Vol 19 (1966)

Table of Contents

Articles

Milman's Theorem for Convex Functions.
Arne Brondsted
PDF
5-10
Note on Cofibrations.
Arne Strom
PDF
11-14
Minimum-Stable Wedges of Semicontinuous Functions.
D. A. Edwards
PDF
15-26
The Cauchy Problem for Symmetric Hyperbolic Systems in Lp.
Philip Brenner
PDF
27-37
Tauberian Problems for the $n$-Dimensional Laplace Transform.
Lennart Frennemo
PDF
41-53
A Remark on the Closed Graph Theorem in Locally Convex Vector Spaces.
Arne Persson
PDF
54-58
On the $L^p$ Estimates for Elliptic Boundary Problems.
Leif Arkeryd
PDF
59-76
Parabolic Difference Operators.
Vidar Thomée
PDF
77-107
A Generalization of a Theorem of Wienholtz Concerning Essential Selfadjointness of Singular Elliptic Operators.
Henrik Stetkaer-hansen
PDF
108-112
Boundary Values for Homomorphisms of Compact Convex Sets.
Erik M. Alfsen
PDF
113-121
Excision and Cofibrations.
Per Holm
PDF
122-126
Sets of Local Uniform Convergence.
Don R. Lick
PDF
127-130
Measure Theory for $C^*$ Algebras.
Gert Kjaergard Pedersen
PDF
131-145
The Near-Rings with Identities on Certain Finite Groups.
James R. Clay, Joseph J. ,. Jr. Malone
PDF
146-150
Existence and Properties of Riesz Potentials Satisfying Lipschitz Conditions.
Hans Wallin
PDF
151-160
A Note on the Borel Structure of a Metrizable Choquet Simplex and of its Extreme Boundary.
Erik M. Alfsen
PDF
161-171
Infinite-Valued Asymptotic Points and Koebe Arcs.
Olav Njastad
PDF
172-182
A Note on Universal Homogeneous Models.
Isidore Fleischer
PDF
183-184
On a Problem of J.H.C. Whitehead and a Problem of Alonzo Church.
W. W. Boone, H. ,. Jr. Rogers
PDF
185-192
The Singular Spectrum of Elliptic Differential Operators in $L^p (R_n)$.
Erik Balslev
PDF
193-210
On the Convergence Principle of B.M. Kloss.
Herbert Heyer
PDF
211-216
A Note on Positively Expansive Endomorphisms.
Murray Eisenberg
PDF
217-218
Idéaux fermés de $L^1$ dans lesquels une suite approche l'identité.
Yves Meyer
PDF
219-222
This website uses cookies to allow us to see how the site is used. The cookies cannot identify you or any content at your own computer.
OK