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STABILITY OF RANK TWO ULRICH BUNDLES
ON PROJECTIVE K3 SURFACES

GIANFRANCO CASNATI and FEDERICA GALLUZZI∗

Abstract
Let F ⊆ PN be a K3 surface of degree 2a, where a ≥ 2. In this paper we deal with Ulrich bundles
on F of rank 2. We deal with their stability and we construct K3 surfaces endowed with families
of non-special Ulrich bundles of rank 2 for each a ≥ 2.

1. Introduction and notation

Throughout the whole paper, PN will denote the projective space of dimen-
sion N over the complex field C.

Each smooth surface F ⊆ PN is endowed with a polarization OF (h) :=
OPN (1) ⊗ OF . A natural problem in the study of the geometry of F is to deal
with the vector bundles that it supports.

Clearly we can restrict our attention to indecomposable bundles, i.e. bundles
which do not split as a direct sum of bundles of lower rank. From the cohomo-
logical viewpoint, the simplest vector bundles are the arithmetically Cohen-
Macaulay (aCM for short) ones, i.e. bundles E such that h1(F, E (th)) = 0
for t ∈ Z. Notice that such a property is trivially invariant up to shifting
degrees. Thus we can focus on initialized bundles, i.e. bundles E such that
h0(F, E (−h)) = 0 and h0(F, E ) �= 0.

Horrocks’ theorem (see [21] and the references therein) guarantees that
OF is the unique initialized, indecomposable, aCM bundle when F ⊆ PN is a
plane. Recall that a closed subscheme F ⊆ PN is called aCM if it is projectively
normal and OF is aCM. A very general result of D. Eisenbud and J. Herzog
(see [12]) implies that, besides planes, only few other surfaces support at most
a finite number of aCM bundles, namely smooth quadrics, smooth rational
scrolls of degree up to 4, the Veronese surface.

M. Casanellas and R. Hartshorne proved in [3] and [4] that a smooth cu-
bic surface in P3 is endowed with families of arbitrary dimension of non-
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isomorphic, indecomposable initialized aCM bundles. In order to achieve their
results, the authors constructed families of initialized aCM bundles with an
extra property. Indeed they are Ulrich bundles, i.e. bundles E on F whose
minimal free resolution as sheaves on P3 is linear. To complete the picture in
the case of a cubic surface, we recall that D. Faenzi completely described aCM
bundles of ranks 1 and 2 in [14].

Some results are known also for quartic surfaces F ⊆ P3. K. Watanabe
classified in [25] aCM line bundles on F , identifying Ulrich line bundles.
E. Coskun, R. Kulkarni, Y. Mustopa proved in [10] that such an F always
supports a family of dimension 14 of Ulrich bundles of rank 2 with first Chern
class OF (3h). As a consequence of the existence of these bundles one can also
infer that F is linear pfaffian, i.e. the quartic polynomial defining F is the
pfaffian of a 8 × 8 skew-symmetric matrix with linear entries.

Another almost immediate application of this existence result is that such
a surface also supports families of arbitrary dimension of non-isomorphic, in-
decomposable Ulrich bundles (see the note [5]). In [8] other interesting families
of initialized aCM bundles of rank 2 are constructed: their existence implies
that F is quadratic pfaffian, i.e. the quartic polynomial defining F is also the
pfaffian of a 4 × 4 skew-symmetric matrix with quadratic entries. Finally,
the complete description of initialized aCM bundles of rank 2 on each lin-
ear determinantal smooth quartic surface, i.e. a surface defined by a quartic
polynomial which is the determinant of a 4 × 4 matrix with linear entries, is
exploited in [7]. As far as we know there are no other general results for smooth
quartic surfaces.

When the codimension increases the picture becomes quickly vague. E.g.
even for del Pezzo surfaces only scattered results are known: for this class of
surfaces J. Pons-Llopis and F. Tonini studied aCM line bundles in [22], while
E. Coskun, R. S. Kulkarni, Y. Mustopa gave in [11], among other results,
restrictions on the first Chern class of Ulrich bundles.

Notice that quartic surfaces are a particular case of K3 surfaces, i.e. smooth
regular surfaces F such that ωF

∼= OF . These surfaces can be embedded in
Pa+1 as non-degenerate aCM surfaces of degree 2a for some a ≥ 2 (see [23]
for the details). M. Aprodu, G. Farkas, A. Ortega generalized in [1] the results
of [10] to this family of K3 surfaces F , under an extra technical condition.
They construct therein families of rank 2 Ulrich bundles with first Chern class
OF (3h): following Proposition 6.2 of [13], they call such bundles special.

As we already pointed out, the role of Ulrich bundles is particularly import-
ant, hence we ask for further information about them. For example, it would
be interesting to answer the following questions.

(A) Are there restrictions on the Chern classes of Ulrich bundles on a K3
surface?
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(B) Are there other rank 2 indecomposable Ulrich bundles on a K3 surface
besides the special ones described in [10] and [1]?

(C) What are the (semi)stability properties of a rank 2 indecomposable Ulrich
bundle?

In this paper we give partial answers to the questions listed above. E.g., at the
end of Section 4 we prove the following easy proposition answering the first
question (see Proposition 4.2).

Partial answer to Question A. Let E be an Ulrich bundle of rank r

on a K3 surface F ⊆ PN of degree 2a, where a ≥ 2. Then c1(E )2 is an even
integer satisfying

4(a − 1)r2 ≤ c1(E )2 ≤ 9

2
ar2,

where c1(E )2 �= 9
2ar2 − 2 if r is even. Moreover, c1(E )2 = 9

2ar2 if and only if
c1(E ) = 3rh/2.

If E is simple, then (4a − 2)r2 − 2 ≤ c1(E )2.

We also show that both the above upper and lower bounds are trivially sharp.
Notice that simple bundles of rank r are trivially indecomposable: the converse
is also true for Ulrich bundles when r = 2 (see Lemma 2.3). Using such an
equivalence we are also able to answer the second question in Section 5 proving
that all the intermediate values which are admissible for simple bundles are
actually attained (see Theorem 5.3) on suitable K3 surfaces. The bundles that
we construct are non-special in the sense of [1], i.e. their first Chern class is
not OF (3h).

Partial answer to Question B. Let a ≥ 2. For each choice of an integer
u in the range

4a − 1 ≤ u ≤ 5a + 4, u �= 5a + 3,

there exists a K3 surface F ⊆ PN of degree 2a and rk(Pic(F )) = 3 supporting
an indecomposable Ulrich bundle E of rank 2 with c1(E )2 = 8a − 8 + 2u and
c2(E ) = u.

Notice that when rk(Pic(F )) = 1 only the bundles with u = 5a + 4 can
actually exist on F and they are exactly the aforementioned special bundles
constructed in [10] and [1] (see [9]: see also [6]).

Our construction cannot be extended to obtain bundles on a K3 surface
F ⊆ PN of degree 2a with rk(Pic(F )) = 2: in particular we are unfortunately
unable to prove or disprove the existence of these bundles on surfaces satisfying
rk(Pic(F )) = 2. Moreover, as pointed out in Section 2 of [13], the Chow forms
of the surfaces we use are always linear determinantal. Thus the problem of the
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existence of non-special rank 2 Ulrich bundles on K3 surfaces whose Chow
form is not determinantal remains wide open.

Finally, in Section 6, we answer the third question raised above. Indeed we
prove therein the following result (see Theorem 6.2).

Partial answer to Question C. Let F ⊆ PN be a K3 surface of degree
2a, where a ≥ 2. If E is an indecomposable Ulrich bundle of rank 2 on F

which is strictly semistable and general in its moduli space, then it fits into an
exact sequence of the form

0 −→ OF (A) −→ E −→ OF (B) −→ 0, (1)

where OF (A) and OF (B) are Ulrich line bundles on F such that AB = 4a−1.
In particular c1(E )2 = 16a − 10 and c2(E ) = 4a − 1.

It follows that the general Ulrich bundle E of rank 2 with fixed Chern classes
c1(E ) and c2(E ) on a K3 surface F ⊆ PN of degree 2a is always stable when
c2(E ) �= 4a − 1. Also in this case our answer is partial: indeed we are not able
to deal with the stability properties of each general Ulrich bundle E such that
c2(E ) = 4a − 1.

In Section 2 we recall the results that we need in the paper on Ulrich bundles.
In Section 3 we summarize several facts about K3 surfaces. Section 4 is de-
voted to list and inspect some properties of Ulrich bundles on K3 surfaces. In
Section 5 we focus on rank 2 bundles. Finally, in Section 6 we deal with the
stability properties of rank 2 Ulrich bundles.

The authors would like to thank A. Knutsen for some helpful suggestions.
Particular thanks go to the referee, whose many comments and interesting
suggestions considerably improved the paper.

2. General results on Ulrich bundles

In this section we summarize some general results on Ulrich bundles on a
smooth, irreducible, closed subscheme X ⊆ PN . In what follows we will
always set OX(h) := OPN (1) ⊗ OX.

Definition 2.1. Let X ⊆ PN be a smooth irreducible closed subscheme
and let F be a vector bundle on X. We say that:

• F is initialized if h0(X, F (−h)) = 0 �= h0(X, F ).

• F is aCM if hi(X, F (th)) = 0 for each t ∈ Z and each i = 1, . . . ,

dim(X) − 1.

• F is Ulrich if hi(X, F (−ih)) = hj (X, F (−(j + 1)h)) = 0 for each
i > 0 and j < dim(X).
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Ulrich bundles collect many interesting properties (see Section 2 of [13]).
E.g. they are automatically initialized, aCM and globally generated. Every
direct summand of an Ulrich bundle is Ulrich as well. Finally, as already
pointed out in the introduction, F is Ulrich if and only if it has a linear minimal
free resolution over PN . Ulrich bundles also behave well with respect to the
notions of (semi)stability and μ-(semi)stability. Recall that for each bundle F

on X, the slope μ(F ) and the reduced Hilbert polynomial pF (t) (with respect
to OX(h)) are defined as follows:

μ(F ) = c1(F )hdim(X)−1/ rk(F ), pF (t) = χ(F (th))/ rk(F ).

The bundle F is μ-semistable (resp. μ-stable) if for all subsheaves G with
0 < rk(G) < rk(E ) we have μ(G) ≤ μ(E ) (resp. μ(G) < μ(E )).

The bundle E is called semistable (resp. stable) if for all G as above pG (t) ≤
pE (t) (resp. pG (t) < pE (t)) for t � 0. We recall that in order to check the
semistability and stability of a bundle one can restrict the attention only to
subsheaves such that the quotient is torsion-free.

The following chain of implications holds for F :

F is μ-stable ⇒ F is stable ⇒ F is semistable ⇒ F is μ-semistable.

For the following result see Theorem 2.9 of [4].

Theorem 2.2. Let X ⊆ PN be a smooth, irreducible closed subscheme. If
E is an Ulrich bundle on X the following assertions hold.

(a) E is semistable and μ-semistable.

(b) E is stable if and only if it is μ-stable.

(c) If
0 −→ L −→ E −→ M −→ 0 (2)

is an exact sequence of coherent sheaves with M torsion free andμ(L ) =
μ(E ), then both L and M are Ulrich bundles.

We conclude this section with the following helpful result.

Lemma 2.3. Let X ⊆ PN be a smooth, irreducible closed subscheme with
h1(X, OX) = 0. If E is an Ulrich bundle of rank 2 on X, then E is simple if
and only if it is indecomposable.

Proof. If E is simple, then it is trivially indecomposable. Conversely, as-
sume that E is indecomposable. If it is μ-stable, then it is simple (see [15],
Corollary 1.2.8).

Assume that E is strictly semistable. In particular E fits into Sequence (2)
with M torsion-free and μ(L ) = μ(E ). It follows from Theorem 2.2 that L
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and M are Ulrich line bundles, hence μ stable, and μ(L ) = μ(M). If L ∼= M,
then h1(X, L ⊗ M−1) = h1(X, OX) = 0, hence E would be decomposable,
a contradiction. We deduce that E is simple thanks to Lemma 4.2 of [4].

3. General results on K3 surfaces

We recall some facts on a K3 surface F ⊆ PN with hyperplane line bundle
OF (h). They are collected from several places (e.g. see [23] and [2]).

We know that ωF
∼= OF and q(F ) = 0. In particular pa(F ) = pg(F ) = 1.

The first important fact is that the Serre duality for each locally free sheaf F

on F becomes

hi(F, F ) = h2−i (F, F ∨), i = 0, 1, 2.

Moreover the Riemann-Roch theorem on F is

h0(F, F ) + h2(F, F ) = h1(F, F ) + 2 rk(F ) + c1(F )2

2
− c2(F ). (3)

In particular, if F ∼= OF (D) for a divisor D with D2 ≥ −2, then either D or
−D is necessarily effective.

If D is an effective non-zero divisor on F , then

h2(F, OF (D)) = h0(F, OF (−D)) = 0.

Moreover

h1(F, OF (D)) = h1(F, OF (−D)) = h0(D, OD) − 1

(see [23], Lemma 2.2). It follows that

h0(F, OF (D)) = 2 + D2

2
, deg(D) = Dh, pa(D) = 1 + D2

2
,

for each integral divisor D on F (see [23], Paragraph 2.4). In particular, the
integral fixed divisors D satisfy D2 = −2 and D ∼= P1.

We summarize the other helpful results we will need in the following state-
ment.

Proposition 3.1. Let F be a K3 surface. For each effective divisor D on
F such that |D| has no fixed components the following assertions hold.

(a) D2 ≥ 0 and OF (D) is globally generated.

(b) If D2 > 0, then the general element of |D| is irreducible and smooth: in
this case h1(F, OF (D)) = 0.
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(c) If D2 = 0, then there is an irreducible divisor D with pa(D) = 1 such
that OF (D) ∼= OF (eD) where e − 1 := h1(F, OF (D)): in this case the
general element of |D| is smooth.

Proof. See [23], Proposition 2.6 and Corollary 3.2.

Let F ⊆ PN be a K3 surface with hyperplane line bundle OF (h) such that
h2 = 2a, where a ≥ 2. It would be interesting to classify all the aCM line
bundles on F . If h2 = 4 a complete classification can be found in [25]. A
similar classification for double covers of P2 can be found in [24].

The problem of identifying aCM line bundles on K3 surfaces is by no way
trivial, as one can check by looking at the quoted papers.

4. Ulrich bundles on K3 surfaces

In this section we will prove some general preliminary results about Ulrich
bundles on K3 surfaces F ⊆ PN of degree h2 = 2a, where a ≥ 2, giving a
partial answer to the first question raised in the introduction.

Lemma 4.1. Let F ⊆ PN be a K3 surface of degree 2a, where a ≥ 2. The
following assertions are equivalent for a vector bundle E of rank r on F :

(a) E is Ulrich;

(b) E ∨(3h) is Ulrich;

(c) E is aCM and

c1(E )h = 3ar, c2(E ) = c1(E )2

2
− 2(a − 1)r; (4)

(d) h0(F, E (−h)) = h0(F, E ∨(2h)) = 0 and equalities (4) hold.

Proof. The first and second assertions are equivalent due to [11], Propos-
ition 2.11. The equivalence of the third and first assertions is [11], Proposi-
tion 2.10.

We prove that assertion (c) implies assertion (d). In this case we have
h1(F, E (−th)) = 0 for t = 1, 2, hence formula (3) and equalities (4) im-
ply

h0(F, E (−h)) ≤ χ(E (−h)) = 0,

h0(F, E ∨(2h)) = h2(F, E (−2h)) ≤ χ(E (−2h)) = 0.

Finally, we prove that assertion (d) implies assertion (c). Indeed, if
h0(F, E (−h)) = h0(F, E ∨(2h)) = 0, then h2(F, E (−2h)) =
h0(F, E ∨(2h)) = 0. We have

h0(F, E (−2h)) ≤ h0(F, E (−h)),

h2(F, E (−h)) = h0(F, E ∨(h)) ≤ h0(F, E ∨(2h)) = h2(F, E (−2h)).
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It follows that h1(F, E (−th)) = −χ(E (−th)), for t = 1, 2. formula (3) and
equalities (4) yield h1(F, E (−th)) = 0. We deduce that E is Ulrich.

Notice that if r = 1, then OF (D) is Ulrich if and only if D2 = 4(a − 1),
Dh = 3a and h0(F, OF (D − h)) = h0(F, OF (2h − D)) = 0.

Proposition 4.2. Let E be an Ulrich bundle of rank r on a K3 surface
F ⊆ PN of degree 2a, where a ≥ 2. Then c1(E )2 is an even integer satisfying

4(a − 1)r2 ≤ c1(E )2 ≤ 9

2
ar2,

where c1(E )2 �= 9
2ar2 − 2 if r is even. Moreover, c1(E )2 = 9

2ar2 if and only if
c1(E ) = 3rh/2.

If E is simple, then (4a − 2)r2 − 2 ≤ c1(E )2.

Proof. Thanks to Theorem 2.2, E is μ-semistable, thus the Bogomolov
inequality (see [15], Theorem 3.4.1) holds for E . Taking into account equalit-
ies (4) we obtain c1(E )2 − 4(a − 1)r2 ≥ 0, i.e. 4(a − 1)r2 ≤ c1(E )2.

Let det(E ) ∼= OF (C). Trivially we have Ch = 3ar and C2 = c2
1. The Hodge

index theorem applied to h and C yields C2h2 ≤ (Ch)2, i.e. c1(E )2 ≤ 9
2ar2.

Moreover, equality holds if and only if c1(E ) = 3rh/2, because Num(F ) ∼=
Pic(F ) on a K3 surface. Finally recall that c1(E )2 is necessarily even.

Assume now that E is also simple. In this case the coarse moduli space
SplF (r; c1(E ), c2(E )) of rank r simple, vector bundles on F with Chern
classes c1(E ) and c2(E ) has a non-empty component containing E . As pointed
out in Theorem 0.1 of [19], thanks to equalities (4), such a component has
dimension c1(E )2 − (4a − 2)r2 + 2 ≥ 0, i.e. (4a − 2)r2 − 2 ≤ c1(E )2.

Let E be an Ulrich bundle of even rank r = 2s with c1(E )2 = 9
2ar2 − 2.

On the one hand, if OF (D) ∼= det(E )−1(3sh), then D2 = −2, thus either D,
or −D should be effective. On the other hand Dh = 0, thus neither D, nor
−D can be effective due to the ampleness of OF (h), a contradiction.

Notice that one can deduce the inequality c1(E )2 �= 9
2ar2 − 2, also by

applying directly Theorem 1.1(iii) of [17].

Remark 4.3. The bounds above are sharp in many cases. Indeed let F

support an Ulrich line bundle D, so that D2 = 4(a − 1) and Dh = 3a (see
equalities (4)). Thus E := OF (D)⊕s is an Ulrich bundle of rank r := s with
c1(E )2 = 4(a − 1)r2.

Similarly, every general K3 surface F ⊆ PN supports an indecomposable
Ulrich bundle F of rank 2 with c1(E ) = 3h (see [1], Theorem 0.4). It is easy to
check that E := F ⊕s is an Ulrich bundle of rank r := 2s with c1(E )2 = 9

2ar2.
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Obviously, such bundles are not simple, unless s = 1 and F is indecom-
posable.

On the one hand, we will see in the next section that the above bound
is optimal when E is an Ulrich bundle of rank r = 2. On the other hand
when E is an Ulrich bundle of odd rank r , the upper bound c1(E )2 ≤ 9r2 of
Proposition 4.2 is never sharp, because D2 is even for each divisor D on F .
Actually, for r = 1, we can certainly say that such a bound is very far from
optimality. Thus the following question arises naturally.

Question 4.4. When r is odd, is there any bound which is sharper than the
one given in Proposition 4.2?

5. Ulrich bundles of rank 2 on K3 surfaces

The second question raised in the introduction is to prove whether indecom-
posable Ulrich bundles satisfying the above bounds actually exist. We will
give below a partial answer to this question, by constructing explicitly K3
surfaces endowed with suitable indecomposable (or, equivalently, simple by
Lemma 2.3) Ulrich bundles of rank 2.

Let E be an Ulrich bundle on F of rank 2. We have

c1(E )h = 6a, c2(E ) = c2
1(E )

2
− 4(a − 1)

(see equalities (4)), hence μ(E ) = 3a. It follows from Proposition 4.2 that
c1(E )2 is an even integer satisfying

16(a − 1) ≤ c1(E )2 ≤ 18a, c1(E )2 �= 18a − 2.

We already know that both the cases c1(E )2 = 16(a − 1) and 18a occur (see
Remark 4.3).

Assume the existence of an Ulrich bundle E of rank 2 with c1(E )2 =
16a − 14 (resp. 16a − 12). Due to Proposition 4.2, the bundle E is not simple,
hence decomposable (see Lemma 2.3). If E ∼= OF (A) ⊕ OF (B), then OF (A)

and OF (B) are both Ulrich. Equalities (4) yield A2 = B2 = 4(a − 1): the
equality c1(E )2 = 16a − 14 (resp. 16a − 12) finally forces AB = 4a − 3
(resp. AB = 4a − 2).

If AB = 4a − 3, then (A − B)2 = −2, hence either A − B, or B − A must
be effective. Thus such a case cannot occur because (A − B)h = 0, due to the
ampleness of OF (h).

We will now show that also all the other remaining cases occur, in the
sense that there is a K3 surface F ⊆ PN of degree 2a with Picard number
rk(Pic(F )) = 3 supporting Ulrich bundles E of rank 2 with c1(E ) such that



248 G. CASNATI AND F. GALLUZZI

16a − 12 ≤ c1(E )2 ≤ 18a. The above discussion shows that if c1(E )2 =
16a − 12, then E ∼= OF (A) ⊕ OF (B) with AB = 4a − 2.

The next proposition is the first step in this direction.

Proposition 5.1. Let a ≥ 2. For each choice of an integer u in the range

4a − 2 ≤ u ≤ 5a + 2,

there exists a K3 surface F ⊆ PN of degree 2a such that Pic(F ) is freely
generated by h, A, B, with AB = u, where OF (A) and OF (B) are Ulrich line
bundles.

Proof. We fix the lattice � := Zh ⊕ ZA ⊕ ZB having

M :=
⎛
⎝

2a 3a 3a

3a 4(a − 1) u

3a u 4(a − 1)

⎞
⎠

as its intersection matrix. Such a lattice is even. Moreover, it is an easy exercise
to check that it has signature (1, 2) in the range 4a − 3 ≤ u ≤ 5a + 3.
Theorem 2.9(i) in [18] implies the existence of a projective K3 surface F

having Pic(F ) ∼= � (see also [20]).
Recall that for each divisor � with �2 = −2 on F we have the Picard-

Lefschetz reflection π� of Pic(F ) defined by D �→ D + (D�)�. If D′ is
another divisor on F then π�(D)π�(D′) = DD′, because �2 = −2.

As pointed out in PropositionVIII.3.9 of [2], the cone of big and nef divisors
is a fundamental domain for the group generated by the above reflections. In
particular we can find divisors �i with �i�j = −2δi,j , i = 1, . . . , γ , such that

h′ := h +
γ∑

i=1

(h�i)�i

is nef. Let

A′ := A +
γ∑

i=1

(A�i)�i, B ′ := B +
γ∑

i=1

(B�i)�i.

Then h′, A′, B ′ generate Pic(F ) and they still have M as intersection matrix.
Omitting the prime in the superscript we can thus assume that h is nef.

We will now show that h is actually very ample. Since h2 = 2a it will
follow that the surface F can be embedded as a surface of degree 2a.

Since h2 = 2a ≥ 4, thanks to [23] (see also Theorem 1.1 of [16] with k = 1,
or [17], Lemma 2.4), we have to check that there are no effective divisors E

on F satisfying anyone of the following conditions:
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• E2 = 0 and Eh = 1, 2;

• E2 = 2 and OF (h) ∼= OF (2E);

• E2 = −2 and Eh = 0.

Notice that, in any case, if E ∈ |xA+ yB + zh|, then Eh = 3ax + 3ay + 2az

is a multiple of a ≥ 2.
Thus the first case can occur only if a = 2 and, in this case, Eh = 2

necessarily, i.e. 2z = 1 − 3x − 3y. Simple computations show that

E2 = −5x2 − (18 − 2u)xy − 5y2 + 1.

Consider the ellipse 5x2 + (18 − 2u)xy + 5y2 = 1, where 4a − 2 = 6 ≤ u ≤
12 = 5a + 2. The x-coordinate intersection point of the ellipse with the line
y = 1 is a root of the polynomial 5x2 + (18 − 2u)x + 4.

The discriminant of this polynomial is 	(u) := u2 − 18u + 61 which is an
increasing function for u ≥ 9 and symmetric around u = 9. Thus

u2 − 18u + 61 ≤ 	(12) = −11

in the whole range 6 ≤ u ≤ 12.
We conclude that the line y = 1 has no points in common with the ellipse.

Since the ellipse is symmetric with respect to the origin, it immediately follows
that it is strictly contained in the square with vertices (±1, 0) and (0, ±1): in
particular there are no points with integral coordinates on the ellipse, because
it does not pass through the origin.

The second case E2 = 2 cannot occur because h is an element of a basis of
Pic(F ) (see the comments after Lemma 2.4 of [17]).

Thus we look at the third case E2 = −2. In this case equality Eh = 0
implies 2z = −3x − 3y. Simple computations show that

E2 = −a + 8

2
x2 − (9a − 2u)xy − a + 8

2
y2.

Consider the ellipse (a + 8)x2 + 2(9a − 2u)xy + (a + 8)y2 = 4, where
a ≥ 2 and 4a − 2 ≤ u ≤ 5a + 2. Intersecting with the line y = 1 we obtain
(a + 8)x2 + 2(9a − 2u)x + a + 4 = 0. The discriminant

	a(u) := 4u2 − 36au + 80a2 − 12a − 32

is an increasing function for u ≥ 9a/2 and it is symmetric around u = 9a/2.
Thus

4u2 − 36au + 80a2 − 12a − 32 ≤ 	a(5a + 2) = −4(a + 4) < 0

in the range 4a − 2 ≤ u ≤ 5a + 2.
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We conclude that OF (h) is very ample, hence it embeds F as a surface of
degree 2a. We will now prove that OF (A) and OF (B) are Ulrich line bundles
with respect to such an embedding. We restrict our attention to OF (A) because
the argument for OF (B) is similar.

Since A2 = 4(a − 1) ≥ 4, it follows from equality (3) that either OF (A) or
OF (−A) is effective. Since Ah = 3a ≥ 6 and h is very ample it follows that
OF (A) is effective.

Assume that h0(F, OF (A − h)) �= 0 and let D ∈ |A − h|. The divisor D is
a curve of degree deg(D) = (A − h)h = a such that D2 = (A − h)2 = −4,
thus there is a proper integral subscheme E ⊆ D with E2 = −2. Again let
E ∈ |xA + yB + zh|. The degree of E is deg(E) = (xA + yB + zh)h =
3ax + 3ay + 2az, hence it is a positive multiple of a. It follows from the chain
of inequalities a ≤ deg(E) ≤ deg(D) = a that deg(E) = deg(D), whence
E = D, a contradiction. We conclude that h0(F, OF (A − h)) = 0.

Notice that 3h − A enjoys the same intersections properties with h as A.
Thus arguing as above we show that h0(F, OF (2h − A)) = 0. We conclude
that OF (A) is Ulrich, by applying Lemma 4.1.

Remark 5.2. It is not possible to extend the above proofs to the cases u =
4a−3 and u = 5a+3. Indeed, in these cases, (A−B)h = (3h−A−B)h = 0.
Moreover (A − B)2 = −2 in the first case, and (3h − A − B)2 = −2 in the
second, thus OF (h) is not very ample. In these cases OF (h) maps F birationally
onto a singular surface.

We conclude the section with the following consequence of the above pro-
position. It shows that the bounds of Proposition 4.2 are actually sharp.

Theorem 5.3. Let a ≥ 2. For each choice of an integer u in the range

4a − 1 ≤ u ≤ 5a + 4, u �= 5a + 3,

there exists a K3 surface F ⊆ PN of degree 2a and rk(Pic(F )) = 3 supporting
an indecomposable Ulrich bundle E of rank 2 with c1(E )2 = 8a − 8 + 2u and
c2(E ) = u.

Proof. Let u be an integer in the range 4a − 1 ≤ u ≤ 5a + 2 and F ⊆ PN

a K3 surface of degree 2a containing divisors A and B with AB = u as in
Proposition 5.1. Since u �= 4(a − 1) = A2 = B2, it follows that OF (A) �∼=
OF (B), thus the equalities (A − B)h = (B − A)h = 0 and the ampleness of
OF (h) imply

h0(F, OF (A − B)) = 0, h2(F, OF (A − B)) = h0(F, OF (B − A)) = 0.
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Equality (3) for OF (A − B) implies

h1(F, OF (A − B)) = −2 − (A − B)2

2
= AB − 4a + 2 ≥ 1

We deduce the existence of the non-split sequence

0 −→ OX(A) −→ E −→ OX(B) −→ 0,

thus E is a rank 2 Ulrich bundle with c1(E )2 = (A+B)2 = 8a −8+2AB and
c2(E ) = AB. Since the above sequence corresponds to a non-zero element of
H 1(F, OF (A − B)), it follows from Proposition 5.3 of [22] that E is simple,
hence indecomposable.

Remark 5.4. The existence of special Ulrich bundles E of rank 2 (i.e.
such that c1(E ) = 3h) on each K3 surface F ⊆ PN of degree 2a follows
from [1], Theorem 0.4, when rk(Pic(F )) = 1. For each bundle of this type
c1(E )2 = 8a − 8 + 2u and c2(E ) = u where u = 5a + 4.

Similarly, Theorem 4.6 of [17] implies the existence of K3 surfaces F ⊆ PN

of degree 2a whose Picard group is freely generated by h and by a smooth
irreducible curve A with Ah = 3a and A2 = 4(a − 1). The line bundle
OF (A) is Ulrich (one can imitate the proof of the analogous statement in
Proposition 5.1). As in the proof of Theorem 5.3 we still obtain special Ulrich
bundles by extension of OF (A) by OF (3h − A).

Remark 5.5. Notice that the K3 surface F ⊆ Pa+1 of degree 2a defined
in Proposition 5.1 supports, besides the Ulrich line bundles OF (A) and OF (B)

with AB = u, at least another Ulrich line bundle, namely OF (3h − A): we
have B(3h − A) = 9a − u.

In particular for 4a − 1 ≤ u ≤ 9a/2 there is a K3 surface F ⊆ PN

of degree 2a supporting indecomposable Ulrich bundles E of rank 2 with
c1(E )2 = 18a, 8a − 8 + 2u, 26a − 8 − 2u.

Remark 5.6. Each Ulrich bundle is semistable (see Theorem 2.2). Trivi-
ally the bundle E constructed in Theorem 5.3 is strictly semistable, i.e. is
semistable and not stable, because it contains an Ulrich line bundle OF (A)

with μ(OF (A)) = 3a = μ(E ).

We showed that for each integer u in the range 4a − 1 ≤ u ≤ 5a + 4, u �=
5a + 3 there exists a K3 surface F ⊆ Pa+1 of degree 2a with rk(Pic(F )) = 3
supporting Ulrich bundles E of rank 2 with c1(E )2 = 8a − 8 + 2u (see
Theorem 5.3). It is obvious that such bundles cannot exist if rk(Pic(F )) = 1.
We thus ask the following question.
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Question 5.7. If u is a fixed integer in the range

4a − 1 ≤ u ≤ 5a + 4, u �= 5a + 3,

is there a K3 surface F ⊆ PN of degree 2a with rk(Pic(F )) = 2 supporting
an Ulrich bundle E of rank 2 with c1(E )2 = 8a − 8 + 2u?

As we already pointed out in Remark 5.4, the above question has an imme-
diate positive answer when u = 5a + 4.

Moreover, for each integer u in the range 4a−1 ≤ u ≤ 9a/2 there exist K3
surfaces F ⊆ Pa+1 of degree 2a supporting Ulrich bundles E of rank 2 with
c1(E )2 = 18a, 8a − 8 + 2u, 26a − 8 − 2u (see Theorem 5.3 and Remark 5.5).
It is quite natural to raise the following questions.

Question 5.8. Does there exist a single K3 surface F ⊆ PN of degree 2a

supporting Ulrich bundles E of rank 2 with c1(E )2 = 8a − 8 + 2u for each u

in the range
4a − 1 ≤ u ≤ 5a + 4, u �= 5a + 3?

Question 5.9. If the answer to the previous question is positive, which is
the minimal admissible value of rk(Pic(F ))?

6. Stability of general Ulrich bundles of rank 2

If E is a semistable bundle of rank 2 with reduced Hilbert polynomial p(t)

(with respect to OF (h)), then the coarse moduli space Mss
F (p) parameterizing

S-equivalence classes of semistable rank 2 bundles on F with reduced Hilbert
polynomial p(t) is non-empty (see Section 1.5 of [15] for the notion of S-
equivalence). We will denote by Ms

F (p) the open locus inside Mss
F (p) of

stable bundles.
The scheme Mss

F (p) is the disjoint union of open and closed subsets
Mss

F (2; c1, c2) whose points represent S-equivalence classes of semistable rank
2 bundles with fixed Chern classes c1 and c2. Similarly Ms

F (p) is the disjoint
union of open and closed subsets Ms

F (2; c1, c2).
The Grauert semicontinuity theorem for complex spaces (see [2]) guaran-

tees that the property of being aCM in a family of vector bundles is an open con-
dition. Thus, on the one hand, we have open subschemes M

ss,aCM
F (2; c1, c2) ⊆

Mss
F (2; c1, c2) and M

s,aCM
F (2; c1, c2) ⊆ Ms

F (2; c1, c2)parameterizing respect-
ively S-equivalence classes of semistable and stable aCM bundles of rank 2
on F with Chern classes c1 and c2 (see Section 2 of [4]).

On the other hand, the locus of aCM bundles SplaCM
F (r; c1, c2) inside

SplF (r; c1, c2) of simple vector bundles of rank r on F with Chern classes
c1 and c2 is open too. Let Splns,aCM

F (2; c1, c2) ⊆ SplaCM
F (2; c1, c2) be the
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locus of simple aCM bundles which are not stable, then SplaCM
F (2; c1, c2) \

Splns,aCM
F (2; c1, c2) is an open subset isomorphic to M

s,aCM
F (2; c1, c2).

We are interested in dealing with the moduli spaces of aCM bundles of rank
2 on F : in particular we are interested in those ones constructed in the previous
section.

Proposition 6.1. Let F ⊆ PN be a K3 surface of degree 2a, where a ≥ 2.
If OF (A) and OF (B) are Ulrich line bundles on F such that

4a − 1 ≤ AB ≤ 5a + 4, AB �= 5a + 3,

then the following assertions hold.

(a) The moduli space M
s,aCM
F (2; A + B, AB) is non-empty.

(b) If AB ≥ 4a, for each irreducible component M of the moduli space
M

ss,aCM
F (2; A+B, AB), the locus M∩M

s,aCM
F (2; A+B, AB) is smooth

and non-empty of dimension 2AB − 8a + 2.

(c) The points in M
ss,aCM
F (2; A + B, AB) \ M

s,aCM
F (2; A + B, AB) are

in one-to-one correspondence with the pairs { OF (A), OF (B) } where
OF (A) and OF (B) are Ulrich line bundles such that OF (A + B) ∼=
OF (A + B).

Proof. Notice that Lemma 4.1 implies that the points of the moduli space
SplaCM

F (2; A + B, AB) actually parameterize rank 2 simple Ulrich bundles
with Chern classes A + B and AB.

We have that OF (A) �= OF (B), because AB > 4(a − 1) = A2. The locus
Splns,aCM

F (2; A+B, AB) is non-empty, due to Theorem 5.3 and Remark 5.6,
hence SplaCM

F (2; A + B, AB) is smooth, non-empty and its dimension is
4c2 − c2

1 − 6 = 2AB − 8a + 2 (see [19], Theorem 0.1).
If E represents a strictly semistable Ulrich bundle in SplaCM

F (2; A+B, AB),
then E must contain a line bundle L such that E /L is torsion free and
μ(L ) = μ(E ). Theorem 2.2 implies that E must fit into a sequence of the
form

0 −→ OF (A) −→ E −→ OF (B) −→ 0, (5)

whereA andB are Ulrich line bundles such thatA+B = A+B andA B = AB.
Thus we obtain a non-zero element of H 1(F, OF (A−B)) ∼= H 1(F, OF (2A−
A − B)). As a first consequence of the above discussion we are able to prove
assertions (a) and (b).

We start with assertion (a). We see that Splns,aCM
F (2; A + B, AB) is dom-

inated by the union of the projective spaces associated to the vector spaces
H 1(F, OF (2A − A − B)) as A varies in the subset of Ulrich line bundles in-
side Pic(F ). Such a set is trivially countable, thus Splns,aCM

F (2; A + B, AB)
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is a countable union of irreducible subschemes of dimension at most

h1(F, OF (A − B)) − 1 = AB − 4a + 1.

In particular, when AB ≥ 4a, such a union cannot fill any irreducible compon-
ent S ⊆ SplaCM

F (2; A+B, AB) (which is smooth of dimension 4c2−c2
1−6 =

2AB − 8a + 2), thus there exist stable, aCM bundles E of rank 2 with Chern
classes c1(E ) = A + B and c2(E ) = AB. In particular assertion (a) is proved.

We prove assertion (b). Since

M
s,aCM
F (2; A + B, AB) ⊆ SplaCM

F (2; A + B, AB)

as an open subset, it follows that S \Splns,aCM
F (2; A+B, AB) is an irreducible

component of M
s,aCM
F (2; A + B, AB). We deduce that the S-equivalent class

of each E ∈ S ∩ Splns,aCM
F (2; A + B, AB) is in the closure of a non-empty

component of M
s,aCM
F (2; A + B, AB). Thus assertion (b) is proved.

As a second consequence of the above discussion we prove assertion (c).
Indeed, if E fits into Sequence (5), its Jordan-Hölder filtration is 0 ⊆ OF (A) ⊆
E , thus the associated graded ring is

gr(E ) := OF (A) ⊕ E /OF (A) ∼= OF (A) ⊕ OF (B).

Let E ′ be in the same S-equivalence class of E . In particular E ′ is strictly
semistable, hence it fits into a sequence of the form

0 −→ OF (A
′
) −→ E ′ −→ OF (B

′
) −→ 0,

where OF (A
′
), OF (B

′
) are Ulrich line bundles which are non-isomorphic. Thus

OF (A
′
) ⊕ OF (B

′
) ∼= gr(E ′) ∼= gr(E ) ∼= OF (A) ⊕ OF (B).

We have a non-zero morphism OF (A) → OF (A
′
) ⊕ OF (B

′
), thus either

h0(F, OF (A
′ − A)) �= 0, or h0(F, OF (B

′ − A)) �= 0. In the first case, the
equality (A

′ −A)h = 0 and the ampleness of OF (h) imply OX(A−A) ∼= OX,
hence the above non-zero map induces an isomorphism OF (A) ∼= OF (A

′
),

thus

OF (B
′
) ∼= OF (A + B − A

′
) ∼= OF (A + B − A) ∼= OF (B),

i.e. { OF (A), OF (B) } = { OF (A
′
), OF (B

′
) }.

An analogous argument holds if h0(F, OF (B
′ − A)) �= 0. Thus assertion

(c) is proved too.
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The above proposition yields the following theorem (see also Proposi-
tion 3.22 of [10]).

Theorem 6.2. Let F ⊆ PN be a K3 surface of degree 2a, where a ≥ 2. If E

is an indecomposable Ulrich bundle of rank 2 on F which is strictly semistable
and whose S-equivalence class is a general point in its moduli space, then E

fits into Sequence (1) where OF (A) and OF (B) are Ulrich line bundles on F

such that AB = 4a−1. In particular c1(E )2 = 16a−10 and c2(E ) = 4a−1.

Proof. If E is strictly semistable, then it contains a line bundle OF (A) with
μ(OF (A)) = μ(E ) = 3a. Trivially μ(E /OF (A)) = 3a: due to Theorem 2.2
it follows that OF (A) and E /OF (A) are Ulrich line bundles. Then E fits into
Sequence (1).

If E is also general in its moduli space, then Proposition 6.1 forces AB =
4a − 1.

The construction of Section 5 yields the existence of semistable Ulrich
bundles of rank 2 with c1(E )2 = 8a − 8 + 2u for each integer u in the range
4a − 1 ≤ u ≤ 5a + 4, u �= 5a + 3.

On the one hand, Theorem 6.2 implies that when u ≥ 4a, the general such
bundle is actually stable. On the other hand, when u = 4a −1, Proposition 6.1
implies that the moduli space is a finite set of points and we know that at least
one of these points corresponds to a strictly semistable bundle.

Question 6.3. Are there K3 surfaces F ⊆ PN of degree 2a supporting a
stable Ulrich bundle E of rank 2 with c1(E )2 = 16a − 10?
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