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UNBOUNDED SYMMETRIC ANALYTIC
FUNCTIONS ON �1
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Abstract
We show that each G-analytic symmetric function on an open set of �1 is analytic and construct
an example of a symmetric analytic function on �1 which is not of bounded type.

Let G be the group of permutations on the set of positive integers N. A
function f : �1 → C is called symmetric if for every σ ∈ G and every
x = (x1, . . . , xn, . . .) ∈ �1, we have

f (x1, . . . , xn, . . .) = f (xσ(1), . . . , xσ(n), . . .).

Symmetric polynomials on �p (with respect to G) and on Lp[0, 1] (with
respect to the group of measure-preserving permutations on [0, 1]) for 1 ≤ p <

∞ were first studied by Nemirovskii and Semenov in [10]. In [7], González,
Gonzalo and Jaramillo investigated algebraic bases for various algebras of
symmetric polynomials on rearrangement-invariant spaces. In particular, they
proved that similarly to the classical finite-dimensional case, the polynomials

Fk(x) =
∞∑
i=1

xk
i , k = 1, 2, . . .

form an algebraic basis for the algebra of all symmetric polynomials on �1.
We use the notation P(�1) for the algebra of all polynomials on �1 and

Ps(�1) for the algebra of all symmetric polynomials on �1. The completion of
P(�1) in the metric of uniform convergence on bounded sets coincides with the
algebra of entire analytic functions of bounded type Hb(�1) on �1. We denote
by Hbs(�1) the subalgebra of all symmetric functions in Hb(�1). The algebra
Hbs(�p) was investigated in [5], [4], [6] (see also the survey [3]).

It is known that there are entire functions on infinite-dimensional Banach
spaces which are not bounded on some bounded subsets, that is, do not belong
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to Hb (see e.g. [9, p. 544]). Unbounded entire functions were investigated by
many authors. For example, in [1] it was proved that there exists an entire
function on a Banach space which is bounded on one of two disjoint balls and
unbounded on the other. However, the question about existence of symmetric
entire functions which are not of bounded type on infinite-dimensional Banach
spaces has so far been open.

Let us recall that a function f on an open subset V of a Banach space X

is G-analytic if it is analytic on every finite-dimensional subspace intersected
with V . It is well known that in any infinite-dimensional Banach space there
are discontinuous G-analytic functions (see [9, p. 58] for details).

In this paper we show that each symmetric G-analytic function on an open
subset of �1 is analytic. Also we construct an example of a symmetric entire
function which is not of bounded type. Finally we construct a simple example
which demonstrates the known fact that the homomorphism

�−: Ps(�1) −→ Ps(�1),

�−: Fk �−→ −Fk

is discontinuous.

Theorem 1. Let U be an open subset of �1 and let f : U → Cbe a G-analytic
symmetric function. Then f is continuous and therefore analytic.

Proof. Let B be an open ball in U such that

f (x) =
∞∑

n=0

Pn(x)

for every x ∈ B, where Pn are n-homogeneous polynomials and the series con-
verges pointwise. Such representation exists according to [9, Proposition 8.4].

Since f is symmetric, all polynomials Pn should be symmetric. Let us show
that each symmetric polynomial Pn is continuous.

Let P (m)
n be the restriction of Pn to the m-dimensional space Vm = span(e1,

e2, . . . , em) ⊂ �1, where {ek}∞k=1 is the standard basis of �1. SinceF
(m)
1 , . . . ,F (m)

m

form an algebraic basis in the space of all symmetric polynomials on Vm and
Pn can be represented by an algebraic combination of polynomials
F

(m)
1 , . . . , F

(m)
j , where j = min(n, m), there is a polynomial qm(t1, . . . , tj )

on Cj such that

P (m)
n (x) = qm(F

(m)
1 (x), . . . , F

(m)
j (x)),

for all x ∈ Vm.
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If m ≥ n = deg Pn, then j = n and qm = qn. Indeed, otherwise qm − qn

would be a non-trivial polynomial onCn with (qm−qn)(F
(n)
1 (x), . . . , F (n)

n (x))

≡ 0, which contradicts the algebraic independence of F
(n)
1 , . . . , F (n)

n . So

Pn(x) = qn(F1(x), . . . , Fn(x)),

x ∈ �1 and consequently Pn is continuous. Therefore f is locally bounded and
so analytic [9, p. 67].

Note that the same arguments work if we replace �1 by �p, for 1 ≤ p < ∞.
The following lemma is a simple exercise from calculus.

Lemma 2. Let
∑∞

n=0 cnt
n/n! be a power series whose radius of convergence

equals 1. Then for every fixed k, the series
∑∞

n=0 cn+kt
n/n! has the same radius

of convergence.

Proof. Since γ (t) = ∑∞
n=0 cnt

n/n! is analytic on the open unit disk D, its
kth derivative is analytic on D and its Taylor series expansion has the same
radius of convergence. On the other hand

dkγ (t)

dtk
=

∞∑
n=k

n(n − 1) · · · (n − k + 1)cnt
n−k

n!
=

∞∑
n=k

cnt
n−k

(n − k)!
=

∞∑
n=0

cn+kt
n

n!

and the result follows.

For given x, y ∈ �1, x = (x1, x2, . . .) and y = (y1, y2, . . .), the intertwining
(see e.g. [5]) of x and y, x • y ∈ �1, is defined by:

x • y = (x1, y1, x2, y2, . . .).

For a fixed sequence {cn} of complex numbers let us define, for each x ∈ �1

such that series converges,

g(x) =
∞∑

n=0

cnGn(x),

where

Gn(x) =
∞∑

k1<···<kn

xk1 · · · xkn

and G0 = 1. Then the following theorem holds:

Theorem 3. Suppose that g is well defined in the unit ball of �1 centered
at zero. Then for every x0 ∈ �1, ‖x0‖ < 1, g is well defined at x̃ = x(m) • x0,
where x(m) = (x1, . . . , xm, 0, . . .).
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Proof. It is known [4] that

Gn(x • y) =
n∑

k=0

Gk(x)Gn−k(y).

Taking into account that Gk(x
(m)) = 0 for k > m, we have

g(̃x)

=
∞∑

n=0

cnGn(̃x) =
∞∑

n=0

cnGn(x
(m) • x0) =

∞∑
n=0

cn

n∑
k=0

Gk(x
(m))Gn−k(x

0)

=
∞∑

n=0

cnGn(x
0) + G1(x

(m))

∞∑
n=1

cnGn−1(x
0) + G2(x

(m))

∞∑
n=2

cnGn−2(x
0) +

· · · + Gm−1(x
(m))

∞∑
n=m−1

cnGn+1−m(x0) + Gm(x(m))

∞∑
n=m

cnGn−m(x0).

The last equality has a finite number of terms

Gk(x
(m))

∞∑
n=k

cnGn−k(x
0).

Since ‖Gn‖ = 1/n! (see [4, Lemma 3.1]), for each of the above terms we have

∣∣Gk(x
(m))

∣∣
∣∣∣∣

∞∑
n=k

cnGn−k(x
0)

∣∣∣∣ ≤ ‖x(m)‖k

k!

∞∑
n=0

|cn+k|‖Gn−k(x
0)‖

≤ ‖x(m)‖k

k!

∞∑
n=0

|cn+k| ‖x
0‖n

n!
.

By Lemma 2, the series ∞∑
n=0

|cn+k| ‖x
0‖n

n!

converges. So g is well defined at x̃.

Example 4. Let (an) be a scalar sequence such that the radius of conver-
gence of power series

∑∞
n=0

an

n! t
n at zero is equal to 1. Let us define

f (x) =
∞∑

n=0

anGn(x).
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Since ‖Gn‖ = 1/n!, the radius of convergence of f at zero,

ρ0(f ) = 1

lim sup
n→∞

‖anGn‖1/n
,

is equal to the radius of convergence of
∑∞

n=0
an

n! t
n at zero which is equal

to 1. Consider x ∈ �1. Then there is a positive integer m such that x(m) =
(x1, . . . , xm, 0, . . .), x0 = (xm+1, xm+2, . . .) and y = x(m) • x0 ∈ �1 have
‖x0‖ < 1 and P(x) = P(y) for every symmetric polynomial P . Since
ρ0(f ) = 1, the function f is defined at x0. By Theorem 3, f is well defined at y
and the equality Gn(x) = Gn(y) for every n implies that f is well defined at x,
with f (x) = f (y). By Theorem 1, f is analytic. So f is an entire symmetric
function, but it is not a function of bounded type, that is, f �∈ Hbs(�1).

For a given sequence of numbers b = {bk} we consider a mapping �b

which is defined on the algebraic basis of symmetric polynomials Fk by

�b(Fk) = bkFk.

Obviously, this mapping can be extended by linearity and multiplicativity to a
homomorphism in the algebra of all symmetric polynomials Ps(�1). In [6] it is
shown that �b is continuous in the topology of Hbs(�1) and can be extended to
Hbs(�1) if and only if bk = ϕ(Fk) for some continuous complex homomorph-
ism ϕ on Hbs(�1). In particular, �− = �b for b = (−1, −1, . . . ,−1, . . .) is a
discontinuous homomorphism. The reader can find more about discontinuous
homomorphisms on Ps(�p) in [2]. The following example gives us a function
h ∈ Hbs(�1) such that �−(h) �∈ Hbs(�1).

Example 5. Let us define

h(x) =
∞∑

k=0

Gk(x).

By Waring’s formula (see e.g. [8]), we can write

Gk =
∑

λ1+2λ2+···+kλk=k

(−1)k−(λ1+λ2+···+λk)
1

λ1!1λ1 · . . . · λk!kλk
F

λ1
1 · . . . · F

λk

k .

On the other hand,

∑
λ1+2λ2+...+kλk=k

1

λ1!1λ1 · . . . · λk!kλk
= 1.
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Therefore

�−(Gk) =
∑

λ1+2λ2+···+kλk=k

(−1)k−(λ1+λ2+...+λk)
1

λ1!1λ1 · . . . · λk!kλk

× (−1)λ1+λ2+···+λkF
λ1
1 · . . . · F

λk

k

= (−1)k
∑

λ1+2λ2+···+kλk=k

1

λ1!1λ1 · . . . · λk!kλk
F

λ1
1 · . . . · F

λk

k

and

‖�−(Gk)‖ =
∥∥∥∥

∑
λ1+2λ2+···+kλk=k

1

λ1!1λ1 · . . . · λk!kλk
F

λ1
1 · . . . · F

λk

k

∥∥∥∥

≤
∥∥∥∥

∑
λ1+2λ2+···+kλk=k

1

λ1!1λ1 · . . . · λk!kλk

∥∥∥∥ = 1.

So,
ρ0(�−(h)) = 1,

and thus �−(h) �∈ Hbs(�1).
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