^{*}(x)=1$ for all $j=1, \ldots, n$. It follows that $a_{j}^{*}(x)=a_{j}^{*}(y)$ for every $j=1, \ldots, n$. Since $\left\{a_{1}^{*}, \ldots, a_{n}^{*}\right\}$ is total over X, we have $x=y$, which is a contradiction.

Let \mathscr{H} be a finite-dimensional Hilbert space over \mathbb{C}. Suppose that $U \in$ $\mathscr{L}(\mathscr{H})$ is an unitary operator. Although it is well known that U is an exposed point of the unit ball of $\mathscr{L}(\mathscr{H})$, we would like to give a simple proof of this using our main result, i.e., Theorem 2.4.

Theorem 4.3. Let \mathscr{H} be a complex Hilbert space such that $\operatorname{dim} \mathscr{H}<\infty$. Then every unitary operator U in $\mathscr{L}(\mathscr{H})$ is an exposed point of the unit ball of $\mathscr{L}(\mathscr{H})$.

Proof. It is easy to see that $\mathscr{M}(U)=S(\mathscr{H})$, hence $\operatorname{dim} \operatorname{span} \mathscr{M}(U)=$ $\operatorname{dim} \mathscr{H}$. By Theorem $2.4, U$ is a smooth point of order $(\operatorname{dim} \operatorname{span} \mathscr{M}(U))^{2}=$ $\operatorname{dim} \mathscr{L}(\mathscr{H})$. By Theorem 4.2, U is an exposed point of the closed unit ball of $\mathscr{L}(\mathscr{H})$.

REFERENCES

1. Collins, H. S., and Ruess, W., Weak compactness in spaces of compact operators and of vector-valued functions, Pacific J. Math. 106 (1983), no. 1, 45-71.
2. Khalil, R., and Saleh, A., Multi-smooth points of finite order, Missouri J. Math. Sci. 17 (2005), no. 2, 76-87.
3. Lima, Å., and Olsen, G., Extreme points in duals of complex operator spaces, Proc. Amer. Math. Soc. 94 (1985), no. 3, 437-440.
4. Saleh Hamarsheh, A., k-smooth points in some Banach spaces, Int. J. Math. Math. Sci. (2015), Art. ID 394282, 4 pp.

INSTITUTE OF MATHEMATICS
PEDAGOGICAL UNIVERSITY OF CRACOW
PODCHORA̧ŻYCH 2
30-084 KRAKÓW
POLAND
E-mail: pwojcik@up.krakow.pl

[^0]: Received 29 April 2016, in final form 30 April 2017.
 DOI: https://doi.org/10.7146/math.scand.a-102834

