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NEAREST POINTS ON TORIC VARIETIES
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(Dedicated to Alicia Dickenstein on the occasion of her 60th birthday)

Abstract
We determine the Euclidean distance degree of a projective toric variety. This extends the formula
of Matsui and Takeuchi for the degree of the A-discriminant in terms of Euler obstructions. Our
primary goal is the development of reliable algorithmic tools for computing the points on a real
toric variety that are closest to a given data point.

1. Introduction

We are interested in the best approximation of data points in Rn by a model
that is given by a monomial parametrization. Such a model corresponds to
a projective toric variety. Our result is a formula for the generic Euclidean
distance degree (gED degree [10]) of that variety.

Consider the problem of identifying d unknown real numbers t1, t2, . . . , td
by sampling noisy products of any k of these numbers. The input data con-
sists of

(
d

k

)
measurements ui1i2···ik that are supposed to be approximations of

ti1 ti2 · · · tik for 1 ≤ i1 < i2 < · · · < ik ≤ d. The least squares paradigm
suggests the unconstrained polynomial optimization problem

Minimize the function L(t1, . . . , td) =
∑

1≤i1<···<ik≤d

(ti1 ti2 · · · tik − ui1i2···ik )
2. (1)

The critical points of this problem are solutions of the system of polynomial
equations

∂L

∂t1
= ∂L

∂t2
= · · · = ∂L

∂td
= 0. (2)

The non-zero complex solutions to (2) come in clusters of k solutions that
differ by multiplication with a k-th root of unity. The number of such clusters
for generic data ui1i2···ik is the algebraic degree of the optimization problem (1).
For instance, if d = 4, k = 2 then (2) is a system of 4 cubics in 4 unknowns.
Using Macaulay2 [15], we find that it has 28 pairs of solutions {t, −t}.
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Thus, for d = 4, k = 2, the algebraic degree of the problem (1) equals 28.
Proposition 4.7 generalizes that number to a combinatorial formula in terms
of d and k.

The models in this paper are as follows. We fix an integer d × n-matrix
A = (a1, a2, . . . , an) of rank d such that (1, 1, . . . , 1) lies in the row space
of A over Q. We allow for A to have negative entries. Each column vector
ai corresponds to a (Laurent) monomial tai = t

a1i

1 t
a2i

2 · · · tadi

d . The affine toric
variety X̃A is the closure in Cn of the set {(ta1 , . . . , tan) : t ∈ (C∗)d}, where
C∗ = C\{0}. This is the affine cone over the projective toric variety XA ⊂ Pn−1

with the same parametrization. Note that dim(XA) = d −1 and dim(X̃A) = d.
For basics on toric geometry and toric algebra we refer to the books [7] and [30].

Fix a vector λ = (λ1, . . . , λn) of positive reals and consider the λ-weighted
Euclidean norm on Rn, defined by ‖x‖λ = (

∑n
i=1 λix

2
i )

1/2. Given u ∈ Rn, we
seek to find a real point v ∈ X̃A that is closest to u. Thus, our aim is to solve
the constrained optimization problem

Minimize ‖u − v‖λ subject to v ∈ X̃A ∩ Rn. (3)

This is equivalent to the unconstrained optimization problem

Minimize
n∑

i=1

λi(ui − tai )2 over all t = (t1, . . . , td) ∈ Rd . (4)

The number of complex critical points of (3) is denoted by EDdegreeλ(XA).
This is the ED degree (cf. [10], [24]) of the toric variety XA. It depends on λ

but is independent of u, since u is generic. It governs the intrinsic algebraic
complexity of finding and representing the exact solutions to (3) and (4). In
particular, it is an upper bound for the number of local minima. The number of
complex critical points of (4) is the product EDdegreeλ(XA) · [Zd : ZA]. The
index arises as a factor because it is the degree of the monomial parametrization
of XA.

If the weight vector λ is chosen generically then EDdegreeλ(XA) is inde-
pendent of λ. We call this the generic ED degree of the toric variety XA and we
denote it by gEDdegree(XA). For instance, in (1) we saw that
gEDdegree(XA) = 28 for the threefold XA ⊂ P5 given by

A =

⎛
⎜⎜⎜⎝

1 1 1 0 0 0

1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1

⎞
⎟⎟⎟⎠ = the octahedron.
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The following formula, inspired by Aluffi [2], will be derived and used in
this paper.

Theorem 1.1. The generic Euclidean distance degree of the projective toric
variety XA is

gEDdegree(XA) =
d−1∑
j=0

(−1)d−j−1 · (2j+1 − 1) · Vj , (5)

where Vj is the sum of the Chern-Mather volumes of all j -dimensional faces
of P = conv(A).

The lattice polytope P = conv(A) has dimension d −1 since rank(A) = d.
If the toric variety XA is smooth then P is simple and Vj is the sum of the nor-
malized lattice volumes of the j -faces of P . In the smooth case, Theorem 1.1
is precisely the formula given in [10, Corollary 5.11]. What is new here is the
extension to the singular case. Indeed, XA is an arbitrary singular projective
toric variety in Pn−1. In particular, XA is generally not normal.

Theorem 1.1 rests on work by Aluffi [2], Esterov [12], and Matsui-Takeuchi
[22]. The key notion is the Chern-Mather volume (or CM volume for short). We
will define this in Section 2. One ingredient is the local Euler obstruction [6,
Chapter 8] of singular strata onXA. We now present a formula for the dimension
and degree of the A-discriminant [14], that is, the variety X∨

A projectively dual
to XA. The following is a variant of [22, Theorem 1.4]:

Theorem 1.2. Using notation as above, the polar degrees of the projective
toric variety are

δi(XA) =
d∑

j=i+1

(−1)d−j

(
j

i + 1

)
Vj−1. (6)

The codimension of the A-discriminant is min{c : δc−1 	= 0}. For that c,
degree(X∨

A) = δc−1.

We note that the polar degrees of projective varieties are of independent
interest in the study of algorithms for real algebraic geometry. They govern
the complexity of methods for reliably sampling points in each connected
component of a semi-algebraic set (cf. [3], [28]). The polar degrees δi can also
be seen as the degrees of polar varieties. Foundational results on this topic can
be found in the work of Kleiman [19], Piene [25], [26] and Bank et al. [4].

Our focus in this paper is on tools for concrete computations, starting from
an integer matrix A. We implemented the formulas for the polar degrees and the
gED degree in Macaulay2 [15]. Given an arbitrary integer matrix A as above,



216 M. HELMER AND B. STURMFELS

our software computes the quantities in (5)–(6). The code and accompanying
discussion can be found at the supplementary website [1].

For a concrete illustration consider the case d = 2, when XA is a toric curve
in Pn−1. After row operations and column permutations, we may assume that
our input has the form

A =
(

α1 α2 α3 · · · αn−1 αn

1 1 1 · · · 1 1

)
,

where 0 ≤ α1 < α2 < α3 < · · · < αn−1 < αn and the differences αi − αj

are relatively prime. One finds that the generic ED degree of the toric curve
XA equals 2αn + αn−1 − α2 − 2α1. This quantity is the expected number of
complex solutions to the polynomial system

1

t

∂L

∂s
= ∂L

∂t
= 0,

where

L(s, t) = λ1(s
α1 t − u1)

2 + λ2(s
α2 t − u2)

2 + · · · + λn(s
αn t − un)

2.

(7)

A priori knowledge of the ED degree is useful for optimization because it
furnishes an upper bound on the number of local minima of L. The following
numerical example illustrates this.

Example 1.3. Let n = 7 and α = (0, 1, 2, 3, 4, 5, 6), so XA is the ra-
tional normal curve in P6. The ED degree is 16. The weight vector λ =
(1, 1, 1, 1, 1, 1, 1) exhibits the generic behavior, by Proposition 4.1. So, we
fix unit weights and use standard Euclidean distance.

Consider the data vector u = (11, 1, 3, 1, 3, 1, 11) in R7. We seek to find
the real point on the surface X̃A ∩R7 that is located closest to u. Note that we
may regard u as the vector of coefficients of a binary sextic, and hence as a
symmetric tensor of format 2 × 2 × 2 × 2 × 2 × 2. See [10, §8] or [24, §4].
In that interpretation, our goal would be to find the best rank 1 approximation
of the tensor u. We do this by minimizing the squared-distance function

L(s, t) = (t − 11)2 + (st − 1)2 + (s2t − 3)2

+ (s3t − 1)2 + (s4t − 3)2 + (s5t − 1)2 + (s6t − 11)2.

As expected, the system (7) has 16 complex solutions. Precisely eight of these
16 are real. By the Second Derivative Test, four of these eight are found to be
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local minima. They are

s t L(s, t)

1 4.4285714285714285714 125.71428571428571428

4.5086875578349189693 0.0012891163419679352 139.66300592712833700

.22179403366779357295 10.829114809514133306 139.66300592712833700

−1 3.5714285714285714283 173.71428571428571429

The global minimum is attained at (s, t) = (1, 31/7), with value L(s, t) =
880/7.

Section 2 develops the relevant results from algebraic geometry. After de-
fining polar degrees, Euler obstructions, and CM volumes, we prove Theor-
ems 1.1 and 1.2. Section 3 starts by illustrating these results for toric surfaces
(d = 3). We then focus on toric hypersurfaces in Pn−1. These are defined by
a single binomial, and their conormal varieties are toric too. We write these in
terms of a Cayley polytope, and we express (5)–(6) in terms of the binomial’s
exponents. In Section 4 we derive the discriminants in λ and u whose non-
vanishing ensures that gEDdegree(XA) correctly counts the complex critical
points of (3). We also discuss the tropicalization of the conormal variety of
XA, along the lines of [8], [9]. We end the paper by returning to its beginning:
a formula for the generic ED degree of the hypersimplex reveals the intrinsic
algebraic complexity of learning d numbers from noisy k-fold products.

2. Euler obstructions and Chern-Mather volumes

The (generic) ED degree of a projective variety X ⊂ Pn−1 is the sum of the
polar degrees of X. The following formula was derived in [10, Theorem 5.4]
and used in [24, Corollary 3.2]:

gEDdegree(X) = δ0(X) + δ1(X) + · · · + δn−1(X). (8)

Many authors, including Fulton [13], Holme [16] and Piene [25], define δj (X)

as the degree of the j -th polar variety of X with respect to a general linear
subspace �j = Pj+codim(X) ⊂ Pn−1. The polar variety equals

Pj = {x ∈ Xsmooth | dim(TxX ∩ �j ) ≥ j + 1} ⊂ Pn−1.

Following Kleiman [19], we can also define δj (X) using the multidegree of the
conormal variety Con(X). This approach is used in [2]. It is explained in [10,
§5] after equation (5.3). In practice, we can use the command multidegree
in Macaulay2, as shown in Example 3.3.
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If X ⊂ Pn−1 is smooth then its polar degrees can be expressed in terms
of the Chern classes of the tangent bundle. Holme [16, p. 150] and Piene [26,
Thm. 3] give the formula

δi(X) =
d∑

j=i+1

(−1)d−j ·
(

j

i + 1

)
· deg(cd−j (X)). (9)

This formula also covers the singular case (as shown by Piene [26]) if we
replace the Chern class with the Chern-Mather class. This is the approach to
be pursued in this section. We shall develop the combinatorial meaning of the
formula (9) in the case where XA is an arbitrary singular projective toric variety.
As a consequence, we obtain a practical algorithm, made available in [1], for
computing the polar degrees and the generic ED degree of XA. We begin by
explaining the relevant results of Esterov [12] and Matsui and Takeuchi [22].
These will enable us to derive Theorems 1.1 and 1.2.

As above, A = (a1, a2, . . . , an) is an integer d × n-matrix of rank d with
(1, 1, . . . , 1) in its row space. The columns ai span the semigroupNA and the
lattice ZA, both in Zd . The polytope P = conv(A) has dimension d − 1 and it
lives in Rd . Let α be an (s − 1)-dimensional face of P . Its span Rα is a linear
subspace of dimension s in Rd . The intersection Mα := Rα ∩ Zd is a lattice
of rank s. The quotient group is also free abelian: Zd/Mα � Zd−s .

Let Aα denote the set of all columns ai of A that lie in α. The lattice ZAα

spanned by that set is a subgroup of finite index in Mα . We also consider the
image of the set of columns of A inZd/Mα . This is a (d−s)-dimensional vector
configuration, to be denoted by A/α. We wish to stress that the toric varieties
in this paper are generally not normal, and all our volumes are understood in
the normalized integer sense that is customary in toric geometry.

Definition 2.1. Fix two faces α, β of P such that β ⊂ α. After a change of
coordinates, we may assume that the origin in Zd is contained in the face β. We
write Aα/β for the image of the finite set Aα in the free abelian group Mα/Mβ .
Its convex hull conv(Aα/β) is a polytope of dimension r = dim(α) − dim(β)

in the real vector space (Mα/Mβ) ⊗Z R = Rα/Rβ � Rr .
We define the subdiagram volume of β in α to be the positive integer

μ(α/β) = Vol
(
conv(Aα/β) \ conv((Aα/β)\{0})) (10)

where Vol is the r-dimensional volume that is normalized with respect to the
lattice Mα/Mβ .

The notion of subdiagram volume is also defined in [14, Definition 3.8] and
in [22, Definition 4.5], but their notation and normalization conventions are
slightly different.
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Remark 2.2. To compute the subdiagram volume in (10), we use coordin-
ates on Zd that are adapted to the inclusions Mβ ⊂ Mα ⊂ Zd . Changing
coordinates on Zd corresponds to integer row operations on A. We shall use
the following procedure to carry this out:

• First reorder the columns of A so that those in β come first, followed
by those in α\β, and the remaining columns last. In other words, we
write A in block form as

A = (
Aβ, Aα\β, AP \α

)
.

• Next compute the Hermite normal form of A. It has the triangular block
structure

A′ =
⎛
⎜⎝

β α\β P \α
∗ ∗ ∗
0 C ∗
0 0 ∗

⎞
⎟⎠.

Note that XA = XA′ . The integer matrix C has r rows where r = dim(α) −
dim(β). Restricting to these r rows corresponds to the appropriate projec-
tion Zn → Zr � Mα/Mβ . To find the subdiagram volume in (10), we may
use the normalized r-dimensional volumes of the polytopes conv(C ∪ {0})
and conv(C). These considerations imply the following formula:

μ(α/β) = Vol(conv(C ∪ {0})) − Vol(conv(C)). (11)

MacPherson [21] introduced the local Euler obstructions in singularity the-
ory. See the book [6] for subsequent developments. Ernström [11] related this
to polar degrees and dual varieties. For the case of toric varieties, the local
Euler obstructions admit a combinatorial description in terms of subdiagram
volumes. This was developed by Esterov [12, §2.5] and refined by Matsui and
Takeuchi [22, §4.2]. We shall present a review of these results, modified to use
the notation above. The matrix A and the polytope P = conv(A) are as before.

Definition 2.3. Let β be a face of P . The Euler obstruction of β is an in-
teger Eu(β) that depends on the point configuration A. It is defined recursively
by the following relations:

(1) Eu(P ) = 1,

(2) Eu(β) =
∑

α s.t. β is a
proper face of α

(−1)dim(α)−dim(β)−1 · μ(α/β) · Eu(α).
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If XA is smooth along the orbit given by the face β then Eu(β) = 1. We note
that, as discussed above, the lattice indices in [22, Theorem 4.7] are subsumed
in Definition 2.1. See also [23, Corollary 1.11.3].

Let β be a face of P = conv(A) and Tβ the corresponding orbit. Let
EuXA

: XA → Z be the local Euler obstruction of XA as defined by [21] and [6,
Chapter 8]. Note that EuXA

is constant on the orbits given by the faces of P .
Let EuXA

(Tβ) denote the value of EuXA
for any point in Tβ . By Theorem 4.7

of Matsui and Takeuchi [22] we have that

EuXA
(Tβ) = Eu(β) · [Mβ : ZAβ]. (12)

Using the Euler obstruction of Definition 2.3, we now define the Chern-Mather
(CM) volume.

Definition 2.4. The Chern-Mather volume of a face β of P is an integer
that depends on A. It is the product Vol(β) Eu(β) of the normalized volume
and the Euler obstruction of β. As in Theorem 1.1, we write Vj for the sum of
the CM volumes of the j -dimensional faces of P :

Vj =
∑

β face of P
dim(β)=j

Vol(β) Eu(β). (13)

We chose to use the term “volume” even though the integers Eu(β) and Vj can
be negative.

Remark 2.5. The primary aim of Matsui and Takeuchi in [22] was to com-
pute the dimension and degree of the A-discriminant X∨

A. These are given by
the first non-zero polar degree: if δ0 = · · · = δc−2 = 0 and δc−1 > 0 then
codim(X∨

A) = c and degree(X∨
A) = δc−1. This is essentially the content of [22,

Theorem 1.4]. However, it is important to note that the quantities δ• in [22,
(1.6)] are not the polar degrees of XA. Instead, they are the alternating sums

δ0, δ1−2δ0, δ2−2δ1+3δ0, δ3−2δ2+3δ1−4δ0, δ4−2δ3+3δ2−4δ1+5δ0, . . . .

Note that the first non-zero number in this list also gives the codimension and
degree of X∨

A.
We prefer the direct formulation, just using the polar degrees, given in the

second and third sentence of Theorem 1.2. Formula (6) writes the polar degrees
in terms of CM volumes.

Proof of Theorem 1.2. For any subvariety X ofPn−1, the ith polar degree
can be expressed in terms of the Euler obstructions of linear sections of X.
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Ernström [11, Theorem 2.2] proves

δi(X) = (−1)dim(X)−i
(
χ(EuX(i) ) − 2χ(EuX(i+1) ) + χ(EuX(i+2) )

)
, (14)

where X(j) = X ∩ H1 ∩ · · · ∩ Hj for general hyperplanes H� in Pn−1. In their
proof of [22, Theorem 1.4], Matsui and Takeuchi give an explicit expression for
the terms in (14) when X = XA and dim(X) = d − 1. Specifically, equations
(3.16) and (3.10) in [22] show that

χ(Eu
X

(0)
A

) = χ(EuXA
) = V0 (15)

and

χ(Eu
X

(i)
A

) =
d−1∑
j=i

(−1)j−i

(
j − 1

i − 1

)
Vj for i = 1, . . . , d − 1. (16)

Substituting (15) and (16) into (14) gives the formula

δ0(XA) = (−1)d−1

(
V0 − 2

d−1∑
j=1

(−1)j−1Vj +
d−1∑
j=2

(−1)j (j − 1)Vj

)
.

Similarly, for i = 1, . . . , d − 1 we obtain

δi(XA) = (−1)d−1

(d−1∑
j=i

(−1)j
(

j − 1

i − 1

)
Vj

− 2
d−1∑

j=i+1

(−1)j−1

(
j − 1

i

)
Vj +

d−1∑
j=i+2

(−1)j
(

j − 1

i + 1

)
Vj

)
.

By reindexing the two summations above, and by collecting terms, we obtain
the more compact expression for the polar degrees given in (6). This completes
the proof.

Proof of Theorem 1.1. This follows from Theorem 1.2 using formula (8).

We next justify why we chose the term “Chern-Mather volume” for the
quantities Vj in Definition 2.4. The Chern-Mather class is a generalization
of the total Chern class (of the tangent bundle) to singular varieties. See [6,
Section 10.6] or [13, Example 4.29] for the definition. Piene [26] expressed
the Chern-Mather class of a projective variety as an alternating sum of polar
degrees. Her formula leads to the following identification of the Chern-Mather
class of a toric variety XA with the Chern-Mather volumes Vj of its matrix A.
We regard the Chern-Mather class of XA as an element in the Chow ring
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A∗(Pn−1) ∼= Z[h]/〈hn〉 of the ambient projective space Pn−1. Here h denotes
the hyperplane class.

Proposition 2.6. The Chern-Mather class of the projective toric variety
XA ⊂ Pn−1 equals

cM(XA) =
d−1∑
j=0

Vj · hn−j−1 ∈ A∗(Pn−1) ∼= Z[h]/〈hn〉. (17)

In particular, the CM volume Vj is the degree of the dimension j Chern-Mather
class of XA.

Proof. In light of Theorem 1.2, this follows immediately from Piene’s
formula [26, Theorem 3] for the Chern-Mather class of a projective variety
in terms of polar degrees. The simplification of the summations required to
arrive at the formula (17) is aided considerably by employing the Chern-Mather
involution formulas of Aluffi [2].

The result of Proposition 2.6 may also be expressed in the Chow ring of XA

as
cM(XA) =

∑
α a face of P

Eu(α) · [Mα : ZAα][Tα] ∈ A∗(XA),

where [Tα] is the class in A∗(XA) of the orbit closure associated to a face α of
P . This reformulation follows from Proposition 2.6 and (12). A direct proof is
given in [27, Theorem 2].

Theorem 1.1 is now a special case of [2, Proposition 2.9]. Aluffi’s result
expresses the ED degree of an arbitrary projective variety in terms of the Chern-
Mather class. While this does encompass our situation, it does not provide new
tools for actually computing polar degrees, Chern-Mather classes, or ED de-
grees. Our contribution fills this gap in the toric case. We furnish an algorithm
for computing these quantities for an arbitrary projective toric variety XA, not
necessarily normal. Our method is implemented in the Macaulay2 package
at [1]. Its input is the d × n-integer matrix A, and its output is the numbers
in (5) and (6).

Our implementation allows for relatively efficient and extremely scalable
computation. The running time is almost entirely determined by the facial
structure of P = conv(A). While this may make the computation difficult for
high-dimensional polytopes with many faces, it has several important advant-
ages over algebraic methods. First, the running time of our code has very little
direct dependence on the degree of XA. For algebraic methods (both numerical
and symbolic), this will be a bottleneck: computations become infeasible as
degree(XA) grows. Second, for fixed d and large n, the toric ideal of A can
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become unmanageable quite rapidly, while an iteration over the faces of P is
still feasible. Third, our combinatorial method is exact, and many portions of
the computation could be parallelized.

We close this section by summarizing the steps of our algorithm. The input
is the matrix A. It computes the CM volume for each face of P = conv(A). The
output is the list of CM volumes V0, . . . , Vd−1, the polar degrees δ0(XA), . . . ,

δd−1(XA), and the ED degree of XA.

• Compute the face poset P of the lattice polytope P = conv(A).

• Build a second poset P , isomorphic to P , whose elements are the pairs
(α, Aα) for α ∈ P

• For each chain (P, A) ⊃ (α1, Aα1) ⊃ · · · ⊃ (α�, Aα�
) in the poset P ,

do the following:
– Reorder the columns of the matrix A according to this chain. The

new matrix is

Ã = (
Aα�

, Aα�−1\α�
, Aα�−2\α�−1 , . . . , Aα1\α2 , AP \α1

)
.

– Find the Hermite normal form A′ of Ã, as in Remark 2.2.
– For all pairs 1 ≤ i < j ≤ �, compute the relative subdiagram

volumes μ(αi\αj ), using (11) by selecting the appropriate sub-
matrix C of A′.

• Compute the normalized volumes of all elements in the face poset P .

• Combining all subdiagram volumes and face volumes found above, we
now compute the Euler obstruction for each face of P using the formula
in Definition 2.3.

• Compute Vj using formula (13). Compute δi(XA) using (6). Output
gEDdegree(XA).

3. Dimension two and codimension one

In this section we compute the gED degree for instances of low dimension and
low codimension. We start with toric surfaces. Here d = 3 and we assume that
the matrix has the form

A =
⎛
⎝

α1 α2 α3 · · · αn−1 αn

β1 β2 β3 · · · βn−1 βn

1 1 1 · · · 1 1

⎞
⎠ .

The lattice polygon P = conv(A) has normalized area V2 = Vol(P ). Its polar
degrees are

δ0 = 3V2 − 2V1 + V0, δ1 = 3V2 − V1 and δ2 = V2.
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The generic ED degree is equal to the sum of the polar degrees:

gEDdegree(XA) = δ0 + δ1 + δ2 = 7V2 − 3V1 + V0.

If XA is smooth then V0 and V1 are positive integers. Namely, V0 is the
number of vertices of P , and V1 is number of all lattice points in the boundary
of P . Here is a simple example.

Example 3.1. Let n = 9 and XA = P1 ×P1, embedded in P8 with the line
bundle O (2, 2):

A =
⎛
⎝

0 0 0 1 1 1 2 2 2

0 1 2 0 1 2 0 1 2

1 1 1 1 1 1 1 1 1

⎞
⎠ .

This corresponds to approximating a data vector u ∈ R9 by biquadratic
monomials. Then P = conv(A) is a square of side length 2. The face volumes
are V2 = 8, V1 = 8 and V0 = 4, and hence gEDdegree(XA) = 36. For
instance, if the weights are λ = (4, 1, 9, 2, 3, 1, 7, 6, 5) and data point is
u = (29, 14, 46, 13, −5, 42, 42, 5, 23) then precisely 14 of the 36 complex
critical points are real. This choice of λ exhibits the generic behavior. The ED
degree drops from 36 to 20 if we take λ = (1, 1, 1, 1, 1, 1, 1, 1, 1); here the
unit weights are not generic. This degree drop is explained by the criterion we
shall derive in Proposition 4.1.

For singular toric surfaces XA, we must consider the CM volumes of the
edges and vertices of the planar configuration A. If XA is normal then the
following formula can be used:

Corollary 3.2. Suppose that XA is a toric surface with isolated singular-
ities in Pn. Then V1 is the number of lattice points in the boundary of P =
conv(A), and the CM volume of a vertex ai of A equals Vol(conv(A\{ai})) +
2 − Vol(P ), where Vol denotes normalized area. Hence V0 is the sum of these
(possibly negative) integers, as ai ranges over all vertices of P .

Proof. This follows from the general results in Section 2. See also [23,
Proposition 1.11.7].

The following example illustrates Corollary 3.2. For a non-normal case
see Example 3.6. For any such small instance A, we can always verify our
combinatorial computation of toric ED degrees using the general algebraic
method in [10, (5.3)]. This is done by first computing the bigraded prime ideal
of the conormal variety Con(XA). Recall that Con(XA) is an irreducible closed
subvariety of dimension n − 2 in Pn−1 × Pn−1. It is the closure of the set of
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pairs (x, y) in Pn−1 × Pn−1 such that x is a smooth point in XA and y is a
hyperplane tangent to XA at x. The projection of Con(XA) onto the second
factor is the A-discriminant X∨

A.

Example 3.3. Let n = 6 and let XA be the normal toric surface in P5 given
by

A =
⎛
⎝

1 0 1 2 3 1

0 1 1 1 1 2

1 1 1 1 1 1

⎞
⎠ .

This is the closure of the image of (C∗)3 → P5, (s, t, u) �→ (su : tu : stu :
s2tu : s3tu : st2u).

a1

a6

a2 a3 a4 a5

Figure 1. The polygon P = conv(A) has normalized area six. The only
lattice points in its boundary are the four vertices. Their CM volumes can
be read off from this triangulation.

Figure 1 shows that V2 = 6 and V1 = 4. The four vertices of the polygon P are
a1, a2, a5, a6, and the corresponding complementary areas Vol(conv(A\{ai}))
are 3, 4, 4, 3. Hence the CM volumes of the vertices are −1, 0, 0, −1, for a
total of V0 = −2. We conclude

gEDdegree(XA) = 7V2 − 3V1 + V0 = 7 · 6 − 3 · 4 + (−2) = 28.

We verify this by computing the conormal variety Con(XA) ⊂ P5 × P5.
Each point y ∈ X∨

A represents a singular curve {y1su+y2tu+y3stu+y4s
2tu+

y5s
3tu + y6st

2u = 0} on the toric surface XA ⊂ P5, and x = (su : tu : · · · :
st2u) is the singular point. The conormal variety has dimension 4. Its prime
ideal C is minimally generated by 17 polynomials in the 6 + 6 homogeneous
coordinates of P5 ×P5. Among these are four binomial quadrics that generate
the toric ideal of XA. The polar degrees are the coefficients of the multidegree
of the ideal C , and they are δ0 = 8, δ1 = 14, and δ2 = 6. This is consistent
with Theorem 1.2, which says that δ0 = 3V2 − 2V1 + V0, δ1 = 3V2 − V1 and
δ2 = V2. The A-discriminant X∨

A is a hypersurface of degree 8. Its defining
polynomial is found among our 17 ideal generators.



226 M. HELMER AND B. STURMFELS

The following code in Macaulay2 [15] realizes what is described in the
previous paragraph.

R = QQ[s,t,u,x1,x2,x3,x4,x5,x6,y1,y2,y3,y4,y5,y6,
Degrees=>{{1,1},{1,1},{1,1},{1,0},{1,0},{1,0},{1,0},{1,0},{1,0},
{0,1},{0,1},{0,1},{0,1},{0,1},{0,1}}]; 
f = y1*s*u+y2*t*u+y3*s*t*u+y4*s^2*t*u+y5*s^3*t*u+y6*s*t^2*u; 
I = ideal(diff(s,f),diff(t,f),diff(u,f), 
    x1-s*u, x2-t*u, x3-s*t*u, x4-s^2*t*u, x5-s^3*t*u,x6-s*t^2*u); 
C = eliminate({s,t,u},I); 
C = saturate(C,ideal(x1*x2*x3*x4*x5*x6)); 
C = saturate(C,ideal(y1*y2*y3*y4*y5*y6)); 
apply(first entries mingens(C),t->degree(t)) 
multidegree C

The output of the last line is the binary form whose coefficients are the polar
degrees.

We next examine toric hypersurfaces. Let XA ⊂ Pn−1 be defined by one
binomial equation

x
c1
1 · · · xcr

r = x
cr+1
r+1 · · · xcn

n . (18)

Here c1, . . . , cn are positive integers that are relatively prime, and they satisfy

c1 + · · · + cr = cr+1 + · · · + cn = deg(XA). (19)

Our goal is to express the gED degree and the polar degrees of XA in terms of
c1, c2, . . . , cn.

The integer matrix A has format (n−1)×n, and its kernel is spanned by the
column vector (c1, . . . , cr , −cr+1, . . . ,−cn)

T . The associated lattice polytope
P = conv(A) has dimension n−2, and it has n vertices provided 2 ≤ r ≤ n−2.
We consider the Cayley polytope of P and its mirror image −P . This is the
(n − 1)-dimensional polytope obtained by placing P and −P into parallel
hyperplanes and taking the convex hull. See e.g. [20, Definition 4.6.1]. The
integer matrix representing the Cayley polytope has format n × 2n. It equals

Cay(A, −A) =
(

1 0

A −A

)
,

where 1 = (1, 1, . . . , 1) and 0 = (0, 0, . . . , 0) in Rn. We shall first derive the
following result.

Theorem 3.4. The conormal variety Con(XA) is a toric variety of dimension
n − 2 in Pn−1 × Pn−1. It corresponds to the toric variety of Cay(A, −A). The
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generic ED degree of XA is the normalized volume of the Cayley polytope. The
polar degrees δi = δi(XA) are given by

Vol
(
λP + μ(−P)

) =
n−2∑
i=0

δi

(
n − 2

i

)
λiμn−2−i , where λ, μ ∈ R>0. (20)

The volume in (20) is the normalized lattice volume. Hence δ0 = δn−2 =
Vol(P ) is the integer in (19). The formula (20) confirms the known fact that
the polar degrees of a toric hypersurface are symmetric, i.e. δi−1 = δn−1−i for
all i. This symmetry of the polar degrees holds for any self-dual projective
variety. This is known by results of Kleiman [19]; see also [2]. Before we give
the proof of Theorem 3.4, let us present one corollary and one example.

Corollary 3.5. The polar degrees of XA are piecewise linear functions
of c1, . . . , cn. Their regions of linearity are the cones in the arrangement of
hyperplanes given by equating a subsum of {c1, . . . , cr} with a subsum of
{cr+1, . . . , cn}, inside the (n − 1)-space given by (19).

Proof. The kernel of the matrix Cay(A, −A) is the row span of the n×2n-
matrix

(
c 0

B B

)
, where B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 0 . . . 0 0

0 1 −1 0 . . . 0 0

0 0 1 −1 0 0
...

...
. . .

. . .

...
...

. . .
. . .

0 0 0 0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(21)

and c = ( c1 c2 . . . cr −cr+1 . . . −cn ). Each of the
(2n

n

)
maximal

minors of this Gale dual matrix is the difference of a subsum of {c1, . . . , cr}
and a subsum of {cr+1, . . . , cn}. All 2n − 1 non-zero such linear forms arise.
They define hyperplanes inside the (n−1)-space defined by (19). We restrict
this hyperplane arrangement to Rn

>0. Up to sign, the maximal minors of the
matrix (21) are also the maximal minors of Cay(A, −A). Hence the oriented
matroid of Cay(A, −A) is fixed when (c1, . . . , cn) ranges over any cone of our
arrangement in Rn

>0. The volume of the Cayley polytope is a sum of certain
maximal minors, selected by the oriented matroid. This implies our claim.

Example 3.6. Let n = 4 and consider the toric surface XA = {xc1
1 x

c2
2 =

x
c3
3 x

c4
4 } in P3. Writing y1, y2, y3, y4 for the coordinates of the dual P3, the
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conormal variety Con(XA) is the irreducible surface in P3 ×P3 that is defined
by x

c1
1 x

c2
2 = x

c3
3 x

c4
4 together with the constraint

rank

(
c1x

c1−1
1 x

c2
2 c2x

c1
1 x

c2−1
2 c3x

c3−1
3 x

c4
4 c4x

c3
3 x

c4−1
4

y1 y2 y3 y4

)
≤ 1. (22)

This binomial ideal is not prime, but we must saturate with respect to x1x2x3x4

in order to compute the prime ideal of Con(XA). Performing this saturation
one obtains the 2 × 2-minors of the following matrix which has the same row
space as the matrix above:

rank

(
c1 c2 c3 c4

x1y1 x2y2 x3y3 x4y4

)
≤ 1. (23)

After replacing each variable yi by ciyi , we obtain the binomials corresponding
to the rows of the 4×8-matrix in (21). For instance, the second row of this mat-
rix corresponds to the binomial c1x2y2 − c2x1y1. The Gale dual Cay(A, −A)

of (21) represents the 3-dimensional polytope obtained by taking the quad-
rangle P = conv(A) and placing its mirror image −P on a parallel plane in
3-space. The volume of that 3-dimensional Cayley polytope equals

gEDdegree(XA) = δ0 + δ1 + δ2 = 3(c1 + c2) + max(|c1 − c2|, |c3 − c4|).
Here, δ0 = δ2 = c1 + c2 = c3 + c4, and δ1 = δ0 + max(|c1 − c2|, |c3 − c4|).
By (20), we find these formulas by measuring the area of the planar polygon
λP + μ(−P).

Proof of Theorem 3.4. The map that attaches tangent hyperplanes to
smooth points of XA is a birational map from XA ⊂ Pn−1 to the conormal
variety Con(XA) ⊂ Pn−1 × Pn−1. It is equivariant with respect to the action
of the dense torus of XA. Hence Con(XA) is toric. We find its toric ideal using
a procedure analogous to the transformation from (22) to (23). Let J be the
ideal given by the 2×2-minors of ( J (XA) y )T where y = (y1, . . . , yn) and
J (XA) is the gradient vector of (18). This matrix is analogous to (22). Let IA

be the ideal of (18).
The ideal defining Con(XA) is (IA + J ) : 〈J (XA)〉∞. This is a toric ideal.

It can also be obtained by saturating the binomial ideal IA + J with respect
to x1 · · · xn since the singular locus of XA lies in {x1 · · · xn = 0}. Among the
generators of that toric ideal are the binomials cixjyj − cjxiyi as in (23). We
take these for j = i + 1 together with (18) and we write their exponents as the
rows of the n × 2n-matrix (21). This matrix is the Gale dual of Cay(A, −A).
This proves the first two statements in Theorem 3.4. The next conclusions about
the ED degree and the polar degrees of XA now follow from known results
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(cf. [20, Proposition 4.6]) about the relationship between mixed volumes and
triangulations of Cayley polytopes.

Theorem 3.4 identified the conormal variety of a toric hypersurface as the
toric variety given by the Cayley polytope. The ED degree is the volume of
the Cayley polytope. We now use the general result in Theorem 1.1 and 1.2 to
derive a formula for that volume.

Theorem 3.7. The i th polar degree of the toric hypersurface XA equals

δi =
(

n − 1

i + 1

)
· deg(XA) −

∑
τ :|τ |=n−i−1

min

( ∑
j∈τ∩{1,...,r}

cj ,
∑

j∈τ∩{r+1,...,n}
cj

)
. (24)

Proof. The (n − 2)-dimensional polytope P = conv(A) is simplicial and
has n vertices, provided 1 < r < n. Following [31, Section 6.5], the minimal
non-faces of P are {1, . . . , r} and {r+1, . . . , n}. For i ≤ n − 3, we encode
each i-simplex in ∂P by the index set τ ⊂ {1, 2, . . . , n} of those columns
ai that are not in that simplex. These τ satisfy |τ | = n − 1 − i, and both
τ+ = τ ∩ {1, . . . , r} and τ− = τ ∩ {r+1, . . . , n} are non-empty.

By Corollary 3.5, the polar degrees of XA are linear functions on certain
full-dimensional polyhedral cones in Rn

>0. The lattice points (c1, . . . , cn) with
relatively prime coordinates in such a cone are Zariski dense. Every linear
function on Rn is determined by its values on a Zariski dense subset. Hence,
in what follows, we may assume that gcd(ci, cj ) = 1 for all i, j .

Given this assumption, we claim that Vol(τ ) = 1 for every proper face
τ of P . Suppose this does not hold. Then Vol(τ ) > 1 for some facet τ , say
τ = {r, n} after relabeling. This facet is the simplex with vertex set γ =
{a1, . . . , ar−1, ar+1, . . . , an−1}. There exists p ∈ Zγ such that, for some i, the
lattice spanned by (γ \{ai}) ∪ {p} has index ip ≥ 2 in Zγ . We have

cr = Vol
(
γ ∪ {an}

) = ip · Vol
(
(γ \{ai}) ∪ {p, an}

)
and cn = Vol

(
γ ∪ {ar}

) = ip · Vol
(
(γ \{ai}) ∪ {p, ar}

)
.

So, ip divides gcd(cr , cn), a contradiction. Hence Vol(τ ) = 1 for every proper
face τ of P .

For every face σ of P that contains τ , the subdiagram volume in Defini-
tion 2.1 equals

μ(σ/τ) =
⎧⎨
⎩

min
( ∑

i∈τ+
ci,

∑
j∈τ−

cj

)
, if σ = P ,

1, otherwise.

(25)
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With this, we can solve the recursion in Definition 2.3. For a face α of P let

min(r)
A (α) = min

( ∑
j∈α∩{1,...,r}

cj ,
∑

j∈α∩{r+1,...,n}
cj

)
.

From (25) and Definition 2.3 we have

Eu(τ ) =
∑

β 	=P s.t τ
is a face of β and

dim(β)=dim(τ )+1

(−1)n−dim(β)−1 min(r)
A (β)+ (−1)n−dim(τ )−1 min(r)

A (τ ).

This results in a formula for the CM volume of τ , as an alternating sum of
expressions min

(∑
j∈σ+ cj ,

∑
j∈σ− cj

)
. When we write the sum in (13), and

thereafter the sum in (6), a lot of regrouping and cancellation occurs. The final
result is the expression for δi in (24).

Corollary 3.8. The generic Euclidean distance degree of the toric hyper-
surface XA equals

gEDdegree(XA) = (2n−1 − 1) · deg(XA)

−
∑

τ⊂{1,...,n}
min

( ∑
j∈τ∩{1,...,r}

cj ,
∑

j∈τ∩{r+1,...,n}
cj

)
.

It is instructive to consider the case of surfaces in P3 and to compare with
Corollary 3.2.

Example 3.9. Let n = 4 and r = 2 and set D = deg(XA). The polar
degrees are δ2 = D, δ1 = 3D − min(c1, c3) − min(c1, c4) − min(c2, c3) −
min(c2, c4) = D+max

(|c1 −c2|, |c3 −c4|
)
, and δ0 = 3D−c1 −c2 −c3 −c4 =

D. Their sum gives us the simple formula

gEDdegree(XA) = 3D + max
(|c1 − c2|, |c3 − c4|

)
.

Another class of toric surfaces arise for n = 4 and r = 1. In that case,
δ0 = δ2 = D and δ1 = 2D.

The results in this paper furnish exact formulas for the algebraic complexity
of solving the optimization problems (3) and (4). We close this section with a
numerical example.

Example 3.10. Given a list (u1, u2, u3, u4, u5, u6) of six real measure-
ments, we seek to find the best approximation by a real vector (x1, x2, x3, x4,

x5, x6) that satisfies the model

x22
1 x23

2 x64
3 = x26

4 x14
5 x69

6 .
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The general formula in [10, Corollary 2.10] for hypersurfaces of degree d =
109 says that

d·(1+(d−1)1+(d−1)2+(d−1)3+(d−1)4+(d−1)5
) = 1, 616, 535, 525, 241

is a bound for the algebraic degree of our optimization problem. Corollary 3.8
shows that the true answer is much smaller: gEDdegree(XA) = 1348. Numer-
ical Algebraic Geometry [5] allows us to compute all complex critical points,
and hence all local approximations.

4. Discriminants, tropicalization and hypersimplices

We computed the algebraic degree of the optimization problem (3) when the
weight vector λ and the data vector u are generic. This generic behavior fails
when these vectors are zeros of certain discriminants. In what follows we
discuss those discriminants. Later in this section, we explore connections to
tropical geometry: building on [8] and [9], we discuss the tropicalization of the
conormal variety of a toric variety XA. Thereafter, we conclude by returning
to (1).

We begin by examining the genericity condition on the weight vector λ =
(λ1, . . . , λn) that specifies the norm ‖x‖λ = (

∑n
i=1 λix

2
i )

1/2. Following [24],
we can define the ED degree of the toric variety XA for any positive λ. However,
it may be smaller than the generic one:

EDdegreeλ(XA) ≤ gEDdegree(XA). (26)

Such a drop occurred for λ = (1, 1, . . . , 1) in Example 3.1, but not in Ex-
ample 1.3. Similar instances are featured in [10, Example 2.7, Corollary 8.7]
and [24, Examples 1.1, Table 1, Proposition 4.1]. We now offer a characteriz-
ation of the weights whose ED degree is generic.

As before, we write X∨
A for the A-discriminant, that is, the projective variety

dual to XA. If the dual X∨
A is a hypersurface inPn−1 then �A denotes its defining

polynomial. If codim(X∨
A) ≥ 2 then �A = 1. Following [14] but ignoring

exponents, we define the principal A-determinant EA to be the product of the
polynomials �α where α runs over all faces of A.

Proposition 4.1. Let λ ∈ Rn
>0 be a weight vector such that the principal

A-determinant EA does not vanish at λ. Then equality holds in (26).

Proof. Theorem 5.4 in [10] states that the ED degree of a variety X ⊂ Pn−1

agrees with the generic ED degree provided the conormal variety Con(X) is
disjoint from the diagonal �(Pn−1) in Pn−1 × Pn−1. This refers to the usual
Euclidean norm ‖ · ‖1 on Rn. We apply this to the scaled toric variety X =
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λ1/2XA whose points are λ1/2x = (λ
1/2
1 x1 : λ

1/2
2 x2 : · · · : λ

1/2
n xn) where

x = (x1 : x2 : · · · : xn) runs over XA. If x has non-zero coordinates then
x ∈ XA means that x = (ta1 : ta2 : · · · : tan ) for some t ∈ (C∗)d . The ED
problem for X with respect to the norm ‖ · ‖1 is identical to the ED problem
for XA with respect to ‖ · ‖λ.

Proposition 4.1 claims that if the inequality in (26) is strict then EA(λ) = 0.
Suppose that the inequality in (26) is strict. By [10, Theorem 5.4], we know that
Con(X)∩�(Pn−1) is non-empty. Then there exists a point x ∈ XA such that the
hyperplane with normal vector λ1/2x is tangent to X at the point λ1/2x. Let us
first assume that x has non-zero coordinates. Then x = (ta1 : ta2 : · · · : tan ) for
some t ∈ (C∗)d . The tangency condition means that the hypersurface defined
by the Laurent polynomial

∑n
i=1 λit

2ai is singular at the point t ∈ (C∗)d .
This implies that the hypersurface in the torus (C∗)d defined by the Laurent
polynomial

∑n
i=1 λit

ai is singular. We conclude that λ lies in X∨
A, and hence

�A(λ) = 0.
Suppose now that some of the coordinates x are zero. Then the support of

x is a facial subset α of the columns of A. We now restrict to the torus orbit on
XA given by that subset. The hyperplane with normal vector λ1/2x|α is tangent
to Xα at the point λ1/2x|α in that orbit. By the same argument as in the previous
paragraph, we now find that �α(λ) = 0.

Since the principal A-determinant EA is the product of the α-discriminants
�α for all faces α of A, we conclude that EA(λ) = 0 holds whenever the
inequality in (26) is strict.

Example 4.2. Let d = 3, n = 6, and

A =
⎛
⎝

2 1 1 0 0 0

0 1 0 2 1 0

0 0 1 0 1 2

⎞
⎠ .

Then XA is the Veronese surface in P5, with gEDdegree(XA) = 13, and (3)
is the problem of finding the best rank 1 approximation to a given symmetric
3 × 3-matrix. The principal A-determinant equals

EA(λ) = det

⎛
⎝

2λ1 λ2 λ3

λ2 2λ4 λ5

λ3 λ5 2λ6

⎞
⎠ · det

(
2λ1 λ2

λ2 2λ4

)

· det

(
2λ1 λ3

λ3 2λ6

)
· det

(
2λ4 λ5

λ5 2λ6

)
· λ1λ4λ6.

If EDdegreeλ(XA) drops below 13 then this product must be zero. We know
from [10, Example 3.2] that EDdegreeλ(XA) drops down to 3 when λ =
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(1, 2, 2, 1, 2, 1). A computation reveals that EDdegreeλ(XA) = 11 when
�A(λ) 	= 0 but one of the 2 × 2-determinants vanishes.

Remark 4.3. If all proper faces α of A are affinely independent then EA

and �A are equal up to a monomial factor, so they have the same vanishing
locus in Rn

>0. If this holds and if the hypersurface defined by
∑n

i=1 xi = 0
inside XA is non-singular then the usual Euclidean norm ‖ · ‖1 exhibits the
generic behavior, i.e. EDdegree1(XA) = gEDdegree(XA). This explains the
generic behavior of ‖ · ‖1 for rational normal curves in Example 1.3, and for
the next example.

Example 4.4. Consider the toric hypersurface (18). By [14, §9.1], its A-
discriminant equals

�A = c
cr+1
r+1 · · · ccn

n · λ
c1
1 · · · λcr

r − (−1)D · c
c1
1 · · · ccr

r · λ
cr+1
r+1 · · · λcn

n .

Hence ‖ · ‖1 is always ED generic when D = deg(XA) is odd. If D is even
then the hypothesis

c
c1
1 · · · ccr

r 	= c
cr+1
r+1 · · · ccn

n

ensures that Corollary 3.8 counts critical points correctly for the usual Euc-
lidean norm.

Suppose now that λ ∈ Rn
>0 with EA(λ) 	= 0 has been fixed. The question

arises which data vectors u ∈ Rn exhibit the generic behavior. There are three
possible types of degeneracies:

• the ED discriminant [10] concerns collisions of critical points in the
smooth locus of XA;

• the data singular locus [17, §2.1] concerns critical points in the singular
locus of XA;

• the data isotropic locus [17, §2.2] concerns critical points that satisfy∑n
i=1 λix

2
i = 0.

A careful study of all three for toric varieties XA would be worthwhile. Gen-
erally none of these three loci are toric varieties themselves. We offer some
preliminary observations:

• Example 7.2 in [10] shows that the ED discriminant is complicated and
not toric even when XA has codimension 1. It would be interesting to
compute the degree of the ED discriminant for (18) and to compare it to
Trifogli’s formula in [10, Theorem 7.3].

• The data singular locus always contains the A-discriminant [17, The-
orem 1].
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• The data isotropic locus always contains the A-discriminant [17, The-
orem 2].

The Matsui-Takeuchi formula for the degree of the A-discriminant given in
Theorem 1.2 is an alternating sum of CM volumes of faces of P . A positive
formula, as a sum of combinatorial numbers, was given independently by Dick-
enstein et al. [8]. In fact, Theorem 1.2 in [8] expresses every initial monomial
of �A explicitly in a positive manner. Such formulas are derived using Tropical
Geometry [20]. Their advantage over [22] is that they furnish start systems for
homotopy continuation in Numerical Algebraic Geometry [5].

In what follows we assume familiarity with basics of tropical geometry, es-
pecially on varieties given by monomials in linear forms [20, §5.5]. The Horn
uniformization of the A-discriminant [8, §4] lifts to the following parametriz-
ation of the conormal variety of XA.

Proposition 4.5. Let A be an integer d × n-matrix as above and XA its
projective toric variety inPn−1. The conormal variety Con(XA) is the closure of
the set of points (x, y) inPn−1 ×Pn−1, where x ∈ XA and x ·y ∈ kernel(A). Its
tropicalization is the set of points (u, v) in (Rn/R1)2, where u ∈ rowspace(A)

and u + v is in the co-Bergman fan B∗(A).

Proof. The two statements are straightforward extensions of [8, Proposi-
tion 4.1] and [8, Corollary 4.3] respectively, obtained by keeping track of the
tangent hyperplanes Hξ at ξ ∈ XA.

The tropical variety trop(Con(XA)) is a balanced fan of dimension n − 2
in (Rn/R1)2. The description above was used by Dickenstein and Tabera [9]
to study singular hypersurfaces.

Corollary 4.6. The polar degree δi(XA) is the number of points in the
intersection

trop(Con(XA)) ∩ (Ln−2−i × Mi) ⊂ (Rn/R1) × (Rn/R1),

where Ln−2−i is a tropical (n − 2 − i)-plane and Mi is a tropical i-plane.
These planes can be chosen as in [20, Corollary 3.6.16], and the count is with
multiplicities as in [20, (3.6.5)].

In analogy to [8, Theorem 1.2], this corollary can be translated into an
explicit positive formula for the polar degrees and hence for the ED degree
of XA. This should be useful for developing homotopy methods for solving
the critical equations, which can now be written as

x + y = u, x ∈ X̃A and x · y ∈ kernel(A), for λ = 1.
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This formulation arises from [10, Theorem 5.2], where all varieties are regarded
as affine cones.

We now return to the optimization problem (1). Here n = (
d

k

)
and A is the

matrix whose columns are the vectors in {0, 1}d that have precisely k entries
equal to 1. The (d−1)-dimensional polytope P = conv(A) is the hypersimplex
�d,k . The toric variety XA represents generic torus orbits on the Grassmannian
of k-dimensional linear subspaces in Cd . The degree of XA is the volume of
�d,k . This is known (by [29]) to equal the Eulerian number A(d − 1, k − 1).
In what follows we determine the CM volumes, polar degrees and gED degree
for the hyperpsimplex �d,k . Table 1 offers a summary of all values for d ≤ 8.
Here we may assume 2 ≤ k ≤ �d/2� because the cases (d, k) and (d, d − k)

are isomorphic.
A couple of observations are in place. The last entry in the respective vectors

is the Eulerian number Vol(�d,k) = A(d − 1, k − 1). The ED degree is the
sum of the polar degrees. The first polar degree δ0 is the degree of the A-
discriminant �A. For k = 2 this is simply the determinant of the symmetric
matrix with zero diagonal entries. For instance, for d = 4,

�A(λ) = det

⎛
⎜⎜⎜⎝

0 λ12 λ13 λ14

λ12 0 λ23 λ24

λ13 λ23 0 λ34

λ14 λ24 λ34 0

⎞
⎟⎟⎟⎠ .

A key point is that �A(λ) 	= 0 when λ = (1, . . . , 1). This ensures that the
usual Euclidean metric is generic for (1). There is no degree drop due to the
weights λ being special.

We close by presenting general formulas for the Chern-Mather volumes of
hypersimplices:

Proposition 4.7. The Chern-Mather volumes for the hypersimplex �d,k

are

V0 =
(

d

k

)
· min(k, d − k)

and

V� =
min(k,�)∑

i=1

(
d

� + 1

)(
d − � − 1

k − i

)
· A(�, i − 1), for � = 1, . . . , d − 1.

For � = d−1 this formula gives the Eulerian number Vd−1 = A(d−1, k−1) =
Vol(�d,k).
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Table 1. Computing the generic ED degree for the toric variety of the
hypersimplex �d,k .

d k Chern-Mather volumes Polar degrees gED degree

4 2 (12, 12, 8, 4) (4, 12, 8, 4) 28

5 2 (20, 30, 30, 25, 11) (5, 20, 40, 30, 11) 106

6 2
(30, 60, 80,

90, 72, 26)

(6, 30, 80,

120, 84, 26)
346

6 3
(60, 90, 120,

150, 132, 66)

(96, 300, 480,

480, 264, 66)
1686

7 2
(42, 105, 175, 245,

273, 189, 57)

(7, 42, 140, 280,

336, 210, 57)
1072

7 3
(105, 210, 350, 560,

714, 644, 302)

(315, 1302, 2940, 3920,

3192, 1470, 302)
13441

8 2
(56, 168, 336, 560,

784, 784, 464, 120)

(8, 56, 224, 560,

896, 896, 496, 120)
3256

8 3
(168, 420, 840, 1610,

2632, 3332, 2872, 1191)

(848, 4256, 12096, 21280,

23744, 16576, 6656, 1191)
86647

8 4
(280, 560, 1120, 2240,

3808, 5152, 4832, 2416)

(3816, 16016, 38976, 60480,

60928, 38976, 14496, 2416)
236104

Proof. We apply the algorithm at the end of Section 2 to the face poset of
�d,k . Since every face of the hypersimplex is a hypersimplex, it is convenient
to proceed by induction. The base step is the subdiagram volume of a vertex
of �d,k . Each vertex has (d − k)k neighbors. These lie on a hyperplane in the
ambient (d − 1)-space. Their convex hull is a product of simplices �k−1 ×
�d−k−1. The normalized volume of such a product equals

(
d−2
k−1

)
. Hence the

subdiagram volume of any vertex at �d,k is
(
d−2
k−1

)
. The vertex figures of any

positive-dimensional face at �d,k is a simplex. In fact, the toric variety X�d,k

has isolated singularities. Hence μ(α/β) = 1 for all subdiagram volumes at
faces β with dim(β) ≥ 1.

From Proposition 4.7 one easily computes the polar degrees (6) and the ED
degree (5). This solves an open problem, namely to determine the degree of
the A-discriminant for k ≥ 3. This was asked for d = 6 and k = 3 in [18,
Problem 7]. Table 1 reveals that the answer is 96.
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17. Horobeţ, E., The data singular and the data isotropic loci for affine cones, Comm. Algebra
45 (2017), no. 3, 1177–1186.

18. Huggins, P., Sturmfels, B., Yu, J., and Yuster, D. S., The hyperdeterminant and triangulations
of the 4-cube, Math. Comp. 77 (2008), no. 263, 1653–1679.

19. Kleiman, S. L., Tangency and duality, in “Proceedings of the 1984 Vancouver conference in
algebraic geometry”, CMS Conf. Proc., vol. 6, Amer. Math. Soc., Providence, RI, 1986,
pp. 163–225.

20. Maclagan, D., and Sturmfels, B., Introduction to tropical geometry, Graduate Studies in
Mathematics, vol. 161, American Mathematical Society, Providence, RI, 2015.



238 M. HELMER AND B. STURMFELS

21. MacPherson, R. D., Chern classes for singular algebraic varieties, Ann. of Math. (2) 100
(1974), 423–432.

22. Matsui, Y., and Takeuchi, K., A geometric degree formula for A-discriminants and Euler
obstructions of toric varieties, Adv. Math. 226 (2011), no. 2, 2040–2064.

23. Nødland, B., Singular toric varieties, Master’s thesis, University of Oslo, Norway, 2015.
24. Ottaviani, G., Spaenlehauer, P.-J., and Sturmfels, B., Exact solutions in structured low-rank

approximation, SIAM J. Matrix Anal. Appl. 35 (2014), no. 4, 1521–1542.
25. Piene, R., Polar classes of singular varieties, Ann. Sci. École Norm. Sup. (4) 11 (1978), no. 2,

247–276.
26. Piene, R., Cycles polaires et classes de Chern pour les variétés projectives singulières, in

“Introduction à la théorie des singularités, II”, Travaux en Cours, vol. 37, Hermann, Paris,
1988, pp. 7–34.

27. Piene, R., Chern-Mather classes of toric varieties, preprint arXiv:16030285v1, 2016.
28. Safey El Din, M., and Schost, É., Polar varieties and computation of one point in each

connected component of a smooth algebraic set, in “Proceedings of the 2003 International
Symposium on Symbolic and Algebraic Computation”, ACM, New York, 2003, pp. 224–
231.

29. Stanley, R. P., Eulerian partitions of a unit hypercube, in “Higher combinatorics, Proceedings
of the NATOAdvanced Study Institute held in Berlin, September 1–10, 1976” (Aigner, M.,
ed.), NATO Advanced Study Institute Series. Ser. C: Mathematical and Physical Sciences,
vol. 31, D. Reidel Publishing Co., Dordrecht-Boston, Mass., 1977, p. 49.

30. Sturmfels, B., Gröbner bases and convex polytopes, University Lecture Series, vol. 8, Amer-
ican Mathematical Society, Providence, RI, 1996.

31. Ziegler, G. M., Lectures on polytopes, Graduate Texts in Mathematics, vol. 152, Springer-
Verlag, New York, 1995.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CALIFORNIA
BERKELEY
CA 94720
USA
E-mail: martin.helmer@berkeley.edu

bernd@berkeley.edu

Current address, M. Helmer:

DEPARTMENT OF MATHEMATICAL SCIENCES
UNIVERSITY OF COPENHAGEN
UNIVERSITETSPARKEN 5
DK-2100 COPENHAGEN
DENMARK
E-mail: m.helmer@math.ku.dk


