Open Access Open Access  Restricted Access Subscription Access

Presentations of rings with a chain of semidualizing modules

Ensiyeh Amanzadeh, Mohammad T. Dibaei

Abstract


Inspired by Jorgensen et al., it is proved that if a Cohen-Macaulay local ring $R$ with dualizing module admits a suitable chain of semidualizing $R$-modules of length $n$, then $R\cong Q/(I_1+\cdots +I_n)$ for some Gorenstein ring $Q$ and ideals $I_1,\dots , I_n$ of $Q$; and, for each $\Lambda \subseteq [n]$, the ring $Q/(\sum _{\ell \in \Lambda } I_\ell )$ has some interesting cohomological properties. This extends the result of Jorgensen et al., and also of Foxby and Reiten.


Full Text:

PDF

References


Avramov, L. L. and Martsinkovsky, A., Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension, Proc. London Math. Soc. (3) 85 (2002), no. 2, 393–440. https://doi.org/10.1112/S0024611502013527

Christensen, L. W., Semi-dualizing complexes and their Auslander categories, Trans. Amer. Math. Soc. 353 (2001), no. 5, 1839–1883. https://doi.org/10.1090/S0002-9947-01-02627-7

Chrstensen, L. W. and Sather-Wagstaff, S., A Cohen-Macaulay algebra has only finitely many semidualizing modules, Math. Proc. Cambridge Philos. Soc. 145 (2008), no. 3, 601–603. https://doi.org/10.1017/S0305004108001552

Foxby, H.-B., Gorenstein modules and related modules, Math. Scand. 31 (1972), 267–284. https://doi.org/10.7146/math.scand.a-11434

Frankild, A. and Sather-Wagstaff, S., Reflexivity and ring homomorphisms of finite flat dimension, Comm. Algebra 35 (2007), no. 2, 461–500. https://doi.org/10.1080/00927870601052489

Frankild, A. and Sather-Wagstaff, S., The set of semidualizing complexes is a nontrivial metric space, J. Algebra 308 (2007), no. 1, 124–143. https://doi.org/10.1016/j.jalgebra.2006.06.017

Gerko, A., On the structure of the set of semidualizing complexes, Illinois J. Math. 48 (2004), no. 3, 965–976.

Golod, E. S., $G$-dimension and generalized perfect ideals, Trudy Mat. Inst. Steklov. 165 (1984), 62–66.

Hartshorne, R., Residues and duality, Lecture Notes in Mathematics, no. 20, Springer-Verlag, Berlin-New York, 1966.

Holm, H. and Jørgensen, P., Semi-dualizing modules and related Gorenstein homological dimensions, J. Pure Appl. Algebra 205 (2006), no. 2, 423–445. https://doi.org/10.1016/j.jpaa.2005.07.010

Jorgensen, D. A., Leuschke, G. J., and Sather-Wagstaff, S., Presentations of rings with non-trivial semidualizing modules, Collect. Math. 63 (2012), no. 2, 165–180. https://doi.org/10.1007/s13348-010-0024-6

Nasseh, S. and Sather-Wagstaff, S., A local ring has only finitely many semidualizing complexes up to shift-isomorphism, preprint arXiv:1201.0037v2 [math.AC], 2012.

Reiten, I., The converse to a theorem of Sharp on Gorenstein modules, Proc. Amer. Math. Soc. 32 (1972), 417–420. https://doi.org/10.2307/2037829

Sather-Wagstaff, S., Semidualizing modules, http://www.ndsu.edu/pubweb/~ssatherw/DOCS/sdm.pdf, 2010.

Sather-Wagstaff, S., Lower bounds for the number of semidualizing complexes over a local ring, Math. Scand. 110 (2012), no. 1, 5–17. https://doi.org/10.7146/math.scand.a-15192

Sharp, R. Y., Finitely generated modules of finite injective dimension over certain Cohen-Macaulay rings, Proc. London Math. Soc. (3) 25 (1972), 303–328. https://doi.org/10.1112/plms/s3-25.2.303

Vasconcelos, W. V., Divisor theory in module categories, North-Holland Mathematics Studies, no. 14, Notas de Matemática no. 53, North-Holland Publishing Co., Amsterdam, 1974.




DOI: http://dx.doi.org/10.7146/math.scand.a-96668

Refbacks

  • There are currently no refbacks.


ISSN 0025-5521 (print) ISSN 1903-1807 (online)

Hosted by the Royal Danish Library